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Inferring neuron-neuron communications from single-cell 

transcriptomics through NeuronChat



REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

The communications between neurons play critical roles in our central nervous system. Therefore, 

understanding the interactions between neuron cells is essential for understanding how our brain 

functions. Single-cell genomics provides unrivaled opportunities to study the interactions between 

different cells. In the past years, numerous computational methods, such as cellphonedb and cellchat, 

have been developed to infer the communications between cells. Nevertheless, none of these methods, 

at least to my knowledge, considers the uniqueness of neural communication. The authors filled this gap 

by providing one of the very first tools to infer communications between neuron cells. 

The strength of the study: 

1) The authors built/curated one of the first neural-specific database of intercellular interactions for 

both humans and mice, which was named NeuronChatDB. This dataset can surely facilitate other works 

on studying the interactions between neurons by providing the "ligand-target dictionary" required to 

infer neural interactions, and thus I believe that this newly developed tool can substantially benefit the 

neurobiology field. 

2) Because the interactions between neuron cells are distinct from the interaction between other cells, 

the authors developed a designated method to infer the interactions between neurons. For the non-

peptide neurotransmitters, the ligand abundance calculation takes the expressions of corresponding 

synthesizing enzymes and vesicular transporters into consideration and thus is more complicated than 

the simple Ligand-Receptor based "cross-talking" scoring scheme employed by cellphonedb, cellchat, 

and many other methods. 

3) Similar to the previous work from the authors (cellchat), the authors also provide very comprehensive 

visualizations of the results from the model, which will undoubtedly facilitate the adaptation of the 

methods by the community (similar as cellchat) and benefit various neurobiology studies. 

Although I am convinced about the potential impact and popularity of the method, I have a few 

comments that should be addressed. 

Major comments: 



1)As single-cell spatial data is becoming more and more abundant, the author should consider extending 

their method to incorporate spatial information for the inference of neural cell interactions. 

Undoubtedly, the spatial information of all the neuron cells could help better infer the interactions. For 

example, closer cells tend to be more interactive compared to distant cells (given the expression of the 

enzymes and vesicular transporters are similar or identical). 

2)In this manuscript, the author did not benchmark their method (neuronchat) with other methods. I do 

understand that there might not exist any other methods that were designed specifically to infer the 

interactions between neurons. The authors also compared the prediction of their method to the ground 

truth obtained from retrograde labeling. However, I am wondering whether the authors could show 

whether a simple extension of the existing methods (say, the cellchat developed by the authors a few 

years ago) could also provide a good cell-cell interaction inference. Ofcourse, the "Ligand-target" 

database (neuronchatDB) is still required as the L-R reference for those existing methods. This 

comparison (particularly if a simple extension fails to achieve a good performance) can further 

demonstrate the need for a new method (i.e., Neuronchat). The author did explain the limitation of 

existing methods in the introduction "all existing methods are based on short-range autocrine/paracrine 

signaling which only acts through ligand diffusion and physical contact of cells ." 

While I agree with the authors that the neural interactions could be more distant, existing methods 

might still work well because of their simplicity. For example, cellphonedb actually did not take the 

"range" into the calculation of the interaction score. For a given Ligand-Receptor pair L-R, the method 

calculates the interaction score by taking the minimum value of the average ligand (of the sender 

cluster) and receptor (of the receiver cluster). The distances between the cells are not considered in the 

model, such a simplified calculation may also be able to circumvent the limitations and capture the 

interactions between distant neuron cells. Therefore, a direct comparison will provide a much more 

vigorous justification. T 

Minor comments: 

1) "retrograde labeling", can the authors provide one or two sentences to describe the retrograde 

labeling and how it profiles the real cell-cell interactions? 

2)Can authors provide a justification of using Tukey's trimean, why not just the simple mean of the gene 

expression in all cells of a group? What is the disadvantage of doing this? Why could the trimean 

approach resolve the issue? 

3)Please rephrase "Assume that the synthesis of the ligand requires m1 steps .....Thus, the abundance of 

ligand for the i-th cell group is modeled as". It's not easy to read and understand. 



