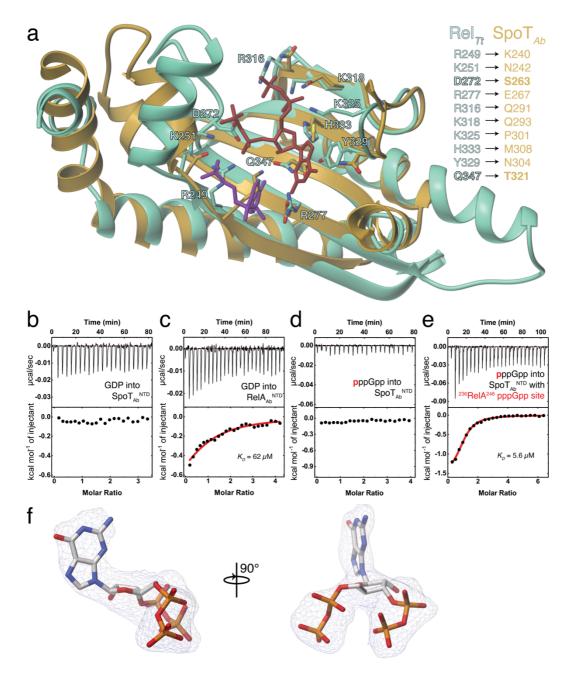
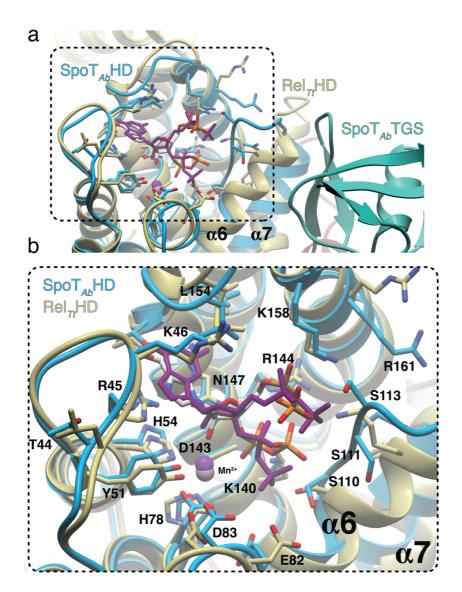

Article

https://doi.org/10.1038/s41589-022-01198-x

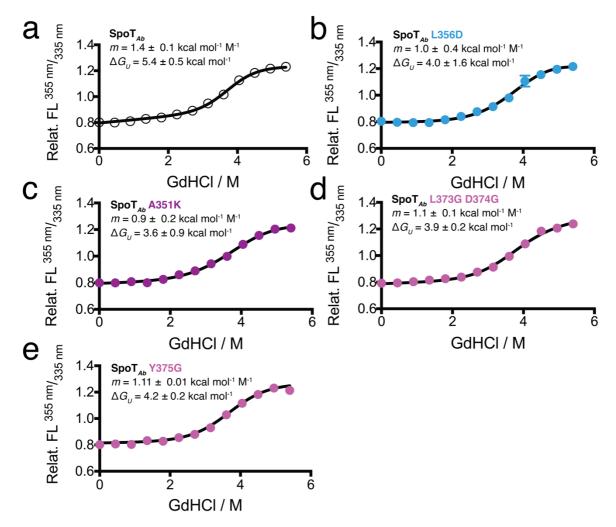
Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint


In the format provided by the authors and unedited

SUPPLEMENTARY FIGURES

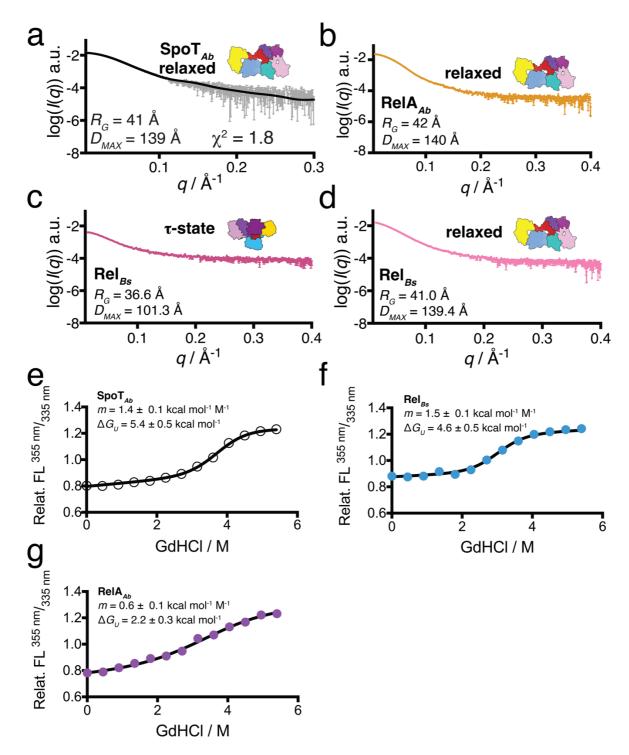


5 Supplementary Fig. 1. The linker regions connecting α -helices $\alpha 6$ and $\alpha 7$, SYNTH 6 (pseudo-SYNTH) with TGS, and HEL with ZFD appear as highly flexible regions in the 7 structures of free SpoT_{Ab} as well as E. coli RelA bound starved ribosomal complex, related 8 to Fig. 2. Cartoon representation of the structures of SpoT_{Ab} (a) and E. coli RelA (Brown et al., 9 2016) in the conformation bound to 70S ribosomes and uncharged A-site tRNA (b). The 10 intrinsically disordered linker regions that are not visible in the structures are highlighted in the 11 figures and the individual domains are coloured as on Analysis of the intrinsic disorder 12 propensity of the Core domain of SpoT_{Ab} (c) vs RelA_{Ab} (d) calculated with flDPnn. The two α -13 helices observed in the Core of SpoT_{Ab} match the two stretches predicted by flDPnn with low disordered content. The comparison of both Core regions suggests RelA_{Ab} Core is significantly 14 15 more disordered than that of SpoT_{Ab} .

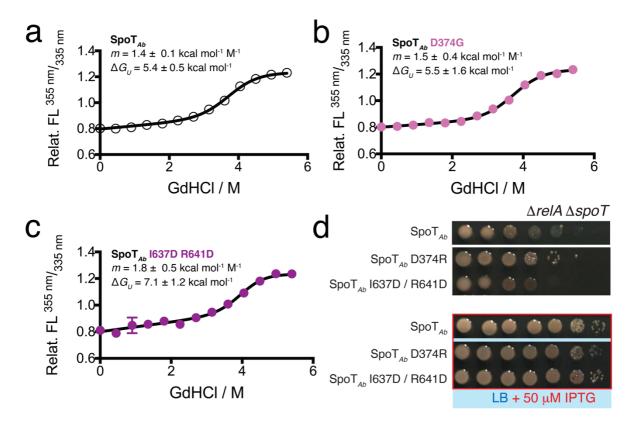


Supplementary Fig. 2. SpoT_{Ab} is a monofunctional (p)ppGpp hydrolase with a degenerated pseudo-SYNTH domain, related to Fig. 2.

21 (a) Superposition of the pseudo-SYNTH domain of SpoT_{Ab} (in gold) onto the SYNTH domain 22 of *T. thermophilus* Rel (Rel_{*Tt*}) bound to ppGpp and AMP (in green). While the overall topology 23 of the domain is conserved, a large number of substitutions in the nucleotide binding sites 24 precludes substrate binding and catalysis of the pyrophosphate transfer. The crucial conserved Y that stacks with the guanine base of GDP and GTP is substituted to N, while the R residues 25 26 that stacks with adenine (R249 and R277 in Rel_{Tt}) changed to K and E, respectively. Finally, 27 catalytic residues D, E and Q residues involved Mg²⁺ coordination and hydrolysis changed to S263, 2319 and T321, respectively. ITC titrations of GDP into either SpoT_{Ab}^{NTD} (**b**) or RelA_{Ab}^{NTD} (**c**). ITC titration of pppGpp into SpoT_{Ab}^{NTD} (**d**)and SpoT_{Ab}^{NTD} with a grafted 28 29 pppGpp-biding site of RelA_{*Ab*}, 236 RelA²⁴⁶ (e). In both cases the enzymes are supplemented with 30 31 1 mM APCPP, 1 mM GDP, and 10 mM EDTA. (f) Unbiased mFo-DFc electron density map 32 of ppGpp bound to SpoT_{Ab}, after refinement with Buster/TNT and omitting ppGpp.



