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Supporting Information Text12

This SI Appendix addresses the following topics:13

1. Technical assumptions on the dynamical system, observation map, and forecast observable (section 1).14

2. Finite-dimensional approximation methods underlying QMDA and associated pseudocode (section 2).15

3. Quantum circuit implementation in Qiskit (sec 3).16

4. Forecast skill metrics (section 4).17

5. Properties of the Lorenz 96 (L96) multiscale and Community Climate System Model version 4 (CCSM4) datasets18

(section 5).19

Equation numbers in the SI Appendix are prefixed by ‘S’. Equation and figure numbers without S prefixes refer to equations20

and figures in the main text, respectively. Tables S1 and S2 provide a summary of the definitions of the main symbols used in21

the main text and SI Appendix. Table S3 summarizes the data attributes and QMDA parameters for the L96 multiscale and22

El Niño Southern Oscillation (ENSO) experiments. Figures S1 and S2 show forecast skill scores for the L96 multiscale and23

ENSO experiments, respectively, for various values of the QMDA Hilbert space dimension L.24
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Table S1. Symbols used in the main text and SI Appendix (continues to Table S2).

Symbol Meaning
AL L× L real matrix representing πLf in the {ϕl} basis of HL
AL,N L× L real matrix representing πL,N f̂N in the {ϕl,N} basis of HL,N
A = L∞(X,µ) Abelian algebra of observables
A∗ = L1(X,µ) Predual of A
ÂN = L∞(X,µN ) Abelian algebra of observables with respect to sampling measure
|b⟩ Quantum computational basis vectors of Bn

B(R) Borel σ-algebra on R
B = B(H) Algebra of bounded operators on H, equipped with operator norm, ∥A∥B

B∗ = B1(H) Predual of B (space of trace-class operators on H), equipped with trace norm, ∥A∥B∗

BL = B(HL) Algebra of linear maps on HL, identified with a subalgebra of B
B̂N = B(ĤN ) Algebra of linear maps on ĤN
B̂L,N = B(HL,N ) Algebra of linear maps on HL,N , identified with a subalgebra of B̂N

Bn 2n-dimensional Hilbert space associated with n qubits
C(X) Space of continuous functions on X, equipped with uniform norm ∥f∥C(X)
C Algebra of bounded operators on C(X), equipped with operator norm ∥A∥C

Ef : B(R) → A Projection-valued measure (PVM) of f
Eπf : B(R) → B PVM of πf ; shorthand notation: E ≡ Eπf
EπLf : B(R) → BL PVM of πLf ; shorthand notation: EL ≡ EπLf
EπL,Nf : B(R) → BL,N PVM of πL,Nf ; shorthand notation: EL,N ≡ EπL,N f̂N
EL : B(R) → ML Matrix representation of EL in the {ϕl} basis of HL
EL,N : B(R) → ML Matrix representation of EL,N in the {ϕl,N} basis of HL
E(A) ⊂ A Effect space of A
E(ÂN ) ⊂ ÂN Effect space of ÂN
E(B) ⊂ B Effect space of B
E(BL) ⊂ BL Effect space of BL

E(BL,N ) ⊂ BL,N Effect space of BL,N

F : Y → E(A) Effect-valued feature map
F : Y → E(B) Effect-valued feature map (operator-valued), F = π ◦ F
FL : Y → E(BL) Projected feature map, FL = ΠL ◦ F
FL : Y → ML Matrix representation of FL in the {ϕl} basis of HL
F̂N : Y → E(ÂN ) Effect-valued feature map (data-dependent)
F̂N : Y → E(B̂N ) Effect-valued feature map (operator-valued), F̂N = π̂N ◦ F̂N
FL,N : Y → E(BL,N ) Projected feature map, FL,N = ΠL,N ◦ F̂N
FL,N : Y → ML Matrix representation of FL,N in the {ϕl,N} basis of HL,N
f : X → R Forecast observable, identified with a self-adjoint element of A
f̂N : XN → R Restriction of f to training trajectory XN , identified with self-adjoint element of ÂN ; training values fn = f(xn)
H = L2(X,µ) Hilbert space associated with the invariant measure
HL ⊂ H L-dimensional subspace spanned by leading L eigenfunctions ϕl of K
ĤN = L2(X,µN ) Hilbert space associated with the sampling measure
HL,N ⊂ ĤN L-dimensional subspace spanned by leading L eigenfunctions ϕl,N of KN
h : X → Y Observation map
K : H → H Kernel integral operator associated with k
k : X ×X → R Pullback kernel from training data space, k(x, x′) = κ(z(x), z(x′))
KN : HN → HN Kernel integral operator associated with kN
KN N ×N real matrix representing KN
kN : X ×X → R Data-dependent pullback kernel from training data space, kN (x, x′) = κN (z(x), z(x′))
L Hilbert space dimension
ML Algebra of L× L complex matrices
Mn Algebra of bounded operators on Bn, equipped with operator norm ∥A∥Mn

n Number of qubits
N Number of training samples
P t : A∗ → A∗ Transfer operator on the dual of A, P tα = α ◦ Ut; restricts to P t : S(A) → S(A) and P t : S∗(A) → S∗(A)
Pt : B∗ → B∗ Transfer operator on the dual of B, Ptγ = γ ◦ Ut; restricts to Pt : S(B) → S(B) and Pt : S∗(B) → S∗(B)
P(t)
L : B∗ → B∗ Projected transfer operator, P(t)

L γ = γ ◦ U(t)
L ; identified with P(t)

L : B∗
L → B∗

L, restricts to P(t)
L : S(BL) → S(BL)

P(q)
L,N : B̂∗

N → B̂∗
N Transfer operator, P(q)

L,Nγ = γ ◦ U(q)
L,N ; identified with P(q)

L,N : B∗
L,N → B∗

L,N , restricts to P(q)
L,N : S(B̂N ) → S(B̂N )

PE,p : B(R) → [0, 1] Probability distribution induced by PVM E : B(R) → A given ωp ∈ S∗(A); shorthand notation Pf,p ≡ PEf ,p
PE,ρ : B(R) → [0, 1] Probability distribution induced by PVM E : B(R) → B given ωρ ∈ S∗(B); shorthand notation Pπf,ρ ≡ PEπf ,ρ
S0, . . . , SM−1 ⊆ R Spectral bins (intervals) for evaluation of forecast distribution
S(A) ⊂ A∗ State space of A
S∗(A) ⊂ S(A) Space of normal states of A
S(B) ⊂ B∗ State space of B
S∗(B) ⊂ S(B) Space of normal states of B
SC(B) ⊂ S∗(B) Normal states given by linear combinations of pure states with uniformly bounded continuous state vectors
S(BL) State space of BL

S(BL,N ) State space of BL,N
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Table S2. Symbols used in the main text and SI Appendix (continues from Table S1).

Symbol Meaning
Ut : H → H Koopman operator, Utf = f ◦ Φt; restricts to Ut : A → A

Ũt : H → H Koopman operator on continuous functions, Utf = f ◦ Φt
Ut : B → B Induced Koopman operator, UtA = UtAUt∗

U
(t)
L : H → H Projected Koopman operator, U(t)

L = ΠLUt; identified with operator U(t)
L : HL → HL

U(t)
L : B → B Projected Koopman operator, U(t)

L A = U
(t)
L AU

(t)∗
L ; identified with operator U(t)

L : BL → BL

U
(t)
L L× L real matrix representing U(t)

L in the {ϕl} basis of HL
ÛqN : HN → HN Shift operator
U

(q)
L,N : HL,N → HL,N Projected shift operator, U(q)

L,N = ΠL,N Û
q
N ; identified with operator U(q)

L,N : HL,N → HL,N

U(q)
L,N : B → B Projected shift operator, U(q)

L,NA = U
(t)
L AU

(t)∗
L ; identified with operator U(q)

L,N : BL,N → BL,N

U
(q)
L,N L× L real matrix representing U(q)

L,N in the {ϕl,N} basis of HL,N
WL,N : HL,N → Bn Unitary mapping into quantum computational Hilbert space
WL,N : BL,N → Mn Induced unitary, WL,NA = WL,NAW∗

L,N

X Dynamical state space
XN ⊂ X Training trajectory XN = {x0, . . . , xN−1}; training dynamical states xn = Φn∆t(x0)
Y Observations space; training observations yn = h(xn)
Z Training data space; training data zn = z(xn)
z : X → Z Map into training data space
Γ : S∗(A) → S∗(B) Embedding of normal states of A into normal states of B
∆t Sampling interval
δx Dirac δ-measure supported at a point x
ϵ Kernel bandwidth parameter
ζ ∈ Bn Quantum computational state vector
ηbump : R → R Bump shape function
ηgauss : R → R Gaussian shape function
ι : C(X) → H Map from continuous functions to Lp(X,µ) equivalence class
ιN : C(X) → HN Map from continuous functions to Lp(X,µN ) equivalence class
κ : Z × Z → R+ Kernel on training data space
λl Kernel eigenvalue corresponding to ϕl
λl,N Kernel eigenvalue corresponding to ϕl,N
µ Invariant measure
µN Sampling measure supported on the trajectory XN
νN Pushforward of the sampling measure into data space, νN = z∗(µN )
ξ ∈ H Unit vector associated with vector state ωρ ∈ S∗(B), ρ = ⟨ξ, ·⟩ξ
ξL ∈ HL Unit vector associated with vector state ωρL ∈ S∗(B), ρL = ⟨ξL, ·⟩ξL
ξL,N ∈ HL,N Unit vector associated with vector state ωρL,N ∈ S∗(B), ρL,N = ⟨ξL,N , ·⟩N ξL,N
ξL,N ∈ CL Column vector representation of ξL,N in the {ϕl,N} basis of HL,N
ΠL : H → H Projection onto HL; identified with map ΠL : H → HL
ΠL : B → B Projection onto BL, ΠLA = ΠLAΠL; identified with map ΠL : B → BL

ΠL,N : ĤN → ĤN Projection onto HL,N ; identified with map ΠL,N : ĤN → HL,N
ΠL,N : B̂N → B̂N Projection onto BL,N , ΠL,NA = ΠL,NAΠL,N ; identified with map ΠL,N : B̂N → BL,N

π : A → B Regular representation of A
π̃ : C(X) → C Regular representation of C(X)
πL : A → BL Projected regular representation, πL = ΠL ◦ π
π̂N : ÂN → B̂N Regular representation of ÂN
πL,N : AN → BL,N Projected regular representation, πL,N = ΠL,N ◦ π̂N
τ Forecast lead time
Φt : X → X Dynamical flow
ϕl ∈ H Eigenvectors of K (basis vectors for H and HL)
φl ∈ C(X) Continuous representative of ϕl
ϕl,N ∈ ĤN Eigenvectors of KN (basis vectors for ĤN and HL,N )
φl,N ∈ C(X) Continuous representative of ϕl,N
ϕl,N ∈ RN Column vector representation of ϕl,N
χS Characteristic function of a set S
ψ : Y × Y → [0, 1] Kernel on observation space
ψN : Y × Y → [0, 1] Data-dependent kernel on observation space
ωp ∈ S∗(A) Normal state induced by probability density p ∈ A∗

ωρ ∈ S∗(B) Normal state induced by density operator ρ ∈ B∗

ωρL ∈ S∗(BL) Normal state induced by density operator ρL ∈ BL,∗; extends to normal state ωρL ∈ S∗(BL)
ωρL,N ∈ S∗(BL,N ) Normal state induced by density operator ρL,N ∈ BL,N
† Hermitian conjugate (complex conjugate transpose)
· Normalized Euclidean inner product on CN , f · g = f†g/N

⊙ Elementwise array multiplication
⟨·, ·⟩ Inner product of H
⟨·, ·⟩N Inner product of ĤN
⟨·, ·⟩n Inner product of Mn
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Table S3. Dataset attributes and QMDA parameters for the L96 multiscale and CCSM4 ENSO experiments.

L96 Multiscale ENSO
Dataset attributes
Number of training samples N 40,000 15,600
Number of test samples N̂ 13,200 2400
Delay parameter Q 0 5
Observation space (Y ) dimension d 9 44,414
Training data space (Z) dimension dZ 9 488,554
Kernel κ for basis computation
Kernel type Eq. (S4) Eq. (S5)
Neighborhood parameter knn for bandwidth function 400 400
Bandwidth range parameters (J1, J2) (−40, 40) (−40, 40)
Bandwidth exponent parameter (J2 − J1)/200 (J2 − J1)/200
Bandwidth scaling parameter sκ 1 2
Kernel ψ for data assimilation
Kernel type Eq. (S25) Eq. (S25)
Neighborhood parameter knn for bandwidth function 400 400
Bandwidth range parameters (J1, J2) (−40, 40) (−40, 40)
Bandwidth exponent parameter (J2 − J1)/500 (J2 − J1)/500
Bandwidth scaling parameter sψ 0.6 1
Data assimilation
Number of basis functions L (Hilbert space dimension) 2000 1000
Number of timesteps Jo per observation 1 1
Number of forecast timesteps Jf 150 12
Quantum circuit simulation
Number of qubits n 10 N/A
Number of shots M 106 N/A
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Fig. S1. NRMSE (a) and AC (b) skill scores for forecasts of the x1 variable of the L96 multiscale system, obtained for representative values of the Hilbert space dimension
parameter L in the range 512–2000. The remaining QMDA parameters are listed in Table S3. The case L = 2000 corresponds to Figs. 2 and 3 in the main text.
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Fig. S2. NRMSE (a) and AC (b) skill scores for forecasts of the Niño 3.4 index in CCSM4, obtained for representative values of the Hilbert space dimension parameter in the
range 500–2000. The remaining QMDA parameters are listed in Table S3. The case L = 1000 corresponds to Figs. 4 and 5 in the main text.
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1. Assumptions25

We make the following standing assumption on the dynamical system and forecast observable.26

Assumption 1.27

(a) Φt : X → X, t ∈ R, is a continuous-time, continuous flow, on a compact metrizable space X.28