4) One potential limitation of those permutation-based p-value calculations is that it is very time-

consuming. Are the random permutations needed for all new applications (data)? If so, what is the time 

complexity? The empirical p-value accuracy depends on the # of permutations. A high # of permutations 

can present a more accurate empirical p-value, but it will suffer from long computation time. On the 

other hand, if we reduce # of permutations, the p-value calculation loses its accuracy. 

Reviewer #2 (Remarks to the Author): 

(A MORE READABLE PDF VERSION IS ATTACHED BELOW!) 

This manuscript presents NeuronChat, a novel package for predicting and visualizing neuron-type-

specific 

communication networks from neurotaxonomically classified single-cell RNA-seq expression data. The 

concept here, and as pioneered by previous studies (e.g., cited Ref. #36), is to use products of mRNA 

abundance metrics from ligand-receptor pairs as predictions cell-cell signaling between pairs of 

transcriptomically defined cell types. The method is introduced in the present work making use of a 

mouse 

cortex neurotaxonomy and genome-wide scRNA-seq datasets from cited Ref. #3 and then demonstrated 

by applications to human control/autism neurotaxonomies from scRNA-seq datasets from Ref. #22. 

Given 

the very large numbers of cell types and ligand-receptor pairs recognized today in virtually all metazoan 

brains, improved abilities to develop specific and testable hypotheses regarding communications 

between 

specific cell types seem certain to advance neuroscience. 

A major strength of the present work is thus development of a computational package for visualizing 

and 

exploring such predictions. Unfortunately, the presentation as it stands lacks clarity at some critical 

junctures and leaves room for doubt as to the strength and accuracy of the "inferences" claimed as 

results 

from NeuronChat. The lack of presentation clarity is most severe in the critical section of Results entitled 

"Benchmarking of NeuronChat". Noting the many "false positives" evident in Figs. 2b and 2g, juxtaposed 



with the high incidence of "true positives" in these graphs, it is hard to see support for the statement 

that 

"NeuonChat is able to predict neural connectivity accurately and robustly". (...particularly the part about 

"accurately"...). This is particularly so given that products of numerous glutamate receptor genes are 

expressed in virtually all CNS neurons and that Cck and Cckbr transcripts are abundant in almost all 

cortical 

glutamatergic neurons. We may be missing something here, but we fear that many other readers may 

have a problem with this critical passage. This section could use a very substantial re-write aimed either 

at more clearly leading the reader to the stated conclusion and/or softening the conclusion of 

"accuracy". 

Another major issue is that the precise workflow is not clearly illustrated, and Figure 1 presents this 

workflow only in very general terms. While Figure 1 is attractive, a more detailed illustration of how 

interactions are represented, how gene expression is used to infer connection strength, and at least an 

indication of the computational model approach would help. It is difficult to understand this workflow, 

except at a very conceptual level, through initial text in the manuscript. For example, in the annotation 

of these interactions, is this a strictly binary interaction or does the data base indicate interaction 

strength 

in any way? This additional clarification to the manuscript is important as that while considerable 

methods are developed for the statistical methodology, the overall workflow must be first rigorously 

presented. 

The quantification model of the gene expression interactions is novel in many ways and a strength of the 

paper, and the permutation testing framework is an important addition to this approach. The analysis 

and comparison of the VISp and ALM datasets from the Allen Institute is a strength of the manuscript 

and 

offers some interesting communication links for follow up. The analysis in this part of the manuscript is 

generally rigorously accomplished, however, methods used for aggregating intercellular communication 

should be prioritized as to which are the best approaches the methods do not make this clear. It also 

seems likely that caveats about potential disconnects between transcript metrics and abundance of 

proteins or their enzymatic products. Additionally, the molecular interactions database is quite small at 

373 entries and the results of the present work may be biased by this size restriction. 



Though the NeuronChat software package potentially offers considerable value, the present 

documentation falls short of enabling its effective use. The software package itself does not completely 

meet the standards proposed in the manuscript. There are a large number of installation dependencies 

in the code and these reviewers were unable to fully resolve them with the present R version. It would 

be most helpful to have a short example tutorial in illustrating one or more of the results of the 

manuscript, beyond the code the figures. If the clarity of presentation and software documentation can 

be improved as we suggest below and the claims of accuracy can be more clearly supported or else 

attenuated appropriately, NeuronChat has the potential to evolve into a valuable increment in the 

cellular 

neuroscientist's toolkit. 