Supplementary Fig. 3. Conservation of the hydrolase active site architecture of SpoT_{Ab} 35 36 compared to Rel_{*Tt*}, related to Fig. 3. (a) Superposition of the HD domain of SpoT_{Ab} bound to 37 ppGpp (coloured as in Figure 1a) onto the HD domain of T. thermophilus Rel (Rel_{Tt}) bound to 38 ppGpp (in yellow). From the superposition it becomes clear how the TGS domain of $SpoT_{Ab}$ 39 keeps the shorter $\alpha 6\alpha 7$ loop locked into place. (b) Details of the strong conservation of the 40 active site residues interacting with ppGpp. The only the region highly divergent between Rel_{Tt} and SpoT_{Ab} is $\alpha 6\alpha 7$ loop which in Rel_{Tt} is part of the allosteric network that control the 41 42 bifunctional activities of the enzyme, which is lost in SpoT_{Ab} .


44 45

46 Supplementary Fig. 4. Effects of amino acid substitutions on the structural stability of 47 SpoT_{Ab}, related to Fig. 4. Thermal denaturation profiles monitored by far UV CD spectrum at 48 222 nm probing the α -helical content of wild-type SpoT_{Ab} (**a**) as well as substituted variants 49 (**b-e**).

53 Supplementary Fig. 5. Effects of amino acid substitutions on the conformational state and 54 structural stability of RSH enzymes (related to Fig. 4). (a) Comparison of the experimental 55 SAXS data from the relaxed state of L356D (in grey) with the theoretical scattering curve of 56 the relaxed state (solid line) obtained from the Dadimodo model. (b) SAXS curve of $RelA_{Ab}$ is consistent with the dimensions of the relaxed state. SAXS curves of Rel_{Bs} in the τ -state (c) or 57 relaxed state (d). Thermal denaturation profiles monitored by far UV CD spectrum at 222 nm 58 59 of wild-type SpoT_{Ab} (e) as a reference for a long RSH enzyme in a full τ -state, Rel_{Bs} which 60 contains both the τ - and relaxed state with the equilibrium predominately shifted to the τ -state (f), and RelA_{*Ab*} which is fully in a relaxed state (g). 61

65

66 Supplementary Fig. 6. Effects of amino acid substitutions on the structural stability and 67 *in vivo* activity of SpoT_{Ab} (related to Fig. 5). Thermal denaturation profiles monitored by far 68 UV CD spectrum at 222 nm probing the α -helical content of wild-type SpoT_{Ab} (**a**) as well as 69 substituted variants (**b** and **c**). (**d**) *In vivo* HD functionality tests of SpoT_{Ab}^{D374G} and 70 SpoT_{Ab}^{I637D/R641D} expressed from the inducible *Ptac* promoter in a $\Delta relA\Delta spoT$ background of 71 *A. baumannii* (AB5075) expressing *relA* from a replicative plasmid (pP*relA::relA*). The 72 stabilising substitutions D374R and I637D/R641D phenocopy the WT.

SUPPLEMENTARY TABLES

Supplementary Table 1. X-ray data collection and processing. The $CC_{1/2}$ criterion was used to determine the resolution range. Values for the outer shell are 79 given in parentheses.