(b) µ is an invariant, ergodic, Borel probability measure under Φt.29

(c) The forecast observable f : X → R is a real-valued function lying in A = L∞(X,µ).30

Note that the support of µ is a closed subset of the compact space X, and thus is compact. Moreover, the compactness31

assumption on X can be replaced by the weaker assumption that Φt has a forward-invariant compact set X+ that contains the32

support of µ (which is again necessarily compact). The analysis performed below can be carried over to this setting by replacing33

the space of continuous functions C(X) (which is a Banach space equipped with the uniform norm when X is compact) with34

C(X+).35

For the purpose of data-driven approximation, we additionally require:36

Assumption 2.37

(a) For the sampling interval ∆t > 0, the discrete-time system induced by the map Φ∆t : X → X is ergodic with respect to µ.38

(b) The forecast observable f : X → R is continuous.39

(c) The observation map h : X → Y is continuous.40

Assumption 2(a) implies that for µ-a.e. initial condition x0 ∈ X, the sampling measures µN =
∑N−1

n=0 δxn/N with41

xn = Φn∆t(x0) weak-∗ converge to the invariant measure µ; that is,42

lim
N→∞

∫
X

f dµN = lim
N→∞

1
N

N−1∑
n=0

f(xn) =
∫
X

f dµ, ∀f ∈ C(X). [S1]43

Henceforth, we will assume for convenience that the states x0, x1, . . . are all distinct—aside from the trivial case that the44

support of µ is a singleton set consisting of a fixed point, this assumption holds for µ-a.e. initial condition x0, and ensures that45

the Hilbert space ĤN = L2(X,µN ) has dimension N .46

In what follows,47

⟨f, g⟩ =
∫
X

f∗g dµ, ⟨f, g⟩N =
∫
X

f∗g dµN = 1
N

N−1∑
n=0

f∗(xn)g(xn)48

will denote the inner products of H and ĤN , respectively. The Hilbert space ĤN is isomorphic to CN equipped with the49

normalized dot product f · g ≡ f†g/N , where f† is the Hermitian conjugate (complex conjugate transpose) of the column50

vector f ∈ CN . Under this isomorphism, two elements f, g ∈ ĤN are represented by column vectors f = (f(x0), . . . , f(xN−1))⊤
51

and g = (g(x0), . . . , g(xN−1))⊤, and we have ⟨f, g⟩N = f · g.52

2. Finite-dimensional approximation53

This section provides an overview and pseudocode listings of the data-driven approximation techniques underpinning QMDA.54

We begin with Algorithm S1, which gives a high-level description of the QMDA pipeline employed in the L96 multiscale and55

ENSO experiments presented in the main text. The algorithm is divided up into two parts:56

1. A training phase, which uses the training data y0, . . . , yN−1 ∈ Y and f0, . . . , fN−1 ∈ R for the observation map h and57

forecast observable f , respectively, to build an orthonormal basis {ϕ0,N , . . . , ϕL−1,N} of the Hilbert space HL,N . The basis58

is used to approximate the Koopman operator U t of the dynamical system, the multiplication operator πf representing59

the forecast observable, and the effect-valued map F employed in the analysis step.60

2. A prediction phase, which iteratively executes the sequential forecast–analysis steps of QMDA given a test dataset of61

observations ŷ0, . . . , ŷN̂−1 ∈ Y . The state of the data assimilation system at time tn is a vector state of the operator62

algebra BL,N , induced by a unit vector ξn ∈ HL,N . This vector is represented in the {ϕl,N} basis of HL,N by a column63

vector ξn ∈ CL.64

Algorithm S1 depends on a number of lower-level procedures, which we describe in the following subsections.65

A. Kernel eigenfunctions. Following refs. (1–5), we use eigenvectors of kernel integral operators to construct both the L-66

dimensional Hilbert spaces HL and their data-driven counterparts HL,N . We make the following assumptions on the kernels67

used to define these operators.68

Assumption 3.69

(a) k : X ×X → R is a continuous, symmetric kernel.70

(b) k0, k1, . . . : X ×X → R is a family of continuous, symmetric kernels such that, as N → ∞, kN converges uniformly to k.71
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Algorithm S1 QMDA pipeline employed in the L96 and ENSO experiments described in the main text.
Inputs

1. Delay embedding parameter Q ∈ N.
2. Hilbert space dimension L ∈ N.
3. Number of spectral bins M ∈ N.
4. Kernel neighborhood parameter knn in N.
5. Bandwidth exponent parameter a > 0 and range parameters J1, J2 ∈ N.
6. Number of forecast timesteps Jf ∈ N.
7. Training data from observation map, y−Q, . . . , yN−1+Q ∈ Y ≡ Rd with yn = h(xn).
8. Training data from forecast observable, f0, . . . , fN−1+Q ∈ R with fn = f(xn).
9. Observed data ŷ0, . . . , ŷN̂−1 ∈ Y in test period.

Require: All training data are induced by the same sequence of (unknown) time-ordered states x−Q, . . . , xN−1+Q ∈ X with
xn = Φn∆t(x0), taken at a fixed sampling interval ∆t > 0.

Outputs
1. Mean forecast {f̄nj} for n ∈ {0, . . . , N̂ − 1} and j ∈ {0, . . . , Jf}, where f̄nj has initialization time tn = n∆t in the test

period and lead time τj = j∆t.
2. Forecast uncertainty {σnj} for n ∈ {0, . . . , N̂ − 1} and j ∈ {0, . . . , Jf}, where σnj has initialization time tn and lead time
τj .

3. Spectral bins (intervals) S0, . . . , SM−1 ⊆ R.
4. Forecast probability vectors {pnj} for n ∈ {0, . . . , N̂ − 1} and j ∈ {0, . . . , Jf}, where pnj = (p0nj , . . . , pM−1,nj) is the

probability that, for initialization time tn and lead time τj , the forecast observable f lies in Sm.

Training phase
1. Apply Eq. (S6) to the training data yn to build the delay-embedded dataset z0, . . . , zN−1 ∈ Z ≡ R(2Q+1)d.
2. Set dZ to the Euclidean distance on Z. Execute Algorithm S2 with inputs {zn}N−1

n=0 , dZ , and knn to obtain a kernel
bandwidth function bZ : Z → R+.

3. Execute Algorithm S3 with inputs {zn}N−1
n=0 , dZ , and knn to obtain basis vectors ϕ0, . . . ,ϕL−1 ∈ RN for HL,N .

4. Execute Algorithm S8 with inputs {fn}N−1
n=0 to obtain spectral bins S0, . . . , SM−1 ⊂ R.

5. Execute Algorithm S7 with inputs {fn}N−1
n=0 , {ϕl}L−1

l=0 , and {Sm}M−1
m=0 to obtain the projected multiplication operator

A ∈ ML representing f and spectral projectors E0, . . . ,EM−1 ∈ ML.
6. For each j ∈ {1, . . . , Jf}, execute Algorithm S9 with inputs j and {ϕl}L−1

l=0 to obtain Koopman operator matrices
U (1), . . . ,U (Jf) ∈ ML.

7. Set dY to the Euclidean distance on Y . Execute Algorithm S2 with inputs {yn}N−1
n=0 , dY , and knn to obtain a kernel

bandwidth function bY : Y → R+.
8. Define the scaled distance function d̃Y : Y × Y → R+ with d̃Y (y, y′) = dY (y, y′)/

√
bY (y)bY (y′). Execute Algorithm S2

with inputs {yn}N−1
n=0 , a, J1, J2, d̃Y , and ηbump (where ηbump is the bump function from Eq. (S26)) to obtain an optimal

bandwidth parameter ϵ∗.
9. Define the kernel function ψ : Y × Y → [0, 1] with ψ(y, y′) = ηbump(d̃Y (y, y′)/ϵ∗). Execute Algorithm S12 with inputs ψ,

{yn}N−1
n=0 and {ϕl}L−1

l=0 to obtain the effect-valued feature map F : Y → ML.

Prediction phase
1. Set the initial state vector ξ0 = (1, 0, . . . , 0)⊤ ∈ CL.
2. For each n ∈ {1, . . . , N̂ − 1} execute the forecast–analysis cycle in Algorithm S11 with inputs Jf, Jo = 1, {U (j)}Jf

j=1, A,
{Em}M−1

m=0 , F , ξn−1, and ŷn.

Return:
• The mean forecasts f̄n−1,0, . . . , f̄n−1,Jf .
• The forecast uncertainties σn−1,0, . . . , σn−1,Jf .
• The forecast probability vectors pn−1,0, . . . ,pn−1,Jf .
• The posterior state vector ξn given the observation yn.
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As we describe below, the kernels kN are typically data-dependent kernels obtained by normalization of a fixed (data-72

independent) kernel on X.73

Defining K : H → H as the integral operator74

Kf =
∫
X

k(·, x)f(x) dµ(x),75

we have that K is a real, self-adjoint, Hilbert-Schmidt operator, and thus there exists a real, orthonormal basis {ϕ0, ϕ1, . . .} of76

H = L2(X,µ) consisting of eigenvectors of K,77

Kϕl = λlϕl, λl ∈ R, [S2]78

where the eigenvalues λ0, λ1, . . . are ordered in order of decreasing absolute value and converge to 0 as l → ∞. In the data-driven79

setting, we replace H by the N -dimensional Hilbert space ĤN , and define the integral operator KN : ĤN → ĤN as80

KNf =
∫
X

kN (·, x)f(x) dµN (x) = 1
N

N−1∑
n=0

kN (·, xn)f(xn).81

The operator KN has an associated real, orthonormal eigenbasis {ϕ0,N , . . . , ϕN−1,N} of ĤN , where82

KNϕl,N = λl,Nϕl,N , λl,N ∈ R, [S3]83

and the eigenvalues λl,N are ordered again in order of decreasing modulus.84

An important property of the eigenvectors ϕl and ϕl,N corresponding to nonzero eigenvalues is that they have continuous85

representatives. Specifically, assuming that λl and λl,N are nonzero, we define φl, φl,N ∈ C(X) such that86

φl(x) = 1
λl

∫
X

k(x, x′)ϕl(x′) dµ(x′), φl,N (x) = 1
λl,N

∫
X

kN (x, x′)ϕl,N (x′) dµN (x′).87

It then follows from Eq. (S2) and Eq. (S3), respectively, that φl = ϕl µ-a.e. and φl,N = ϕl,N µN -a.e. Note that the latter88

relation simply means that φl,N (xn) = ϕl,N (xn) for every n ∈ {0, . . . , N − 1}.89

The following theorem summarizes the spectral convergence of the operators KN to K and the convergence of the associated90

basis functions. The results are based on techniques developed in ref. (6). Additional details and proofs for the setting of91

ergodic dynamical systems and data-dependent kernels employed in this work can be found, e.g., in refs. (5, 7).92

Theorem 1. Under Assumptions 1–3, the following hold as N → ∞ for µ-a.e. initial condition x0 ∈ X.93

(a) For each nonzero eigenvalue λl of K, the sequence of eigenvalues λl,N of KN converges to λl, including multiplicities.94

(b) If ϕl ∈ H is an eigenvector of K corresponding to λl with continuous representative φl ∈ C(X), there exists a sequence95

of eigenvectors ϕl,N of KN corresponding to eigenvalue λl,N , whose continuous representatives φl,N ∈ C(X) converge96

uniformly to φl.97

In numerical applications, we use the ĤN ≃ CN isomorphism to represent the eigenvectors ϕl,N by N -dimensional column98

vectors ϕl,N ∈ CN (which are real since the ϕl,N are real) with ϕl,N = (ϕl,N (x0), . . . , ϕl,N (xN−1))⊤. The vectors ϕl,N are99

solutions of the eigenvalue problem100

KNϕl,N = λl,Nϕl,N101

for the N × N kernel matrix KN = [Kij,N ]N−1
i,j=0 with Kij,N = kN (xi, xj)/N . We impose the orthonormality condition102

ϕl,N · ϕm,N = δl,m, which is equivalent to ⟨ϕl,N , ϕm,N ⟩N = δlm on ĤN .103

Henceforth, we will assume that for a given choice of basis vectors ϕl of H and so long as λl is nonzero, the data-driven104

basis vectors ϕl,N of ĤN are chosen such that they converge to ϕl as per Theorem 1. This assumption leads to no loss of105

generality since every real, orthonormal eigenbasis ϕl,N can be orthogonally rotated to a basis that converges to ϕl without106

affecting the results of the computations presented below.107

B. Choice of kernel. Since our training data zn are in the space Z, we employ kernels which are pullbacks of kernels on that108

space; specifically, we set k(x, x′) = κ(z(x), z(x′)) and kN (x, x′) = κN (z(x), z(x′)), where κ : Z × Z → R and κN : Z × Z → R109

are continuous, symmetric kernels. With this approach, all kernel computations can be executed using the data zn ∈ Z without110

knowledge of the underlying dynamical states xn ∈ X.111

Following ref. (5), we construct the kernels κN by applying the bistochastic normalization procedure introduced in ref. (8)112

to the family of variable-bandwidth diffusion kernels developed in ref. (9). Using the training data zn, we construct a113

variable-bandwidth radial basis function kernel κ̃N : Z × Z → R of the form114

κ̃N (z, z′) = ηgauss

(
d(z, z′)

ϵN
√
bN (z)bN (z′)

)
, [S4]115

where ηgauss : R → R is the Gaussian shape function, ηgauss(u) = e−u2 , d : Z → Z → R+ is a distance function (which we116

nominally set to the Euclidean when Z = Rd), ϵN > 0 is a bandwidth parameter, and bN : Z → R+ is a (data-dependent)117
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bandwidth function. The construction of the bandwidth function, which resembles a kernel density estimation procedure, is118

summarized in Algorithm S2. The bandwidth parameter ϵN is tuned automatically using Algorithm S6, which is described in119

section 2.C below. In order to have flexibility to adjust the bandwidth parameter around the value computed by the tuner, we120

introduce a scaling parameter sκ > 0 and set ϵN = sκϵ∗, where ϵ∗ is the output of Algorithm S6. In general, we find that the121

automatic tuning procedure performs well, so sκ = 1 is typically a good choice, but in some cases involving datasets of large122

intrinsic dimension and sparse sampling, using a somewhat more conservative bandwidth parameter (e.g., sκ = 2) can lead to123

higher-quality basis functions. Further details on Algorithms S2 and S6 can be found in refs. (1, 9).124

Algorithm S2 Kernel bandwidth function.
Inputs

1. Dataset x0, x1, . . . , xN−1 ∈ X ; X is an arbitrary set.
2. Distance function d : X × X → R+.
3. Neighborhood parameter knn ∈ N.
4. Bandwidth exponent parameter a > 0 and range parameters J1, J2 ∈ N.