Finally, while we are enthusiastic about the package and approach the value of NeuronChat might be 

further enhanced and clarified by citing some precedents within it neuroscientific scope. One of these is 

already cited as Ref. #36, but the current citation only references one table that pairs neuropeptide 

precursors and their receptors. The authors should note that this publication is specifically about 

network predictions from scRNA-seq data made according to the same general logic that is at the heart 

of NeuronChat and directly based on the same Allen Institute neurotaxonomy and dataset as much of 

work presented in the current manuscript. Citation of two additional previous publications would be 

appropriate 

1. Smith SJ, Hawrylycz M, Rossier J, Sumbul U: New light on cortical neuropeptides and synaptic 

network plasticity. Curr Opin Neurobiol 2020, 63:176-188. PMID: 32679509 

2. Smith SJ: Transcriptomic evidence for dense peptidergic networks within forebrains of four 

widely divergent tetrapods. Curr Opin Neurobiol 2021, 71:100-109. PMID: 34775262 

These two publications both make neurotaxonomic/transcriptomic network predictions based on the 

same ligand-receptor products as the present manuscript, but also point toward the necessity of 

prediction testing and relevant experimental and phylogenomic tests. In summary, this work represents 

an advance in a comparatively new area of quantifying interaction networks from single cell expression 

data. While we remain enthusiastic, the manuscript should be improved as indicated to make 

NeuronChat 

more fully useable and indicate its contribution to an exciting research approach to cell network 



communication. 

Reviewer #3 (Remarks to the Author): 

In the manuscript “Inferring neuron-neuron communications from single-cell transcriptomics through 

NeuronChat”, Zhao et al. adopted a conventional cell-cell communication framework to make a 

specialized methodology for inferring neuron-neuron communication based on scRNA-seq data. More 

precisely, the method is built upon the tool CellChat which was developed and published by the same 

lab a while back. The authors named their new tool NeuronChat. From an application standpoint, like 

CellChat, which is one of the most popular tools for cell-cell communication analysis, NeuronChat is a 

well-documented R package, with clear tutorials accompanied. Both CellChat and NeuronChat generate 

very nice visualization. I do think NeuronChat is a great piece of software extension. However, almost all 

analysis in NeuronChat, such as latent patterns, functional similarity, have already been highlighted in 

the original CellChat paper. The methodological details explained in the methods section look very 

similar to CellChat. I feel that from a method development standpoint, with respect to CellChat, the 

novelty of NeuronChat is rather incremental. 

The authors emphasized that neural communication is mediated by neurotransmitters, which are non-

peptides and thus excluded from most existing ligand-receptor databases. The authors therefore 

curated a list of neuron-specific ligand-receptors, which are not included in CellChat. Their efforts are 

appreciated. Nevertheless, the abundance of small molecules cannot be directly measured in scRNA-seq 

data, authors therefore used the expression of the related enzymes as a proxy. While the proxy makes 

sense, they are also quite the obvious choice. Stoichiometric effects of metabolites and pathways 

dependency are not considered. There are a few recently published methods that leverage single-cell 

RNA-seq data to estimate metabolic flux, for instance, the tool scFEA 

(https://genome.cshlp.org/content/31/10/1867), and therefore go beyond the simple proxy used by 

NeuronChat. 

As the only quantitative justification of NeuronChat, the authors used two projective networks identified 

using retrograde labeling as the gold standard. Even though a reference is provided, it seems that the 

details of the two networks were not mentioned. I assume retrograde labeling measure connections in a 

single-cell level, but NeuronChat predicts connections in cell-type level. It is not clear how sensitivity and 

specificity are defined. As the topology of the gold standard networks might affect the results (for 

instance, a cell-type is connected to many other cell-type, making prediction easier), the current AUC 

values (0.83, 0.76 etc.) will make more sense if the authors could repeat the analysis but shuffling the 

edges in the gold standard networks. I wonder if the resultant AUCs would reduce to 0.5. If not, I am not 

sure how to interpret the current AUC values, which are already not too impressive. 