Sample	SpoT _{Ab} -ppGpp complex	Mn ²⁺ -free SpoT _{Ab} ^{NTD}
Diffraction source	Soleil PX1	Soleil PX2
Wavelength (Å)	0.9786	0.9801
Temperature (K)	100.0	100.0
Detector	Eiger-X 16M	Eiger-X 16M
Crystal-detector distance (mm)	402.12	254.68
Rotation range per image (°)	0.01	0.10
Exposure time per image (s)	0.01	0.004
Space group	$P2_{1}2_{1}2_{1}$	P4 ₁ 22
a, b, c (Å)	128.8, 133.8, 211.3	90.9, 90.9, 262.4
α, β, γ (°)	90.0, 90.0, 90.0	90.0 90.0 90.0
Mosaicity (°)	0.20	0.20
Resolution range (Å)	48.88 - 2.51	85.90 - 2.79
Total N°. of reflections	1158971 (58614)	628934 (33155)
N°. of unique reflections	83804 (4191)	25329 (1230)
Completeness (ellipsoidal %)	95.5 (72.6)	95.6 (86.4)
Redundancy	13.8 (14.0)	24.8 (27.0)
$\langle I/\sigma(I)\rangle$	9.5 (1.5)	10.1 (2.0)
$CC_{1/2}$	0.995 (0.712)	0.990 (0.487)
$R_{ m pim}$	0.051 (0.459)	0.108 (0.689)
Overall <i>B</i> factor / Wilson plot ($Å^2$)	60.6	44.3
R-factor (%)	21.7	24.6
R _{free} -factor (%)	25.0	28.6
Ramachandran profile (%)		
Core	97.0	96.4
Allowed	3.0	3.6
Outliers	0.0	0.0
R.m.s. deviations		
Bond lengths (Å)	0.012	0.014
Bond angles (°)	1.56	1.55
Number of atoms	22600	5158
Macromolecules	21520	4893
Solvent	872	242
Other	208	23
B-factors (Å2)		
All atoms	69.9	49.4
Macromolecules	69.8	49.6
Solvent atoms	54.5	39.0
Other atoms	147.3	103.3
PDB ID	7QPR	7QPS

Supplementary Table 2. Average length of the different domains and interdomain regions of bifunctional Rel, and the monofunctional RelA and SpoT.

	RSH	HD/pseudo-HD	a6/ a7 motif	pseudo-SYNTH /SYNTH	Core	TGS	HEL	HEL/ZFD IDR	ZFD	ZFD/RRM linker	RRM
	RelA	167	24	130	56	86	83	33	48	12	76
	Rel	166	11	144	52	77	87	25	45	12	74
84	SpoT	165	8	138	48	73	80	23	46	12	85
95											
05											
86											
87											

Supplementary Table 3. SAXS parameters.

Theoretically and experimentally determined SAXS parameters of the different protein species. The quality of the SAXS-based models was assessed based on the metrics proposed by Rambo 92 93 and Tainer.

94	Sample	<i>Rg</i> (Å)	D _{max} (Å)	$V_P(A^3)$	Vc	Conformation
95	SpoT _{Ab}	37.0	102.9	1.6	625	τ-state
	SpoT _{Ab} ^{L356D}	36.3	102.7	1.5	613	τ-state
96	SpoT_{Ab}^{L356D}	40.6	135.3	1.7	742	relaxed state
97	SpoT _{Ab} ^{E379K/W382K}	35.8	103.9	1.4	607	τ-state
98	SpoT _{Ab} ^{I637D/R614D}	35.6	103.1	1.3	583	τ-state
99	RelA _{Ab}	42.0	140.0	2.5	903	relaxed state
	Rel _{Bs}	36.6	101.3	1.3	520	τ-state
100	Rel _{Bs}	41.0	139.4	1.8	696	relaxed state

Supplementary Table 4. Protein stability parameters as determined by chemical denaturation assays.

- Experimentally determined thermodynamic parameters resulting from the denaturation of the different SpoT_{Ab} variants as well as Rel_{Bs} and $RelA_{Ab}$.

Sample	<i>m</i> (kcal mol ⁻¹ M ⁻¹)	ΔG_u (kcal mol ⁻¹)	Conformation
SpoT _{Ab}	1.4	5.4	τ-state
SpoT_{Ab}^{L356D}	1.0	4.0	relaxed state
SpoT _{Ab} ^{A348R}	1.3	4.8	predominately τ-state
SpoT _{Ab} ^{A351K}	0.9	3.6	relaxed state
SpoT _{Ab} ^{L373G/D374G}	1.1	3.9	relaxed state
SpoT _{Ab} ^{D374G}	1.5	5.5	τ-state
SpoT _{Ab} Y375G	1.1	4.2	relaxed state
SpoT _{Ab} ^{I637D/R614D}	1.8	7.1	τ-state
SpoT _{Ab} ^{H54A/H78A}	1.0	3.6	relaxed state
Rel _{Bs}	1.5	4.6	predominately τ-state
RelA _{Ab}	0.6	2.2	relaxed state