Outputs
1. Bandwidth function b : X → R+.

Steps
1. Construct the function r : X → R+, where r2(x) =

∑knn
j=1 d

2(x, I(x, j))/knn and I(x, j) ∈ {0, . . . , N − 1} is the index of
the j-th nearest neighbor of x in the {xi}N−1

i=0 dataset with respect to the distance d.
2. Construct the distance-like function d̃ : X × X → R with d̃(x, x′) = d(x, x′)/

√
r(x)r(x′).

3. Execute Algorithm S6 with inputs {xn}N−1
n=0 , d̃, ηgauss, knn, a, J1, and J2 to obtain an optimal bandwidth ϵ∗ and dimension

estimate m∗.
4. Construct the kernel k̃ : X × X → R+, where k̃(x, x′) = ηgauss(d̃(x, x′)/ϵ∗).
5. Return: The function b : X → R+ such that b(x) =

∑N−1
j=0 k̃(x, xj)/(N(πϵ∗r

2(x))m∗/2).

Using the kernel κ̃N , we perform the sequence of normalization steps described in ref. (8) to obtain a symmetric, positive,125

positive-definite kernel κN which is Markovian with respect to the pushforward νN := z∗(µN ) of the sampling measure on Z,126 ∫
Z

κN (z, z′) dνN (z′) = 1
N

N−1∑
n=0

κN (z, zn) = 1, ∀z ∈ Z.127

Algorithm S3 describes the computation of the eigenvectors ϕl,N associated with this kernel. We note that due to the particular128

form of the normalization leading to κN , the eigenvectors ϕl,N can be computed without explicit formation of the N × N129

kernel matrix KN . Instead, we compute the ϕl,N through the singular value decomposition (SVD) of an N ×N kernel matrix130

K̂N = [κ̂N (zi, zj)]N−1
i,j=0 associated with a non-symmetric kernel function κ̂N : Z×Z → R that factorizes KN as KN = NK̂NK̂⊤

N .131

As is common practice in kernel methods, when the kernel matrix K̂N is too large for our available computational resources,132

we fix a parameter k̂nn ∈ N and approximate K̂N by a sparse matrix obtained by setting the N − k̂nn smallest values in each133

row of K̂N to 0. The steps leading to κ̃N are listed in Algorithm S4. See Appendix B in ref. (5) for further details.134

The data-driven basis from Algorithm S3 was used in our L96 multiscale experiments. As noted in the main text, in the135

ENSO experiments we used a modified version of the algorithm that replaces κ̃N from Eq. (S4) with a product kernel that136

captures covariability between data in Z and data in a response space Ŷ (in the case of ENSO, a sequence space of Niño 3.4137

indices). Specifically, given a function ĥ : Z → Ŷ , we define κ̃ĥ,N : Z × Z → R as138

κ̃ĥ,N (z, z′) = ηgauss

(
d(z, z′)

ϵN
√
bN (z)bN (z′)

)
ηgauss

 dŶ (ĥ(z), ĥ(z′))

ϵŶ ,N

√
bŶ ,N (ĥ(z))bŶ ,N (ĥ(z′))

 , [S5]139

where dŶ : Ŷ × Ŷ → R+ is a distance function on Ŷ , ϵ̂Ŷ ,N is a bandwidth parameter, and bŶ ,N : Ŷ → R+ is a bandwidth140

function. The bandwidth function bŶ is computed via Algorithm S2 using {ĥ(z0), . . . , ĥ(zN )} as input data, and ϵŶ ,N is141

tuned via Algorithm S6. Once the kernel function κ̃ĥ,N is formed, the computation of the associated bistochastic kernel and142

eigenfunctions proceeds analogously to Algorithm S3. We summarize the entire procedure in Algorithm S5 for completeness.143

In addition to the bistochastic kernel from Algorithms S3 and S5, QMDA can be implemented with a variety of kernels,144

including non-symmetric kernels satisfying a detailed-balance condition (e.g., the family of normalized kernels from the diffusion145

maps algorithm (10)). Two basic guidelines on kernel choice are that the data-dependent kernels kN are regular-enough such146

that the integral operators KN converge spectrally to K (in the sense of Theorem 1), and the limit kernel k is “rich-enough”147

such that all eigenvalues λl are strictly positive (i.e., k is an L2(µ) integrally strictly-positive kernel (11)). In that case, as N148

and L increase, the eigenvectors ϕl,N provide a consistent approximation of an orthonormal basis for the entire Hilbert space149

David Freeman, Dimitrios Giannakis, Brian Mintz, Abbas Ourmazd, and Joanna Slawinska 11 of 28



Algorithm S3 Orthonormal basis vectors of ĤN from variable-bandwidth bistochastic kernel. We suppress N subscripts from
our notation for ϕl,N .
Inputs

1. Dataset z0, z1, . . . , zN−1 ∈ Z.
2. Distance function d : Z × Z → R+.
3. Neighborhood parameters knn, k̂nn ∈ N.
4. Bandwidth exponent parameter a > 0 and range parameters J1, J2 ∈ N.
5. Bandwidth scaling parameter sκ > 0.
6. Number of basis vectors L ≤ N .

Outputs
1. Column vectors ϕ0, . . . ,ϕL−1 ∈ RN .

Steps
1. Execute Algorithm S2 with inputs {zn}N−1

n=0 , d, a, J1, and J2 to obtain a bandwidth function b : Z → R+.
2. Construct the distance-like function d̃ : Z × Z → R+ with d̃(z, z′) = d(z, z′)/

√
b(z)b(z′).

3. Execute Algorithm S6 with inputs {zn}N−1
n=0 , d̃, ηgauss, a, J1, and J2 to obtain an optimal bandwidth ϵ∗.

4. Construct the kernel κ̃ : Z × Z → R+ with κ̃(z, z′) = ηgauss(d̃(z, z′)/(sκϵ∗)).
5. Execute Algorithm S4 with inputs {zn}N−1

n=0 and κ̃ to obtain a non-symmetric kernel function κ̂ : Z × Z → R+.
6. Form the N ×N kernel matrix K̂ = [K̂ij ]N−1

i,j=0 with K̂ij = κ̂(zi, zj).
7. If k̂nn < N , set the N − knn smallest elements in each row of K̂ to 0 and use a sparse array to store K̂.
8. Return: The leading L left singular vectors ϕ0, . . . ,ϕL−1 of K̂, arranged in order of decreasing corresponding singular

value, and normalized such that ∥ϕl∥2 =
√
N .

Algorithm S4 Factorization of bistochastic kernel function.
Inputs

1. Dataset x0, x1, . . . , xN−1 ∈ X ; X is an arbitrary set.
2. Kernel function k : X × X → R+.

Outputs
1. Non-symmetric kernel function k̂ : X × X → R.

Steps
1. Construct the degree function d : X → R+, where d(x) =

∑N−1
j=0 k(x, xj).

2. Construct the function q : X → R+, where q(x) =
∑N−1

j=0 k(x, xj)/d(xj).
3. Return: The kernel function k̂ : X × X → R+, where k̂(x, x′) = k(x, x′)/(d(x)q1/2(x′)).

H. The bistochastic kernels kN from Algorithm S3 have this property if the map z : X → Z is injective. In the case of the150

delay coordinate map z : X → Z = Y 2Q+1,151

z(x) = (h(Φ−Q∆t(x)), h(Φ(−Q+1) ∆t(x)), . . . ,ΦQ∆t(x)) [S6]152

injectivity holds for sufficiently large delay parameter Q under appropriate assumptions on delay-coordinate maps (12).153

For certain classes of kernels k constructed from shape functions with rapid decay (e.g., the Gaussian shape function ηgauss),154

the asymptotic behavior of the eigenfunctions in the limit of vanishing bandwidth parameter ϵN may be studied using the155

theory of heat kernels (13). Under appropriate conditions (e.g., the support of the invariant measure µ is a differentiable156

manifold or a metric measure space), the eigenfunctions are extremizers of a Dirichlet energy induced by the kernel, which157

defines a notion of regularity of functions akin to a Sobolev norm. In such cases, for any given L ∈ N, the set of orthonormal158

vectors {ϕ0, . . . , ϕL−1} (which we will use in section 2.D to define the subspaces HL ⊂ H used in QMDA) is optimal in the159

sense of having maximal regularity with respect to the kernel-induced Dirichlet energy.160

C. Bandwidth tuning. Algorithm S6 is a tuning procedure for bandwidth-dependent kernels k : X × X → R+ of the form161

k(x, x′) = κ(d(x, x′)/ϵ), where X is an arbitrary set, d : X × X → R+ is a distance-like function, η : R+ → R+ a positive kernel162

shape function, and ϵ > 0 a kernel bandwidth parameter. The tuning approach in Algorithm S6 was proposed in ref. (14)163

using scaling arguments for heat-like kernels on manifolds, and was also used in refs. (1, 4, 9). It takes as input a dataset in X164

and a logarithmic grid of candidate bandwidth values ϵj , and returns an “optimal“ bandwidth ϵ∗ from this candidate set that165

maximizes a kernel-induced dimension function m(ϵj) for the dataset. If k is a heat-like kernel on a Riemannian manifold,166

m(ϵ∗) is an estimator of the manifold’s dimension, but m(ϵ∗) also provides a notion of dimension for non-smooth sets.167
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Algorithm S5 Orthonormal basis vectors of ĤN from variable-bandwidth bistochastic kernel based on product kernel. We
suppress N subscripts from our notation for ϕl,N .
Inputs

1. Dataset z0, z1, . . . , zN−1 ∈ Z.
2. Distance function d : Z × Z → R+.
3. Response function ĥ : Z → Ŷ .
4. Distance function dŶ : Ŷ × Ŷ → R+.
5. Neighborhood parameters knn, k̂nn ∈ N.
6. Bandwidth exponent parameter a > 0 and range parameters J1, J2 ∈ N.
7. Bandwidth scaling parameter sκ > 0.
8. Number of basis vectors L ≤ N .

Outputs
1. Column vectors ϕ0, . . . ,ϕL−1 ∈ RN .

Steps
1. Execute Algorithm S2 with inputs {zn}N−1

n=0 , d, a, J1, and J2 to obtain a bandwidth function b : Z → R+.
2. Construct the distance-like function d̃ : Z × Z → R+ with d̃(z, z′) = d(z, z′)/

√
b(z)b(z′).

3. Execute Algorithm S6 with inputs {zn}N−1
n=0 , d̃, ηgauss, a, J1, and J2 to obtain an optimal bandwidth ϵ∗.

4. Execute Algorithm S2 with inputs {ĥ(zn)}N−1
n=0 , dŶ , a, J1, and J2 to obtain a bandwidth function bŶ : Ŷ → R+.

5. Construct the distance-like function d̃Ŷ : Ŷ × Ŷ → R+ with d̃Ŷ (ŷ, ŷ′) = dŶ (ŷ, ŷ′)/
√
bŶ (ŷ)bŶ (ŷ′).

6. Execute Algorithm S6 with inputs {ĥ(zn)}N−1
n=0 , d̃Ŷ , ηgauss, a, J1, and J2 to obtain an optimal bandwidth ϵŶ ,∗.

7. Construct the product kernel κ̃ĥ : Z × Z → R+ with κ̃ĥ(z, z′) = ηgauss(d̃(z, z′)/(sκϵ∗))ηgauss(d̃Ŷ (ĥz, ĥz′)/(sκϵŶ ,∗)).
8. Execute Algorithm S4 with inputs {zn}N−1

n=0 and κ̃Ŷ to obtain a non-symmetric kernel function κ̂ : Z × Z → R+.
9. Form the N ×N kernel matrix K̂ = [K̂ij ]N−1

i,j=0 with K̂ij = κ̂(zi, zj).
10. If k̂nn < N , set the N − knn smallest elements in each row of K̂ to 0 and use a sparse array to store K̂.
11. Return: The leading L left singular vectors ϕ0, . . . ,ϕL−1 of K̂, arranged in order of decreasing corresponding singular

value, and normalized such that ∥ϕl∥2 =
√
N .