 

Response to Reviewer #1 
 

The communications between neurons play critical roles in our central nervous system. 

Therefore, understanding the interactions between neuron cells is essential for 

understanding how our brain functions. Single-cell genomics provides unrivaled 

opportunities to study the interactions between different cells. In the past years, numerous 

computational methods, such as cellphonedb and cellchat, have been developed to infer 

the communications between cells. Nevertheless, none of these methods, at least to my 

knowledge, considers the uniqueness of neural communication. The authors filled this 

gap by providing one of the very first tools to infer communications between neuron cells. 

 

The strength of the study: 

 

1) The authors built/curated one of the first neural-specific database of intercellular 

interactions for both humans and mice, which was named NeuronChatDB. This dataset 

can surely facilitate other works on studying the interactions between neurons by 

providing the "ligand-target dictionary" required to infer neural interactions, and thus I 

believe that this newly developed tool can substantially benefit the neurobiology field. 

 

2) Because the interactions between neuron cells are distinct from the interaction 

between other cells, the authors developed a designated method to infer the interactions 

between neurons. For the non-peptide neurotransmitters, the ligand abundance 

calculation takes the expressions of corresponding synthesizing enzymes and vesicular 

transporters into consideration and thus is more complicated than the simple Ligand-

Receptor based "cross-talking" scoring scheme employed by cellphonedb, cellchat, and 

many other methods. 

 

3) Similar to the previous work from the authors (cellchat), the authors also provide very 

comprehensive visualizations of the results from the model, which will undoubtedly 

facilitate the adaptation of the methods by the community (similar as cellchat) and benefit 

various neurobiology studies. 



 

 

Although I am convinced about the potential impact and popularity of the method, I have 

a few comments that should be addressed. 

 

Response:  We are glad the reviewer finds the potential impact of our method. We thank 

the reviewer for the valuable comments. Below we provide detailed responses to each 

specific comment.  

 

Major comments: 
 

1. As single-cell spatial data is becoming more and more abundant, the author should 

consider extending their method to incorporate spatial information for the inference of 

neural cell interactions. Undoubtedly, the spatial information of all the neuron cells could 

help better infer the interactions. For example, closer cells tend to be more interactive 

compared to distant cells (given the expression of the enzymes and vesicular transporters 

are similar or identical). 

 

Response: Thank you for the nice suggestion. In the revision, we have added new 

functionality in two ways: using spatial data for inference of cell-cell communication 

networks and a new multilayered visualization of spatial cell-cell communication (new 

Figure 7), in an added new section “NeuronChat utilizes spatial transcriptomics to infer 

and visualize neural-specific communication networks”. 

 

Specifically, we have shown the added functionality using three spatial transcriptomics 

datasets based on three different sequencing techniques including seqFISH+, MERFISH, 

and Visium. The seqFISH+ dataset includes mRNA expressions of 10,000 genes in 913 

cells in the mouse somatosensory cortex and subventricular zone, where there are 358 

excitatory neurons of four types. The MERIFH dataset includes mRNA expressions of 

258 genes in approximately 300,000 cells (including nine glutamatergic subclasses and 

five GABAergic subclasses as well as non-neuronal subclasses) in the mouse primary 

motor cortex and its adjacent areas. The Visium dataset includes mRNA expression 



 

profiles in 2,702 spots of a coronal slice of the mouse brain, and these spots are classified 

into seven clusters. For all three ST datasets, we computed the communication networks 

among cell types (or spot clusters) without imposing spatial constraints. The neural-

specific signals can transmit over long spatial distances through various physical 

connections among neurons that may locate far apart. To better visualize spatial 

communication, we have developed a new multilayered visualization functionality to 

illustrate together the spatial communications network, cell type/spot cluster annotation, 

and tissue image/ anatomic reference (new Figures 7a-7c).  

 

To study the potential spatial effect on communication networks, next we have 

characterized the spatial proximity among cell types by calculating spatial proximity 

enrichment score similar to a previous study (Giotto). Using this information, we can 

remove communication links with their spatial proximity scores lower than a given 

threshold. Since GABAergic neurons generally have localized axonal arbors and the 

connection probability among them decreases with inter-neuronal distance, we showcase 

this functionality by applying it to communications among five GABAergic subclasses (i.e., 

Lamp5, Sncg, Vip, Sst, and Pvalb) of the MOp cortex (new Figures 7d and 7e). This 

spatial constraint functionality has been implemented as a user option in NeuronChat. 