D. Finite-dimensional Hilbert spaces and operator approximation. Given the basis vectors ϕl and ϕl,N from section 2.A, we168

define the L-dimensional Hilbert spaces169

HL = span{ϕ0, . . . , ϕL−1} ⊂ H, HL,N = span{ϕ0,N , . . . , ϕL−1,N} ⊂ ĤN ,170

where in the case of HL,N L is at most N . As in the main text, we let ΠL : H → H and ΠL,N : ĤN → ĤN be the171

orthogonal projections on H and ĤN , respectively, with ran ΠL = HL and ran ΠL,N = HL,N . We also let ΠL : B → B172

and ΠL,N : B̂N → B̂N be the induced projections on the operator algebras B = B(H) and BN = B(ĤN ), defined as173

ΠLA = ΠLAΠL and ΠL,NA = ΠL,N ÂΠL,N , respectively. Defining BL = ran ΠL, we can canonically identify BL with the174

subalgebra of B consisting of all operators A satisfying kerA ⊇ HL and ranA ⊆ HL. The space BL,N := ran ΠL,N can175

be canonically identified with a subalgebra of B̂N in a similar manner. We will be making these identifications whenever176

convenient.177

Within this setting, we are interested in the following two types of operator approximation, respectively described in178

subsections 2.D.1 and 2.D.2.179

1. Approximation of an operator A ∈ B by a finite-rank operator AL ∈ BL.180

2. Approximation of AL ∈ BL by an operator AL,N ∈ BL,N .181

Intuitively, we think of an approximation of the first type listed above as a “compression” of an operator A ∈ B of possibly182

infinite rank to an operator AL ∈ BL ⊂ B of at most rank L. Approximations of the second type are of a fundamentally183

different nature since there are no inclusion relationships between BL and BL,N . One can think instead of such approximations184

as data-driven approximations of the representation of an operator in a basis.185

D.1. Operator compression. Given A ∈ B, we define AL ∈ BL as186

AL := ΠLA = ΠLAΠL, [S7]187

Since {ϕ0, ϕ1, . . .} is an orthonormal basis of H, the projections ΠL converge strongly to the identity; that is, for every188

f ∈ H, we have limL→∞(ΠL − I)f = 0, where the limit is taken in the norm of H. As a result, the operators ĂL := AΠL189

converge strongly to A, limL→∞(ĂL −A)f = 0 for all f ∈ H. It then follows from standard results in functional analysis that190

AL = ΠLĂL converges strongly to A, i.e,191

lim
L→∞

ALf = Af, ∀f ∈ H. [S8]192
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Algorithm S6 Tuning of bandwidth-dependent kernels.
Inputs

1. Dataset x0, x1, . . . , xN−1 ∈ X ; X is an arbitrary set.
2. Bandwidth exponent parameter a > 0 and range parameters J1, J2 ∈ N.
3. Distance-like function d : X × X → R+.
4. Kernel shape function η : R+ → R+.

Outputs
1. Optimal bandwidth ϵ∗ > 0.
2. Estimated dataset dimension m∗ ≥ 0.

Steps
1. Compute the N ×N pairwise distance matrix D = [Dij ]N−1

i,j=0 with Dij = d(xi, xj).
2. Generate logarithmic grid {ϵj}J2

j=J1
with ϵj = 2aj .

3. For each j ∈ {J1, . . . , J2}, compute the kernel sum S(ϵj) =
∑N−1

i,l=0 Kil/N
2, where Kil = η(Dil/ϵj).

4. For each j ∈ {J1 + 1, . . . , J2 − 1}, compute the logarithmic derivative

m(ϵj) = logSj+1 − logSj−1

log ϵj+1 − log ϵj−1
= log(Sj+1/Sj−1)

2a .

5. Return: ϵ∗ = argmaxϵj∈{ϵJ1 ,...,ϵJ2 } m(ϵj) and m∗ = m(ϵ∗).

As we will see below, this type of strong operator convergence is sufficient to deduce convergence of the matrix mechanical193

formulation of data assimilation based on BL to the infinite-dimensional quantum mechanical level based on B (see the rows194

labeled M and Q in the schematic of Fig. 1).195

D.2. Data-driven operator approximation. In order to facilitate approximation of operators in BL by operators in BL,N , we use196

operators acting on the Banach space of continuous functions C(X) as intermediate approximations. In what follows, we will197

let ι : C(X) → H and ιN : C(X) → ĤN be the canonical linear maps that map continuous functions to their L2 equivalence198

classes in H and ĤN , respectively. In addition, we let C = B(C(X)) be the unital Banach algebra of bounded linear operators199

on C(X). We assume L ∈ N is chosen such that the eigenvalues λL−1 and λL−1,N of K and KN from Eq. (S2) and Eq. (S3),200

respectively, are nonzero. This means that all elements of HL and HL,N have continuous representatives.201

With these definitions and assumptions, we restrict attention to approximation of operators AL ∈ BL,N which are obtained202

by applying Eq. (S8) to operators A ∈ B that satisfy203

A ◦ ι = ι ◦ Ã, [S9]204

for some Ã ∈ C. In addition, we assume that there is a uniformly bounded family of operators ÂN ∈ BN that satisfy an205

approximate version of Eq. (S9) in the following sense: For every f ∈ C(X), the norm of the residual (ÂN ◦ ιN − ιN ◦ Ã)f206

converges to 0. That is, we require207

lim
N→∞

∥RNf∥ĤN = 0, RN = ÂN ◦ ιN − ιN ◦ Ã, ∀f ∈ C(X), [S10]208

where the operators ÂN satisfy the uniform norm bound209

∥ÂN∥B̂N
≤ a, [S11]210

for a constant a. As we will see in the ensuing subsections, under Assumption 2, all operators employed in QMDA satisfy Eq. (S9),211

Eq. (S10), and Eq. (S11).212

We have the following approximation lemma for the matrix elements of A in terms of the matrix elements of ÂN .213

Lemma 2. Suppose that A ∈ B, ÂN ∈ B̂N , and Ã ∈ C satisfy Eq. (S9), Eq. (S10), and Eq. (S11). Then, under Assumptions 1214

and 2, and with the notation and assumptions of section 2.A, the matrix elements of ÂN in the {ϕl,N} bases of ĤN converge215

almost surely to the matrix elements of A in the {ϕl} basis of H. That is, for µ-a.e. initial condition x0 ∈ X, and every i, j ∈ N216

such that λi, λj ̸= 0,217

lim
N→∞

⟨ϕi,N , ÂNϕj,N ⟩N = ⟨ϕi, Aϕj⟩.218

Proof. See subsection 2.D.3.219

Let Aij = ⟨ϕi, Aϕj⟩ and Aij,N = ⟨ϕi,N , ÂNϕj,N ⟩N . The convergence of Aij,N to Aij from Lemma 2 is not uniform with220

respect to i, j ∈ N. However, restricting i and j to the finite index set {0, . . . , L− 1} associated with the basis vectors of the221

finite-dimensional spaces HL and HL,N makes the convergence of Âij,N to Âij uniform, and we can conclude that the matrix222

representations of the projected operators AL,N = ΠL,N ÂN converge to the matrix representation of AL = ΠLA.223
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Corollary 3. With notation as above, let AL = [Aij ]L−1
i,j=0 and AL,N = [Aij,N ]L−1

i,j=0 be the L × L matrix representations of224

AL and AL,N in the {ϕl} and {ϕl,N} bases of HL and HL,N , respectively. Then, for µ-a.e. initial condition x0, we have225

limN→∞ AL,N = AL in any matrix norm.226

D.3. Proof of Lemma 2. Recall from section 2.A that the ϕi,N have continuous representatives φi,N which converge µ-a.s. to the
continuous representatives φi of ϕi in the uniform norm of C(X). Note also that for every N ∈ N, ιN : C(X) → ĤN has unit
operator norm. Using these facts, we get

|⟨ϕi,N , ÂNϕj,N ⟩N − ⟨ϕi, Aϕj⟩| = |⟨ϕi,N , ÂN ιNφj,N ⟩N − ⟨ϕi, Aϕj⟩|

≤ |⟨ϕi,N , ÂN ιN (φj,N − φj)⟩N | + |⟨ϕi,N , ÂN ιNφj⟩N − ⟨ϕi, Aϕj⟩|

≤ a∥φj,N − φj∥C(X) + |⟨ϕi,N , ÂN ιNφj⟩N − ⟨ϕi, Aϕj⟩|. [S12]

Moreover, we have

|⟨ϕi,N , ÂN ιNφj⟩N − ⟨ϕi, Aϕj⟩| = |⟨ϕi,N , ιN Ãφj⟩N + ⟨ϕi,NRNφj⟩N − ⟨ϕi, Aϕj⟩|
≤ |⟨ϕi,N , ιN Ãφj⟩N − ⟨ϕi, Aϕj⟩| + ∥RNφj∥ĤN
= |⟨ιNφi,N , ιN Ãφj⟩N − ⟨ϕi, Aϕj⟩| + ∥RNφj∥ĤN
= |⟨ιN (φi,N − φi), ιN Ãφj⟩N + ⟨ιNφi, ιN Ãφj⟩N − ⟨ϕi, Aϕj⟩| + ∥RNφj∥ĤN
≤ ∥φi,N − φi∥C(X)∥Ã∥C∥φj∥C(X) + |⟨ιNφi, ιN Ãφj⟩N − ⟨ϕi, Aϕj⟩| + ∥RNφj∥ĤN . [S13]

Now, by Eq. (S9) we have

|⟨ιNφi, ιN Ãφj⟩N − ⟨ϕi, Aϕj⟩| = |⟨ιNφi, ιN Ãφj⟩N − ⟨ιφi, Aιφj⟩| = |⟨ιNφi, ιN Ãφj⟩N − ⟨ιφi, ιÃφj⟩|

=
∣∣∣∣∫
X

φiÃφjdµN −
∫
X

φiÃφj dµ

∣∣∣∣ ,
so by the weak-∗ convergence of µN to µ (see Eq. (S1)) it follows that for µ-a.e. initial condition x0,227

lim
N→∞

|⟨ιNφi, ιN Ãφj⟩N − ⟨ϕi, Aϕj⟩| = 0.228

Using this result, the uniform convergence of φi,N to φi, and Eq. (S10) in Eq. (S13), we obtain229

lim
N→∞

|⟨ϕi,N , ÂN ιNφj⟩N − ⟨ϕi, Aϕj⟩| = 0.230

Finally, using the above and the uniform convergence of φi,N to φi in Eq. (S12), we arrive at231

lim
N→∞

|⟨ϕi,N , ÂNϕj,N ⟩N − ⟨ϕi, Aϕj⟩| = 0,232

which holds again for µ-a.e. initial condition x0. This completes the proof of the lemma.233

E. Approximation of states. Let ωρ ∈ S∗(B) be a normal state of B induced by a density operator ρ ∈ B∗. We recall that the234

predual B∗ of B is the space of trace-class operators on H (denoted as B1(H) in the main text), equipped with the trace norm,235

∥A∥B∗ = tr
√
A∗A. In the case of the finite-dimensional algebras BL and BL,N , the preduals BL∗ and BL,N∗, respectively, can236

be identified with the algebras themselves, but we will continue to distinguish them using ∗ subscripts since they are equipped237

with a different norm (the trace norm) from the operator norm of the algebras.238

As in subsection 2.D, we are interested in two types of state approximation, which can be thought of as state compression239

and data-driven approximation, respectively:240

1. Approximation of ρ by a finite-rank density operator ρL ∈ BL; see subsection 2.E.1.241

2. Approximation of ρL by a data-driven density operator ρL,N ∈ BL,N∗; see subsection 2.E.2.242

E.1. State compression. Similarly to subsection 2.D.1, for a given density operator ρ ∈ B∗ we define the projected operators243

σL = ΠLρ. Letting CL = trσL, we have CL ≤ tr ρ = 1, so in general the σL are not density operators. Nevertheless, the σL244

are positive, finite-rank (and thus trace class) operators that converge to ρ in trace norm (as opposed to merely strongly; cf.245

Eq. (S8)). Indeed, we have ρ− σL = (I − ΠL)ρ(I − ΠL), so ρ− σL is positive, and246

∥ρ− σL∥B∗ = tr(ρ− σL) =
∞∑
l=L

⟨ϕl, ρϕl⟩,247

where the sum in the right-hand side of the last equality is a positive, decreasing function of L, converging to 0 as L → ∞. We248

also have CL =
∑L−1

l=0 ⟨ϕl, ρϕl⟩, which implies that limL→∞ CL = 1, and thus that there exists L∗ ∈ N such that CL > 0 for all249

L > L∗. For any such L, ρL := σL/CL is a density operator, and the sequence ρL converges to ρ in trace norm,250

lim
L→∞

∥ρL − ρ∥B∗ = 0. [S14]251
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In the main text, we denote the map that sends the normal state ωρ ∈ S∗(B) to ωρL ∈ S∗(BL) as Π′
L(ρ) = ρL.252

Let now A be an element of B with corresponding projected elements AL = ΠLA ∈ BL from Eq. (S7). By the cyclic property253

of the trace, we have tr(ρLAL) = tr(ρLA), and the trace-norm convergence in Eq. (S14) implies limL→∞ tr(ρLAL) = tr(ρA).254

Equivalently, letting ωρ ∈ S∗(B) and ωρL be the states of B and BL induced by ρ and ρL, respectively, we have255

lim
L→∞

ωρLAL = ωρA. [S15]256

We conclude that evaluation of the projected observables AL on the projected states ωρL asymptotically recovers the evaluation257

of A on ρ.258

E.2. Data-driven state approximation. Proceeding analogously to subsection 2.D.2, we seek data-driven approximations of projected259

density operators ρL ∈ BL∗ by density operators ρL,N ∈ BL,N∗ for a subset of density operators ρ ∈ B∗ that behave compatibly260

with bounded operators on continuous functions.261

First, we recall that every density operator ρ ∈ B∗ admits a decomposition (diagonalization) of the form262

ρ =
∞∑
j=0

rj⟨ξj , ·⟩ξj , [S16]263

where {ξ0, ξ1, . . .} is an orthonormal basis of H, (r0, r1, . . .) is an ℓ1 sequence of real numbers in the interval [0, 1], and the sum264

over j converges in the trace norm of B∗. In what follows, we shall restrict attention to a subset SC(B) ⊂ S∗(B), consisting of265

all normal states ωρ of B whose corresponding density operators ρ ∈ B∗ are decomposable as in Eq. (S16) with the following266

additional requirement: The orthonormal basis vectors ξj have uniformly bounded continuous representatives; that is, we have267

ξj = ιξ̃j , ξ̃j ∈ C(X), ∥ξj∥C(X) ≤ b,268

for a constant b. Given such an ωρ ∈ SC(B), for each N ∈ N we define the positive operator σ̂N : ĤN → ĤN , where269

σ̂N =
∞∑
j=0

rj⟨ξ̂j,N , ·⟩N ξ̂j,N , ξ̂j,N = ιN ξ̃j .270

Note that the well-definition of σ̂N follows from the uniform boundedness of the ξ̃j and the fact that (r0, r1, . . .) is an ℓ1
271

sequence. It should also be kept in mind that, in general, the σN are not normalized as density operators. We then have:272

Lemma 4.273

(a) ρ̃ : f 7→ g with g(x) =
∑∞

j=0 rj⟨ξj , ιf⟩ξ̃j(x) is well-defined as a linear map from C(X) to itself, and it satisfies ι ◦ ρ̃ = ρ ◦ ι.274

(b) For µ-a.e. initial condition x0 ∈ X, the residual RNf = (ιN ◦ ρ̃)f − (σ̂N ◦ ιN )f satisfies275

lim
N→∞

∥RNf∥ĤN = 0, ∀f ∈ C(X).276

Proof. See subsection 2.E.3.277

It follows from Lemma 4 that Eq. (S9) and Eq. (S10) hold with A = ρ, Ã = ρ̃, and ÂN = σ̂N . Thus, Lemma 2 and278

Corollary 3 apply, and for each L ∈ N such that λL−1 > 0, the matrix representations σL,N = [⟨ϕi,N , σ̂Nϕj,N ⟩N ]L−1
i,j=0 of279

σL,N = ΠL,N σ̂N converge to the matrix representation σL = [⟨ϕi, ρϕj⟩]L−1
i,j=0 of σL = ΠLρ. If, in addition, L is sufficiently large280

such that CL > 0, then the density operators ρL,N ∈ BL,N∗ defined as ρL,N = σL,N/CL,N with CL,N = trσL,N converge, as281

N → ∞, in the sense of convergence of the corresponding matrix representations ρL,N = σL,N/CL,N , to the density operator282

ρL = σL/CL with matrix representation ρL = σL/CL. As we saw in subsection 2.E.1, the latter converges to ρ as L → ∞ in283

the trace norm.284

Combining the results of this section to those of section 2.D, we conclude that QMDA consistently approximates the action285

of normal states ωρ ∈ SC(B) on elements A ∈ B satisfying Eq. (S9) and Eq. (S10) by the action of the data-driven states286

ωρL,N ∈ S(BL,N ) on the data-driven elements AL,N ∈ BL,N in the sense of the iterated limit287

lim
L→∞

lim
N→∞

ωρL,NAL,N = lim
L→∞

ωρLAL = ωρA, [S17]288

where the first equality holds for µ-a.e. initial condition x0 ∈ X.289

E.3. Proof of Lemma 4.290
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(a) Fix x ∈ X and ϵ > 0. For any x′ ∈ X and J ∈ N, we have291 ∣∣∣∣∣
∞∑
j=J

rj⟨ξj , f⟩
(
ξ̃j(x) − ξ̃j(x′)

)∣∣∣∣∣ ≤ ∥f∥C(X)

∞∑
j=J

rj
∣∣ξ̃j(x) − ξ̃j(x′)

∣∣ ≤ 2b∥f∥C(X)

∞∑
j=J

rj .292

Thus, since (r0, r1, . . .) ∈ ℓ1, there exists J such that
∣∣∣∑∞

j=J rj⟨ξj , f⟩(ξ̃j(x) − ξ̃j(x′))
∣∣∣ < ϵ, for all x′ ∈ X. We therefore have293

|g(x) − g(x′)| =

∣∣∣∣∣
∞∑
j=0

rj⟨ξj , f⟩
(
ξ̃j(x) − ξ̃j(x′)

)∣∣∣∣∣ ≤

∣∣∣∣∣
J−1∑
j=0

rj⟨ξj , f⟩
(
ξ̃j(x) − ξ̃j(x′)

)∣∣∣∣∣+ ϵ,294

and the continuity of g follows from the fact that the first term in the right-hand side of the last inequality is a finite sum295

of continuous functions. The boundedness of g can be shown similarly. The relation ι ◦ ρ̃ = ρ ◦ ι follows directly from the296

definitions of ρ and ρ̃.297

(b) Given f ∈ C(X), we have298

∥RNf∥ĤN = ∥(ιN ◦ ρ̃)f − (σ̂N ◦ ιN )f∥ĤN =

∥∥∥∥∥
∞∑
j=0

rj
(
⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

)
ξ̂j,N

∥∥∥∥∥
ĤN

≤
∞∑
j=0

rj
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣ b.299

Since
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣ ≤ 2b∥f∥C(X) and (r0, r1, . . .) ∈ ℓ1, for every ϵ > 0 there exists J ∈ N such that300

∞∑
j=J

rj
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣ b < ϵ/2.301

Moreover, by Eq. (S1), for µ-a.e. x0 ∈ X and every j ∈ N we have limN→∞
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣ = 0, so there exists N∗ ∈ N302

such that303
J−1∑
j=0

rj
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣ < ϵ/2, ∀N > N∗.304

We thus have305

∥RNf∥ĤN ≤
J−1∑
j=0

rj
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣+
∞∑
j=J

rj
∣∣⟨ξj , ιf⟩ − ⟨ξ̂j,N , ιNf⟩N

∣∣ < ϵ, ∀N > N∗,306

and since ϵ was arbitrary, we conclude that limN→∞∥RNf∥ĤN = 0. This completes the proof of Lemma 4.307

F. Approximation of the forecast observable and its spectral measure. In this subsection, we examine the QMDA representation308

of the forecast observable f ∈ A by projected multiplication operators in BL,N which we denote, as in the main text, by πL,Nf .309

We are interested in two types of asymptotic consistency of our representations, respectively described in subsections 2.F.1310

and 2.F.2:311

1. Pointwise consistency, meaning that evaluation of πL,Nf on the states ωρL,N from section 2.E should converge to312

evaluation of the multiplication operator πf ∈ B on the state ωρ approximated by ωρL,N .313

2. Spectral consistency, meaning that the spectral measures of πL,Nf should converge to the spectral measure of πf in a314

suitable sense.315

In QMDA applications, pointwise consistency is required for consistency of the forecast mean and variance with the theoretical316

forecast mean and variance, respectively, from the infinite-dimensional data assimilation system based on the algebra B (i.e.,317

the quantum mechanical level Q in Fig. 1). Meanwhile, spectral consistency is required for consistency of the corresponding318

forecast probabilities (denoted as Pf,t,τ in the main text).319

F.1. Pointwise approximation and its consistency. For a given trajectory XN := {x0, . . . , xN−1} ⊂ X, let ÂN denote the finite-320

dimensional, abelian von-Neumann algebra of complex-valued functions on XN with respect to pointwise function multiplication321

and complex conjugation, equipped with the maximum norm, ∥u∥ÂN
= maxxn∈XN |u(xn)|. As a vector space, ÂN is isomorphic322

to the Hilbert space ĤN , but the two spaces have different norms. Every function f : X → C induces an element f̂N ∈ ÂN by323

restriction to XN , f̂N (xn) = f(xn) for all n ∈ {0, . . . , N − 1}. Reusing notation, we will denote the linear map that maps f to324

f̂N by ιN . Analogously to π : A → B, the algebra ÂN has a regular representation π̂N : ÂN → B̂N such that, given u ∈ Â,325

π̂Nu is the multiplication operator by u, i.e., (π̂Nu)v = uv for all v ∈ ÂN . Moreover, similarly to πL : A → BL, for each326

L ∈ {1, . . . , N} we define the linear map πL,N : ÂN → BL,N , πL,N = ΠL,N ◦ π̂N , which maps elements of ÂN to projected327

multiplication operators in BL,N . Note that, in general, neither πL nor πL,N are algebra homomorphisms.328
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Consider now the C∗-algebra of continuous functions on X, C(X), and its regular representation π̃ : C(X) → C, where π̃f̃329

is the multiplication operator by f̃ , i.e., (π̃f̃)g̃ = f̃ g̃ for all g̃ ∈ C(X). One readily verifies that for every f̃ ∈ C(X),330

ι ◦ (π̃f̃) = (πf) ◦ ι, ιN ◦ (π̃f) = (π̂N f̂N ) ◦ ιN , [S18]331

where f = ιf̃ ∈ A and f̂N = ιN f̃ ∈ ÂN . As a result, Eq. (S9) and Eq. (S10) hold for A = πf , Ã = π̃f̃ , and ÂN = π̂N f̂N , and332

by Lemma 2 and Corollary 3 we can consistently approximate πf by the projected multiplication operators πLf and πL,N f̂N .333

In the main text, πLf and πL,N f̂N were used to represent the forecast observable f in the matrix mechanical and data-driven334

formulations of QMDA, respectively. Under Assumption 2, Eq. (S17) and Eq. (S18) together lead to the following consistency335

result for these representations,336

lim
L→∞

lim
N→∞

ωρL,N (πL,N f̂N ) = lim
L→∞

ωρL(πLf) = ωρ(πf),337

which holds for µ-a.e. initial condition x0 ∈ X.338

As with other linear maps employed in QMDA, in numerical applications we employ the L× L matrix representation of339

πL,N f̂N , given by AL,N = [⟨ϕi,N , (πL,N f̂N )ϕj,N ⟩N ]L−1
i,j=0. Algorithm S7 describes the computation of this matrix (as well as the340

spectral measure of πL,N f̂N , which we discuss in subsection 2.F.2 below). By Corollary 3, for µ-a.e. initial condition x0, AL,N341

converges as N → ∞ to the matrix representation AL = [⟨ϕi, πLfϕj⟩]L−1
i,j=0 of πLf .342

Algorithm S7 Projected multiplication operator representing the forecast observable f and evaluation of the associated
spectral measure. We suppress L and N subscripts from our notation of AL,N and EL,N,(Sm).
Inputs

1. Training observable values f0, . . . , fN−1 ∈ R.
2. Basis vectors ϕ0, . . . ,ϕL−1 from Algorithm S3.
3. Intervals (spectral bins) S0, . . . , SM−1 ⊆ R.

Require: The training data zn used in the computation of ϕl are induced by the same dynamical states xn ∈ X underlying fn,
i.e., zn = z(xn) and fn = f(xn).

Outputs
1. L× L matrix A representing the projected multiplication operator πL,Nf in the ϕl,N basis of HL,N .
2. L× L projection matrices E0, . . . ,EM−1, where Em is the matrix representation of the spectral projector EπL,N f̂N (Sm)

in the {ϕl,N} basis of HL,N .

Steps
1. Return: A = [Aij ]L−1

i,j=0, where Aij = ϕ⊤
i (f ⊙ ϕj)/N , f = (f0, . . . , fN−1)⊤, and ⊙ denotes elementwise multiplication of

column vectors.
2. Compute the eigendecomposition Auj = ajuj , where a0, . . . , aL ∈ R and the eigenvectors u0, . . . ,uL−1 ∈ RL satisfy

u⊤
i uj = δij .

3. Return: The projection matrices E0, . . . ,EM−1, where Em =
∑

aj∈Sm
uju

⊤
j .

F.2. Spectral approximation. We are interested in approximating the spectral measure of the multiplication operator πf ∈ B343

associated with the forecast observable f by the spectral measures of the finite-rank operators πLf ∈ BL and πL,N f̂N ∈ BL,N .344

First, we recall that the spectrum of an element a of a unital C∗-algebra is the set of complex numbers z such that a− z345

does not have an inverse. We denote this set as σ(a). In the case of a finite-dimensional operator algebra such as BL, and346

BL,N , the spectrum of any element a is a finite set consisting of the eigenvalues of a. In the case of the infinite-dimensional347

operator algebra B, the spectrum of a multiplication operator πf by an element f ∈ A is equal to the essential range of f , i.e.,348

the support of the pushforward measure f∗(µ) : B(C) → C on the Borel σ-algebra on B(C) on C. Note that σ(πf) coincides349

with the spectrum of f as an element of the abelian algebra A, defined as the set of complex numbers for which f − z is350

non-invertible.351

The point spectrum of πf , i.e., the set of its eigenvalues, consists of all elements z ∈ σ(πf) such that the preimage352

S = f−1({z}) ⊆ X has positive measure, µ(S) > 0. We denote the point spectrum of πf by σp(πf). Points in the complement353

of σp(πf) in σ(πf) lie in the continuous spectrum of πf , and have no associated eigenspaces. A challenge with spectral354

approximation of multiplication operators on infinite-dimensional operator algebras is that generically they have a non-empty355

continuous spectrum, whereas the continuous spectrum of any finite-rank approximation of these operators is necessarily empty.356

Suppose now that f ∈ A is real-valued as per Assumption 1(c), i.e., f is a self-adjoint element of the abelian algebra A.357

Then, πf ∈ B is a self-adjoint operator, and the spectrum σ(πf) is a subset of the real line. By the spectral theorem for358

self-adjoint operators, there is a unique projection-valued measure (PVM) E : B(R) → B, giving πf through the spectral359

integral πf =
∫
R u dE(u). By construction, the operators πLf ∈ BL and πL,N f̂N are also self-adjoint whenever f is real-valued,360

and thus have associated PVMs EL : B(R) → BL and EL,N : B(R) → BL,N , respectively, such that πLf =
∫
R u dEL(u)361
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and πL,N f̂N =
∫
R u dEL,N (u). Since the spectra σ(πLf) and σ(πL,Nf) are finite sets, these spectral measures are discrete.362

Explicitly, for a given Borel set S ∈ B(R), we have363

EL(S) =
∑

l:aL,l∈S

EL,l, EL,N (S) =
∑

l:aL,N,l∈S

EL,N,l, [S19]364

where {aL,j} = σ(πLf) and {aL,N,j} = σ(πL,Nf) are the sets of eigenvalues of πLf and πL,Nf (without multiplicities), and365

EL,j ∈ BL and EL,N,j ∈ BL,N are the orthogonal projections onto the corresponding eigenspaces, respectively.366

In what follows, we characterize the convergence of EL,N to EL as N → ∞ (large data limit) and EL to E as L → ∞367

(infinite-dimension limit).368

Spectral convergence in the large-data limit. Let AL = [⟨ϕi, (πLf)ϕj⟩]L−1
i,j=0 and AL,N = [⟨ϕi,N , (πL,N f̂N )ϕj,N ⟩N ]L−1

i,j=0 be the369

matrix representations of πLf and πL,Nf in the {ϕl} and {ϕl,N} bases of HL and HL,N , respectively. In the same bases, the370

spectral measures EL and EL,N are represented by matrix-valued measures EL : B(R) → ML and EL,N : B(R) → ML such that371

EL(S) = [⟨ϕi, EL(S)ϕj⟩]L−1
i,j=0 and EL,N (S) = [⟨ϕi,N , EL,N (S)ϕj,N ⟩N ]L−1

i,j=0 are the matrix representations of the projections372

EL(S) and EL,N (S) respectively. Since AL,N converges to AL, it follows from spectral approximation results for finite-rank373

operators (15) that if the boundary of S does not contain any eigenvalues of πLf , then for µ-a.e. initial condition x0 and Borel374

set S ∈ B(R), EL,N (S) converges as N → ∞ to EL(S).375

Algorithm S7 describes the computation of the spectral projectors EL,N (Sm) on a set of pairwise-disjoint intervals (“spectral376

bins”) S0, . . . , SM−1 ⊆ R partitioning the range of f̂N in the training data. We choose the intervals Sm such that they carry377

equal probability mass under the distribution of f̂N with respect to the sampling measure µN . With this choice, the boundaries378

of the Sm can be computed from the values of the quantile function of f̂N on a uniform partition of [0, 1]; see Algorithm S8 for379

further details.380

Algorithm S8 Spectral bins for the forecast observable f from the empirical quantile function.
Inputs

1. Training observable values f0, . . . , fN−1 ∈ R.
2. Number of spectral bins M ∈ N.

Outputs
1. Intervals (spectral bins) S0, . . . , SM−1 ⊆ R.

Steps
1. Compute the empirical quantile function of f , Qf : (0, 1) → (0,∞), associated with the samples fn.
2. Define b1, . . . , bM−1 ∈ R with bm = m/M .
3. Return: The intervals S0, . . . , SM−1, where

Sm =


(−∞, Qf (b1)], m = 0,
(Qf (bm), Qf (bm+1)], 1 < m < M − 1,
(Qf (bM−1),∞), m = M − 1.

Spectral convergence in the infinite-dimension limit. We employ the following results on spectral approximation of self-adjoint381

operators.382

Theorem 5. Let AL : H → H be a sequence of finite-rank, self-adjoint operators on a Hilbert space H converging strongly as383

L → ∞ to a self-adjoint operator A : H → H. Let E : B(R) → B(H) and EL : B(R) → B(H) be the spectral measures of A384

and AL, respectively. Then, the following hold.385

(a) For every element a of the spectrum of A, there exists a sequence aL of eigenvalues of AL such that limL→∞ aL = a.386

(b) For every Borel set S ∈ B(R) such that E(∂S) = 0 (i.e., the boundary of S does not contain any eigenvalues of A), the387

spectral projections EL(S) converge to E(S) in the strong operator topology of B(H), i.e.,388

lim
L→∞

EL(S)f = E(S)f, ∀f ∈ H.389

Proof. Strong convergence of bounded self-adjoint operators implies convergence in the strong resolvent sense; see ref. (16),390

Proposition 10.1.13(a). Strong resolvent convergence of operators implies in turn spectral convergence as stated in Part (a);391

see ref. (16), Corollary 10.2.2. For Part (b), see ref. (5), Proposition 13(iii), which states the analogous result under strong392

resolvent convergence of skew-adjoint operators.393

Since the projected multiplication operators πLf converge to πf strongly and they are self-adjoint whenever f is real-valued,394

it follows from Theorem 5 with A = πf and AL = πLf that the spectra and spectral measures of πLf converge to those of πf395

in the sense stated in the theorem.396
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G. Koopman operator approximation. Let U ≡ U∆t be the unitary Koopman operator on H associated with the the temporal397

sampling interval ∆t of the data. Following refs. (1–5), we approximate U by a shift operator ÛN : ĤN → ĤN . Here, we define398

ÛN as399

ÛNf(xn) =
{
f(xn+1), 0 ≤ n ≤ N − 2,
f(x0), n = N − 1.

[S20]400

With this definition, ÛN is a unitary operator acting as a left circular shift on the sequence of values f(x0), . . . , f(xN−1).401

Next, let Ũ : C(X) → C(X) be the time-∆t Koopman operator on continuous (as opposed to L2) functions, defined as402

usual by composition with the time-∆t flow, Ũ = f ◦ Φ∆t. Since Φ∆t is µ-preserving, we have403

U ◦ ι = ι ◦ Ũ ,404

so Eq. (S9) is satisfied for A = U and Ã = Ũ . Moreover, one verifies that Eq. (S10) is satisfied for ÂN = ÛN and Ã = Ũ by405

observing that for every f ∈ C(X) the vectors g = ÛN ◦ ιNf and g′ = ιN ◦ Ũf differ only in the (N − 1)-th component; i.e.,406

g(xn) = g′(xn) for all n ∈ {0, . . . , N − 2}. This implies that the residual RNf = g − g′ has norm407

∥RNf∥ĤN ≤ ∥f∥C(X)/
√
N,408

which verifies Eq. (S10). It therefore follows that Lemma 2 and Corollary 3 apply for U , ÛN , and Ũ . Thus, for any µ-a.e. initial409

condition x0 and each L ∈ N such that λL−1 > 0, the data-driven shift operator matrices, UL,N = [⟨ϕi,N , ÛNϕj,N ⟩N ]L−1
i,j=0,410

converge as N → ∞ to the projected time-∆t Koopman operator matrices, UL = [⟨ϕi, Uϕj⟩]L−1
i,j=0. The projected Koopman411

operators UL converge in turn as L → ∞ to U in the strong operator topology of B, as described in section 2.D.1.412

To approximate the Koopman operator U t at time t = tq := q∆t with q ∈ Z, we repeat the construction described above413

using the q-th power of the shift operator, ÛqN , as the approximating operator on ĤN , which is equivalent to a circular shift414

by q steps. This leads to projected operators U (q)
L,N = ΠL,N Û

q
N whose matrix representations U

(q)
L,N converge as N → ∞ to415

the matrix representation of U (tq)
L = ΠLU

tq . As L → ∞, U (tq)
L converges strongly to U tq (see Eq. (S8)). Thus, we obtain an416

asymptotically consistent approximation of the dynamical operators employed in QMDA for any given (finite) time horizon417

tq = q∆t.418

The construction of the U
(q)
L,N matrices is described in Algorithm S9. It is important to note that acting with ÛqN on elements419

of ĤN does not require explicit knowledge of the states xn. It should also be kept in mind that, unless HL,N is a ÛN -invariant420

subspace of ĤN , U (q)
L,N is not a unitary operator, and it is not equal to the q-th power of UL,N . Nevertheless, by unitarity of421

ÛqN we have U (q)∗
L,N = U

(−q)
L,N . Similarly, U (t)

L is in general not equal to (UL)t/∆t, it is not unitary, but it satisfies U (t)∗
L = U

(−t)
L .422

Algorithm S9 Koopman operator approximation. We suppress L and N indices from our notation of U
(q)
L,N .

Inputs
1. Basis vectors ϕ0, . . . ,ϕL−1 from Algorithm S3.
2. Time-shift parameter q ∈ Z.

Require: The underlying training data z0, . . . , zN−1 are time-ordered and are taken with a uniform sampling interval ∆t > 0.

Outputs
1. L× L matrix U (q) representing the projected Koopman operator on Uq∆t

L,N on HL,N .

Steps
1. For each l ∈ {0, . . . , L− 1}, compute the time-shifted vectors ϕ

(q)
i = (ϕ(q)

0l , . . . , ϕ
(q)
N−1,l)

⊤ ∈ RN with

ϕnl = ϕn′l, n′ = n+ l mod N.

2. Return: The L× L matrix U (q) = [U (q)
ij ]L−1

i,j=0 with Uij = ϕ⊤
i ϕ

(q)
j /N .

Remark. The shift operator in Eq. (S20) differs somewhat from the operators used in refs. (1–5), which employ the non-unitary423

definition ǓN : ĤN → ĤN with424

ǓNf(xn) =
{
f(xn+1), 0 ≤ n ≤ N − 2,
0, n = N − 1.

425

The difference between the two approaches is inconsequential in the large-data limit, i.e., both ÛN,L and ǓN,L := ΠLǓN exhibit426

the N → ∞ convergence in Lemma 2 and Corollary 3. Here, we have opted to work with ÛN from Eq. (S20), for, as we will see427

in section 2.H below, the unitarity of this operator ensures that the induced Koopman operator on B̂N is a quantum channel.428
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H. Finite-dimensional quantum operations. In the main text, we introduced the projected Koopman operator U (t)
L : BL → BL,429

defined as430

U (t)
L A = U

(t)
L AU

(t)∗
L = U

(t)
L AU

(−t)
L ;431

equivalently, U (t)
L = ΠL ◦ U t. Letting ϖ : B → B be the trivial representation, ϖ(A) = A, we have U (t)

L = ΠLϖ(U t)ΠL, so by432

Stinespring’s theorem (see subsection “Positivity-preserving discretization” in the main text) U (t)
L is completely positive. We also433

have that U (t)
L = (P(t)

L∗)∗, where P(t)
L∗ : BL∗ → BL∗ is the transfer operator on the predual of BL, defined as P(t)

L∗A = U
(−t)
L AU

(t)
L .434

Next, let ρ ∈ BL∗ be a density operator. This operator extends to a density operator ϱ ∈ B∗ given by ϱ = ΠLρΠL. One435

can then verify that the transfer operator P(t)
L : BL∗ → BL∗ satisfies436

(P(t)
L ωρ) ≡ ωP(t)

L∗ρ
1L = tr((U−tϱ)ΠL) ≤ ∥ΠL∥B = 1. [S21]437

By virtue of this fact and the complete positivity of U (t)
L it follows that U (t)

L is a quantum operation.438

Remark. If HL happens to be a Koopman-invariant subspace of H, i.e., U tHL = HL, then tr((U−tϱ)ΠL) = tr(U−tϱ) = 1 and439

U (t)
L is a quantum channel. This property holds if and only if HL is an orthogonal direct sum of Koopman eigenfunctions. The440

existence of such distinguished subspaces of H cannot be assumed for general measure-preserving dynamical systems. For441

instance, it is a standard result from ergodic theory that if the dynamical flow Φt is measure-theoretically mixing, then the442

Koopman operator U t : H → H has only constant eigenfunctions (17).443

In the data-driven setting of BL,N , we employ an analogous construction based on the unitary shift operator ÛqN . The444

shift operator induces a unitary ÛqN : B̂N → B̂N that acts by conjugation by ÛqN , i.e., ÛqNA = ÛqNAÛ
q∗
N . This operator is a445

quantum channel analogously to the Koopman operator U t : B → B. For L ≤ N − 1 we define the projected shift operator446

U (q)
L,N : BL,N → BL,N such that U (q)

L,NA = U
(q)
L,NAU

(q)∗. This operator has entirely analogous properties to the projected447

Koopman operator U (t)
L ; that is, U (q)

L,N is a completely positive map whose associated transfer operator P(q)
L,N : B∗

L,N → B∗
L,N448

with P(q)
L,N = U (q)∗

L,N is trace-non-increasing (i.e., satisfies an analog of Eq. (S21)). Thus, U (q)
L,N is a quantum operation.449

Algorithm S10 QMDA forecast–analysis step.
Inputs

1. Forecast timesteps Jf ∈ N; observation timesteps Jo ∈ N.
2. Koopman matrices U (1), . . . ,U (J) ∈ ML from Algorithm S9 with J = max{Jf, Jo}.
3. Spectral bins S0, . . . , SM−1 ⊆ R from Algorithm S8.
4. Forecast observable A ∈ ML and spectral projectors E0, . . . ,EM−1 ∈ ML from Algorithm S7.
5. Matrix-valued effect F : Y → ML from Algorithm S12.
6. Initial density matrix ρ ∈ ML.
7. Observation y ∈ Y at time Jo ∆t.

Require: All L×L matrices are representations of operators in BL,N in the same data-driven basis {ϕl,N}L−1
l=0 from Algorithm S3.

All training data are generated by the same sequence of (unknown) time-ordered states x0, . . . , xN−1 ∈ X with xn = Φn∆t(x0),
taken at a fixed sampling interval ∆t > 0.

Outputs
1. Mean forecast f̄0, . . . , f̄Jf ∈ R at lead time τ0, . . . , τJf with τj = j∆t.
2. Forecast uncertainty σ0, . . . , σJf ∈ R at lead time τ0, . . . , τJf .
3. Forecast probability vectors p0, . . . ,pJf ∈ RM with pj = (p0j , . . . , pMj). pmj is the probability that, at lead time τj , the

forecast observable f lies in spectral bin Sm.
4. Posterior density matrix ρ(+) ∈ ML at time Jo ∆t.

Steps
1. Set U (0) = Id.
2. For each j ∈ {0, . . . , J} compute the time-evolved density matrix ρj = σj/Cj with σj = (U (j))⊤ρU (j) and Cj = tr σj .
3. Return: The mean forecasts f̄j = tr(ρjA) for j ∈ {0, . . . , Jf}.
4. Return: The forecast uncertainties σj = (tr(ρjA2) − f̄2

j )1/2 for j ∈ {0, . . . , Jf}.
5. Return: The probability vectors pj with pmj = tr(ρjEm) for m ∈ {0, . . . ,M − 1} and j ∈ {0, . . . , Jf}.
6. Compute the effect matrix Ey = F ′(y).
7. Return: The posterior density matrix

ρ(+) = EyρJo Ey

tr(EyρJo Ey) .

Algorithm S10 describes the QMDA forecast of f : X → R via the quantum operation U (q)
N,L applied to the corresponding450

projected multiplication operators πL,N f̂N . Algorithm S11 specializes the forecasting procedure to pure (vector) states, which451

allow representation of density matrices ρ ∈ ML by their corresponding state vectors, ρ = ξξ† where ξ is a unit vector in CL.452

Algorithms S10 and S11 also include the analysis step based on effect-valued maps, which we describe in section 2.J.453
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Algorithm S11 QMDA forecast–analysis step, specialized to pure states.
Inputs

1. Forecast timesteps Jf ∈ N; observation timesteps Jo ∈ N.
2. Koopman matrices U (1), . . . ,U (J) ∈ ML from Algorithm S9 with J = max{Jf, Jo}.
3. Spectral bins S0, . . . , SM−1 ⊆ R from Algorithm S8.
4. Forecast observable A ∈ ML and spectral projectors E0, . . . ,EM−1 ∈ ML from Algorithm S7.
5. Matrix-valued effect F : Y → ML from Algorithm S12.
6. Initial state vector ξ ∈ CL.
7. Observation y ∈ Y at time Jo ∆t.

Require: All L× L matrices are representations of operators in BL,N in the same data-driven basis {ϕl,N} from Algorithm S3.
All training data are induced by the same sequence of (unknown) time-ordered states x0, . . . , xN−1 ∈ X with xn = Φn∆t(x0),
taken at a fixed sampling interval ∆t > 0.

Outputs
1. Mean forecast f̄0, . . . , f̄Jf ∈ R at lead time τ0, . . . , τJf with τj = j∆t.
2. Forecast uncertainty σ0, . . . , σJf ∈ R at lead time τ0, . . . , τJf .
3. Forecast probability vectors p0, . . . ,pJf ∈ RM with pj = (p0j , . . . , pMj). pmj is the probability that, at lead time τj , the

forecast observable f lies in spectral bin Sm.
4. Posterior state vector ξ(+) ∈ CL at time Jo ∆t.

Steps
1. Set U (0) = Id.
2. For each j ∈ {0, . . . , J} compute the time-evolved state vector ξj = uj/∥uj∥2 with uj = (U (j))⊤ξ.
3. Return: The mean forecasts f̄j = ξ†

jAξj for j ∈ {0, . . . , Jf}.
4. Return: The forecast uncertainties σj = (ξ†

jA
2ξj − f̄2

j )1/2 for j ∈ {0, . . . , Jf}.
5. Return: The probability vectors pj with pmj = ξ†

jEmξj for m ∈ {0, . . . ,M − 1} and j ∈ {0, . . . , Jf}.
6. Compute the effect matrix Ey = F (y).
7. Return: The posterior state vector

ξ(+) = EyξJo

∥EyξJo ∥2
.
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I. Channel consistency. The asymptotic consistency of the quantum operations U (q)
L,N readily follows from the results established454

in the previous subsections.455

First, given A ∈ B and AL = ΠLA, it is a direct consequence of the strong convergence of U (t)
L to U t and of AL to A,456

together with the uniform boundedness of these operators, that U (t)
L AL converges to U tA in the strong topology of B, i.e.,457

lim
L→∞

(U (t)
L AL)f = (U tA)f, ∀f ∈ H. [S22]458

As a result, for every normal state ωρ ∈ S∗(B) induced by a density operator ρ ∈ B∗, Eq. (S15) yields459

lim
L→∞

(P(t)
L ωρL)AL = lim

L→∞
ωρL(U (t)

L AL) = ωρA, [S23]460

where ρL = ΠLρ/ tr(ΠLρ) ∈ BL are the projected density operators induced by ρ. Eq. (S23) establishes the consistency of the461

quantum operations U (t)
L with the channel U (t) in the infinite-dimension limit.462

Next, turning to the consistency of U (q)
L,N in the large-data (N → ∞) limit, we restrict attention to states in the subset463

SC(B) ⊂ S∗(B) from subsection 2.E.2 and elements A ∈ B satisfying Eq. (S9) and Eq. (S10). We also consider evolution times464

tq = q∆t with q ∈ N. Under these assumptions, it follows from Eq. (S17) that for µ-a.e. initial state x0,465

lim
L→∞

lim
N→∞

(P(q)
L,NωρL,N )AL,N = lim

L→∞
(P(tq)

L ωρL)AL = (Ptωρ)A. [S24]466

Eq. (S24) holds, in particular, for data-driven, projected multiplication operators AL,N = πL,N f̂N associated with continuous467

functions f : X → R and pure states ρ̂N,L induced by continuous state vectors, as in the QMDA experiments described in the468

main text.469

J. Effect-valued feature map. In this subsection, we describe the construction and properties of the effect-valued feature map470

F : Y → E(B) and its finite-rank counterparts, FL : Y → E(BL) and FL,N : Y → E(BL,N ), used in the analysis step of QMDA.471

As stated in the main text, we build these maps using a continuous, symmetric kernel on observations space ψ : Y × Y → [0, 1]472

and a family of data-dependent symmetric, continuous kernels ψN : Y × Y → [0, 1] with N ∈ N, such that, as N → ∞,473

the pullback kernels wN : X × X → [0, 1] with wN (x, x′) = ψN (h(x), h(x′)) converge uniformly to w : X × X → [0, 1] with474

w(x, x′) = ψ(h(x), h(x′)).475

As a concrete example, in the L96 and ENSO experiments described in the main text we employ variable-bandwidth, bump476

kernels on Y = Rd,477

ψN (y, y′) = ηbump

(
d(y, y′)

ϵ
√
bN (y)bN (y′)

)
. [S25]478

In Eq. (S25), ηbump : R → R is the bump function479

ηbump(u) =
{
e−1/(1−u2), u ∈ (−1, 1),
0, otherwise,

[S26]480

d : Y × Y → R+ is the Euclidean distance, bN : Y → R+ is a bandwidth function obtained by applying Algorithm S2 to the481

training data y0, . . . , yN−1 ∈ Y , and ϵ > 0. As in section 2.B, we set ϵ = sψϵ∗, where sψ > 0 is a scaling parameter and ϵ∗482

is the optimal bandwidth parameter determined via Algorithm S6. Note that bN and ϵ in Eq. (S25) are different from the483

bandwidth function and bandwidth parameter used in Eq. (S4) and Eq. (S5) (the former are based on data yn ∈ Y whereas484

the latter are based on data zn ∈ Z).485

The choice of kernel in Eq. (S25) is motivated by the fact that the classical Bayesian analysis step of data assimilation486

can be modeled as an effect-valued map F̌ : Y → E(A) for the abelian algebra A = L∞(X,µ), where F̌ (y) = χY−1(y) and487

χS : X → {0, 1} denotes the characteristic function of a set S ⊆ X. The effect-valued map FN : Y → E(A) induced by the488

kernel in Eq. (S25), FN (y) = ψN (y, h(·)), can be thought of as a smoothed version of F̌ . In L96 and ENSO experiments not489

reported here, we found that using a fixed-bandwidth kernel in the analysis step (i.e., setting bN (y) = bN (y′) = 1 in Eq. (S25)490

led to a noticeable reduction of forecast skill, particularly in the higher-dimensional ENSO case. We also ran experiments using491

the Gaussian shape function ηgauss (as opposed to ηbump) in the definition of the kernel ψN , using either of the variable- or492

fixed-bandwidth versions. The results were generally comparable to those reported in the main text, though we found that the493

bump kernel did provide a modest amount of skill improvement over the Gaussian kernel.494

Let F : Y → E(A) be the effect-valued map associated with the kernel ψ,495

ψ(y, y′) = ηbump

(
d(y, y′)

ϵ
√
b(y)b(y′)

)
,496

where the bandwidth function b : Y → R+ is the uniform limit of bN (note that we will not need this map in actual numerical497

applications). As described in the main text, in the setting of the non-abelian algebra B, we promote F to an operator-valued498

map F : Y → E(B), where F(y) = π(F (y)). Moreover, we introduce projected and data-driven versions of these maps, given499

by FL : Y → E(BL) and FL,N : Y → E(BL,N ), respectively, where FL = πL ◦ F , FL,N = πL,N ◦ F̂N , and F̂N : Y → E(ÂN ) is500

given by restriction of FN on the set of training states XN , F̂N (y) = ιN (FN (y)). State conditioning (analysis) based on these501

maps has the following consistency properties.502
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Proposition 6. Let ωρ be a state of B in SC(B) and y an observation in Y . Let ρ
(+)
L,N and ρ

(+)
L be the matrix representations503

of the conditional states ωρL,N |FL,N (y) ∈ S(BL,N ) and ωρL |FL(y) obtained via Eq. (7) in the {ϕl,N} and {ϕl} bases of HL,N504

and HL, respectively. Then the following hold.505

(a) For µ-a.e. initial state x0 ∈ X, limN→∞ ρ
(+)
L,N = ρ

(+)
L .506

(b) As L → ∞, ωρL |FL(y) converges to ωρ|F(y) in the trace norm topology of S∗(B).507

Proof. We use an auxiliary map F̃ : Y → C, defined as F̃(y) = π̃(F 1/2(y)). For each y ∈ Y , we have508

ι ◦ (F̃(y)) = (F(y)) ◦ ι509

by construction. Moreover, by our assumed uniform convergence of wN to w, we have that for every f ∈ C(X), the residual510

RNf =
(
ιN ◦ (F̃(y))

)
f −

(
F̂N (y) ◦ ιN

)
f511

has vanishing ĤN norm as N → ∞, for µ-a.e. initial condition x0. Thus, Eq. (S9) and Eq. (S10) hold for A = F(y), Ã = F̃(y),512

and AN = F̂N (y), and correspondingly Eq. (S14), Lemma 2, and Corollary 3 also hold. The claims of the proposition follow.513

Computationally, a drawback of using FL,N for state conditioning is that evaluation of Eq. (7) requires the square root514 √
FL,N (y). Specifically, we have ωρL,N |FL,N (y) = ω

ρ
(+)
L,N

, where515

ρ
(+)
L,N =

√
FL,N (y)ρL,N

√
FL,N (y)

tr(
√

FL,N (y)ρL,N
√

FL,N (y))
, [S27]516

and computing
√

FL,N (y) requires computing the square root of the matrix FL,N (y) = [⟨ϕi,N ,FL,N (y)ϕj,N ⟩N ]L−1
i,j=0 representing517

FL,N (y) in the {ϕl,N} basis of HL,N . To avoid having to perform this expensive operation at every observational update, in518

applications we replace
√

FL,N (y) by F ′
L,N (y), where F ′

L,N : Y → E(BL,N ) is the effect-valued map defined as519

F ′
L,N (y) = πL,N (F̂ 1/2

N (y)).520

The construction of this map is described in Algorithm S12. Using F ′
L,N , the update of a density operator ρL,N ∈ BL,N∗ given521

an observation y ∈ Y becomes (cf. Eq. (S27))522

ρ
(+)
L,N =

F ′
L,N (y)ρL,NF ′

L,N (y)
tr(F ′

L,N (y)ρL,NF ′
L,N (y)) . [S28]523

In the limit of L → ∞ after N → ∞, updating via Eq. (S28) consistently recovers ωρ|F(y) analogously to Proposition 6. See524

step 7 of Algorithm S10 for the matrix function that implements Eq. (S28) in the {ϕl,N} basis of HL,N . Step 7 of Algorithm S11525

specializes the state update procedure to pure states.526

Algorithm S12 Effect-valued feature map.
Inputs

1. Kernel function κ : Y × Y → [0, 1].
2. Training data y0, . . . , yN−1 ∈ Y .
3. Basis vectors ϕ0, . . . ,ϕL−1 from Algorithm S3.

Require: The training data zn used in the computation of ϕl are generated by the same dynamical states xn ∈ X underlying
fn, i.e., zn = z(xn) and fn = f(xn).

Outputs
1. Matrix-valued map F ′

L,N : Y → ML representing the effect-valued function F ′
L,N : Y → E(BL,N ).

Steps
1. Construct the feature map f ′

N : Y → RN where f ′
N (y) = (ψ1/2

N (y, y0), . . . , ψ1/2
N (y, yN−1))⊤.

2. Return: The function F ′
L,N : Y → ML, where F ′

L,N (y) = E = [Eij ]L−1
i,j=0 and Eij = ϕ⊤

i (f ′
N (y) ⊙ ϕj)/N .

K. Computational cost. The training data requirements and computational cost of QMDA are generally comparable to those of527

kernel methods for supervised machine learning.528
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K.1. Training phase. Letting dZ denote the dimension of the training data space Z, the brute-force computation cost of forming529

the N ×N kernel matrix K̂N via Algorithm S3 is O(dZN2). As mentioned in section 2.B, if N is sufficiently large so that the530

storage and arithmetic cost associated with K̂N is prohibitive, we approximate K̂N by a sparse matrix that contains the k̂nn531

largest elements of K̂N in each row. The storage cost and matrix–vector multiplication cost for KN then become O(k̂nnN).532

The arithmetic cost of forming K̂N can be reduced to O(N logN) when dZ and k̂nn are sufficiently small using randomized533

approximate nearest neighbor algorithms, e.g., (18). The datasets used in this study were sufficiently small so that all of our534

experiments were performed without using nearest-neighbor truncation, although in separate calculations we have verified that535

setting k̂nn ≃ 0.1N is sufficient to produce good-quality eigenfunctions at a significantly lower computational cost.536

We compute the basis vectors ϕl,N associated with K̂N using iterative SVD solvers (e.g., svds in MATLAB). The cost537

of this computation depends on the spectral properties of K̂N and the number L of requested basis vectors, but generally538

scales linearly with k̂nn and N . Once the basis {ϕl,N}L−1
l=0 has been computed, we form the L× L matrices AL,N and U

(q)
L,N539

representing the projected forecast observable and Koopman operator via Algorithms S7 and S9, respectively, each with an540

O(NL2) computational cost. We also compute the full eigendecomposition of AL,N (see Step 2 of Algorithm S7) at an O(L3)541

cost.542

K.2. Data assimilation phase. The computational complexity of the data assimilation phase of QMDA depends on whether one543

employs mixed states (Algorithm S10) or pure states (Algorithm S11). In both cases, the cost of evaluating the matrix-valued544

feature map FL,N is O(dNL2), where d is the dimension of the observation space Y . This is the only step in the data545

assimilation phase whose cost depends on the amount of training data N . If mixed states are used, the cost of the forecast and546

analysis steps is dominated by matrix–matrix multiplication of L×L matrices, and is thus O(L3) (independently of N). In the547

case of pure states, these operations are replaced by matrix–vector products, which leads to a reduction of cost to O(L2). More548

generally, the computational cost of the forecast and analysis steps with rank-r density matrices is O(rL2).549

In applications, it is desirable to work with prediction algorithms where the out-of-sample evaluation cost increases slowly550

with training size N , or is even independent on N . This motivates exploring approximations of the matrix-valued feature551

map FL,N with a more favorable scaling in N than the linear scaling of the brute-force approach. To that end, possible552

approaches include the randomized Nyström method for streaming PCA (19) and landmark methods for manifold learning553

(20, 21). The recent paper (22) developed a streaming formulation of the kernel analog forecast technique (23) using random554

Fourier feature methods (24) for kernel approximation in conjunction with the randomized Nyström method. This approach555

was found to exhibit similar forecast skill to the brute-force approach employed in ref. (25) for predicting the slow variables of556

the L96 multiscale system at a cost which is independent of the training data. As future work, it would be fruitful to explore557

applications of these methodologies in the context of QMDA.558

3. Quantum circuit implementation559

In this section, we describe the construction of the quantum circuit in Fig. 6 that implements the analysis and forecast steps of560

QMDA. The circuit is composed of three parameterized unitary transformations Tinit, TK, and Trot acting on the n-qubit Hilbert561

space Bn, whose role is to perform state initialization, Koopman evolution, and eigenbasis rotation, respectively, as discussed in562

the main text. Our numerical implementation is based on the Qiskit Python library (26), and can be found in the Jupyter563

notebook /examples/l96Multiscale_qmda/l96MultiscaleQmda.ipynb contained in the GitHub repository https://dg227.github.io/NLSA.564

A. Initialization. Suppose that at time tn = n∆t the matrix mechanical data assimilation system is in the prior state565

ωn−1,1 ∈ S(BL,N ). Suppose also that ωn−1,1 is a pure state with associated state vector ξn−1,1 ∈ HL,N . Then, given an566

observation ŷn ∈ Y , the transformation Tinit(ξn−1,1, ŷn) ∈ Mn is defined such that ζn := Tinit(ξn−1,1, ŷn) |0⟩ is the quantum567

computational representation of the state vector ξn ∈ HL,N associated with the posterior state ωn = ωn−1,1|FL,N (ŷn). That568

is, we have ζn = WL,Nξn, where WL,N : HL,N → Bn is the unitary that maps the {ϕl}L−1
l=0 basis of HL,N to the quantum569

computational basis {|b⟩}b∈{0,1}n of Bn where L = 2n (see main text). Numerically, we implement Tinit(ξn−1,1, ŷn) using the570

QuantumCircuit.initialize method provided by Qiskit.571

B. Koopman evolution. Let j ∈ N be the number of forecast timesteps corresponding to lead time τj = j∆t. Assuming that572

the 1-step projected Koopman operator U (1)
L,N ∈ BL,N is unitary, TK(j) ∈ Mn implements the state vector evolution under573

the iterated action of the adjoint of U (1)
L,N (the projected transfer operator) over j timesteps, i.e., TK(j) = WL(U (1)

L,N )∗jW ∗
L. In574

Qiskit, we implement this operation using the UnitaryGate class.575

As discussed in the main text (see also section 2.H), in general we cannot expect U (1)
L,N to be a unitary operator. Thus, in576

order to use it in a noise-free quantum circuit, where all operations must be unitary, we first pass its matrix representation U
(1)
L,N577

through the polar decomposition to extract its unitary part. That is, unless U
(1)
L,N happens to be unitary to sufficient numerical578

precision, we first compute a polar decomposition U
(1)
L,N = Ũ

(1)
L,N P̃

(1)
L,N where Ũ

(1)
L,N is unitary and P̃

(1)
L,N = (U (1)

L,N (U (1)
L,N )∗)1/2,579

and then implement TK(j) = WL(Ũ (1)
L,N )∗jW ∗

L where Ũ (1)
L,N ∈ BL,N is the linear operator represented by Ũ

(1)
L,N .580

We should point out that aside from the polar decomposition step, the circuit implementation of QMDA differs from581

Algorithm S1 in that the time-τj Koopman operator is approximated iteratively as (Ũ (1)
L,N )j as opposed to the direct approximation582

U
(j)
L,N (see also Algorithm S9). While both approaches are asymptotically consistent in the limit of L → ∞ after N → ∞, at583

finite N and/or L they will generally yield different forecast skill.584
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C. Eigenbasis rotation. The eigenbasis rotation step Trot is performed so that measurement at the output of the quantum circuit585

in Fig. 5 is consistent with measurement of the spectral measure EL,N of the projected multiplication operator AL,N = πL,N f̂N586

associated with the forecast observable f , given the quantum state ωn,j ∈ S(BL,N ) for initialization time tn = n∆t and lead587

time τj = j∆t.588

Let AL,NuL,N,l = aL,N,luL,N,l be an eigendecomposition of AL,N , where {uL,N,l}L−1
l=0 are orthonormal eigenvectors in HL,N

and the eigenvalues aL,N,l ∈ R are ordered in increasing order with multiplicities included. With such an eigendecomposition,
we can express the spectral measure EL,N from Eq. (S19) as

EL,N (S)g =
∑

l:aL,N,l∈S

⟨uL,N,l, g⟩NuL,N,l, ∀S ∈ B(R), ∀g ∈ HL,N .

Next, letting RL,N ∈ ML be the unitary matrix whose l-th column is the column vector representation uL,N,l of uL,N,l in the589

{ϕl,N} basis, we define RL,N : HL,N → HL,N as the unitary operator represented by that matrix and RL,N : BL,N → BL,N as590

RL,NA = R∗
L,NARL,N . We then have that DL,N := RL,NAL,N is a diagonal operator with respect to the {ϕl,N} basis, i.e.,591

DL,Nϕl,N = al,L,Nϕl,N . The spectral measure ẼL,N : B(R) → BL,N of this operator satisfies592

ẼL,N (S)g = (RL,NEL,N (S))g =
∑

l:aL,N,l∈S

⟨ϕL,N,l, g⟩NϕL,N,l, ∀S ∈ B(R), ∀g ∈ HL,N . [S29]593

Given a state ωρ ∈ S(BL,N ) induced by a density operator ρ ∈ BL,N , we have ωρA = ωRL,Nρ(RL,NA) for any A ∈ BL,N .
The latter, in conjunction with Eq. (S29) implies that evaluation of the spectral measure EL,N given the state ρ is equivalent
to evaluation of ẼL,N given the state RL,Nρ; that is,

ωρ(EL,N (S)) = ωRL,Nρ(ẼL,N (S)).

If ωρ is a pure state induced by a state vector ξ ∈ HL,N , then ωRL,Nρ is a pure state induced by the rotated vector ξ̃ = R∗
L,Nξ,594

and the above identity reduces to595

⟨ξ, EL,N (S)ξ⟩N = ⟨ξ̃, ẼL,N (S)ξ̃⟩N . [S30]596

We will now represent ẼL,N by an equivalent spectral measure associated with the quantum computational basis of Bn.
Recall that the quantum computational basis {|b⟩}b∈{0,1}n is indexed by binary strings b = (b1, . . . , bd) of length n. Associated
with this basis is a spectral measure En : Σ({0, 1}n) → B(Bn) on the σ-algebra Σ({0, 1}n) of all subsets of {0, 1}n such that

En(Ŝ)ĝ =
∑
b∈Ŝ

⟨b, g⟩n |b⟩ , ∀Ŝ ∈ Σ({0, 1}n), ∀ĝ ∈ Bn.

Measurement at the output of the circuit corresponds to measurement of En; that is, given a state vector ζ ∈ Bn, we obtain a597

random binary string b ∈ {0, 1}n with probability ⟨ζ,En({b})ζ⟩n.598

Given a binary string b ∈ {0, 1}n, we let ℓ(b) ∈ {0, . . . , L − 1} denote the integer with binary representation b, i.e.,599

ℓ(b) =
∑n

i=1 2n−1bi. To map a measurement of ẼL,N to a measurement of En, we define the set function γ : B(R) → Σ({0, 1}n)600

such that γ(S) = {b ∈ {0, 1}n : aL,N,ℓ(b) ∈ S}. In essence, γ represents an encoding of the eigenvalues aL,N,l by the binary601

representation of the index l. One can then directly verify that the spectral measures ẼL,N and En are related as602

WL,N ẼL,N (S) = En(γ(S)), ∀S ∈ B(R). [S31]603

Combining Eq. (S30) and Eq. (S31), we get

ωρ(EL,N (S)) = ⟨ζ̃,En(γ(S))ζ̃⟩n,

where ζ̃ = WL,N ξ̃ is the quantum computational representation of state vector ξ̃. In summary, measurement of the spectral604

measure EL,N associated with the forecast observable given the state ρ is equivalent to measurement of the quantum605

computational spectral measure En given the quantum computational representation ζ̃ of the rotated state vector ξ̃.606

In the circuit of Fig. 6, the transformation Trot is introduced to effect that rotation after the Koopman evolution stage.607

Specifically, we define Trot : Bn → Bn as the unitary map whose matrix representation in the quantum computational608

basis is RL,N , i.e., the same as the representation of RL,N in the {ϕl,N} basis of HL,N . With this definition, we have609

WL,NRL,N = TrotWL,N , so application of Trot to the quantum computational representation WL,Nξ of a state vector ξ ∈ HL,N610

yields the quantum computational representation WL,N ξ̃ of the rotated state vector ξ̃ = RL,Nξ, as desired. As with the611

implementation of the Koopman evolution TK, we implement Trot using Qiskit’s UnitaryGate.612
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4. Forecast skill metrics613

We assess the skill of the QMDA forecasts in the main text using normalized root mean square error (NRMSE) and anomaly614

correlation (AC) scores. Using throughout the notation of the main text and Algorithm S1, we perform forecasts of f at lead615

times τj = j∆t with j ∈ {0, . . . , Jf − 1} given initial data ŷ0, . . . , ŷN̂−1 ∈ Y . We let f̄n,j ∈ R be the mean forecast at lead time616

τj initialized with data ŷn. Given the values f̂0, . . . , f̂N̂+Jf−1 ∈ R of f in the verification interval, the error of the forecast mean617

f̄n,j relative to the true value of f is εn,j = f̄n,j − f̂n+j .618

Let EN f and varN f be the empirical mean and variance of f computed from the training data,619

EN f =
∫
X

f dµN = 1
N

N−1∑
n=0

fn, varN f =
∫
X

(f − EN f)2 dµN = 1
N

N−1∑
n=0

(fn − EN f)2.620

We define the NRMSE and AC scores for lead time τj as621

NRMSE(τj) =

√√√√ 1
N̂ varN f

N̂−1∑
n=0

ε2
n,j , AC(τj) = 1

N̂ varN f

N̂−1∑
n=0

(f̄n,j − EN f)(f̂n+j − EN f),622

respectively.623

NRMSE values close to 0 and AC values close to 1 indicate high forecast skill. NRMSE values approaching 1 indicate loss of624

skill as the expected forecast error is comparable to the standard deviation of the forecast observable. In climate dynamics625

applications, such as ENSO forecasting, AC = 0.6 or AC = 0.5 are commonly used thresholds indicating loss of skill.626

5. Dataset description627

In this section, we describe the properties of the L96 multiscale and CCSM4 datasets used in the experiments presented in628

the main text. A summary of the attributes of the datasets and the QMDA parameters used in our numerical experiments is629

provided in Table S3.630

A. L96 multiscale. We integrate the L96 multiscale system in Eq. (13) in MATLAB using the built-in stiff solver ode15s, sampling631

the numerical trajectory every ∆t = 0.05 model time units. We note that the use of a stiff solver is important for numerical632

accuracy due to the timescale separation between the xk and yj,k variables occurring at small ε. As noted in the main text, our633

training and test data are sampled on independent dynamical trajectories. The initial conditions for the trajectory x0, . . . , xN−1 ∈634

RJ(K+1) underlying the training data are (x1, . . . , xK) = (1, 0, . . . , 0) ∈ RK and (y1,k, . . . , yJ,k) = (1, 0, . . . , 0) ∈ RJ for each635

k ∈ {1, . . . ,K}. Similarly, we initialize the test trajectory x̂0, . . . , x̂N̂−1 ∈ RJ(K+1) at (x1, . . . , xK) = (1.2, 0, . . . , 0) ∈ RK and636

(y1,k, . . . , yJ,k) = (1.2, 0, . . . , 0) ∈ RJ for each k ∈ {1, . . . ,K}. Starting from these initial conditions, we let the two trajectories637

equilibrate to the attractor over a time interval of 104 ∆t = 500 model time units before collecting the first samples, x0 and x̂0.638

B. CCSM4. We sample data every ∆t = 1 month, spanning a 1,300-year period from a control integration of CCSM4 forced639

with fixed pre-industrial concentrations of greenhouse gases (27). Following ref. (28), the observation map h : X → Y ≡ Rd640

returns the monthly averaged sea surface temperature (SST) field on the model’s native ocean grid (of approximately 1◦nominal641

resolution) over the Indo-Pacific longitude-latitude box 28◦E–70◦W, 30◦S–20◦N. The number of gridpoints within this domain642

(which corresponds to the observation space dimension) is d = 44,414. As the forecast observable f : X → R, we use the643

model’s Niño 3.4 index—this is defined as the area-averaged SST anomaly over the domain 170◦W–120◦W, 5◦S–5◦N relative to644

a monthly climatology computed over the training period. Specifically, let h̃ : X → Rd̃ denote the observable representing the645

SST field over the Niño 3.4 region. For each m ∈ {1, . . . , 12}, define the monthly climatology h̄(m) ∈ Rd̃ as646

h̄(m) = 1
Ny

∑
0≤n≤N−1

month(n)=m

h̃(xn),647

where month(n) := (n mod 12) + 1 is the calendar month associated with the n-th sample in the training data.648
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