 

These results have been added on Pages 18-20.   

 

2. In this manuscript, the author did not benchmark their method (neuronchat) with other 

methods. I do understand that there might not exist any other methods that were designed 

specifically to infer the interactions between neurons. The authors also compared the 

prediction of their method to the ground truth obtained from retrograde labeling. However, 

I am wondering whether the authors could show whether a simple extension of the 

existing methods (say, the cellchat developed by the authors a few years ago) could also 

provide a good cell-cell interaction inference. Of course, the "Ligand-target" database 

(neuronchatDB) is still required as the L-R reference for those existing methods. This 

comparison (particularly if a simple extension fails to achieve a good performance) can 

further demonstrate the need for a new method (i.e., Neuronchat). The author did explain 



 

the limitation of existing methods in the introduction "all existing methods are based on 

short-range autocrine/paracrine signaling which only acts through ligand diffusion and 

physical contact of cells." 

 

While I agree with the authors that the neural interactions could be more distant, existing 

methods might still work well because of their simplicity. For example, cellphonedb 

actually did not take the "range" into the calculation of the interaction score. For a given 

Ligand-Receptor pair L-R, the method calculates the interaction score by taking the 

minimum value of the average ligand (of the sender cluster) and receptor (of the receiver 

cluster). The distances between the cells are not considered in the model, such a 

simplified calculation may also be able to circumvent the limitations and capture the 

interactions between distant neuron cells. Therefore, a direct comparison will provide a 

much more vigorous justification.  

 

Response: We thank the reviewer for the good suggestion. To demonstrate 

NeuronChat’s capability in identifying neural-specific communications, in the revision we 

have added comparisons with CellChat and CellPhoneDB in predicting neuronal 

connectivity using the same ligand-target database (new Figure 3).  

 

Specifically, we use the same computational workflow of NeuronChat for the 

implementation of CellChat and CellPhoneDB, except for the calculation of ligand 

abundance and the formula for communication strength (Please see more details added 

in Method for comparison (Page 27)).  On the inference of neuronal connectivity in both 

VISp and ALM projection networks, we have shown that NeuronChat outperforms existing 

cell–cell communication inference methods: 1) the aggregated communication network 

for NeuronChat has the highest AUROC/AUPRC among the three benchmarking 

methods (new Figures 3a-3b for VISp and new Figures 3f-3g for ALM); 2) for individual 

communication networks, NeuronChat not only detects more significant interaction pairs 

but also yields higher AUROC and AUPRC than the other two methods (new Figures 3c-

3e for VISp and new Figures 3h-3j for ALM).  These results have been added on Pages 

9-10.  



 

The Minor comments: 
 

1. "retrograde labeling", can the authors provide one or two sentences to describe the 

retrograde labeling and how it profiles the real cell-cell interactions? 

 

Response: In the revision, we add a description of retrograde labeling and how it 

identifies neuronal connectivity on Pages 5-6 as follows: “The connections from excitatory 

neurons of VISp and ALM to their cortical target regions were identified using 

monosynaptic retrograde labeling3, where the viral tracers are injected into target regions 

and move towards the presynaptic neurons via retrograde axonal transport without further 

spreading to indirectly contacted cells, allowing the identification of direct neural 

connections21-25. By grouping retrogradely labeled neurons using their cell type 

annotations, we obtain the coarse-grained projection networks composed of directed links 

from excitatory neuron types in VISp and ALM to their cortical target regions (Figure 2a 

for VISp and Figure 2f for ALM), which are then used for subsequent benchmarking.”   

 

2. Can authors provide a justification of using Tukey's trimean, why not just the simple 

mean of the gene expression in all cells of a group? What is the disadvantage of doing 

this? Why could the trimean approach resolve the issue? 

 

Response: In the revision, we have now made a comparison between Tukey's trimean 

and arithmetic mean in inferring communications with detailed descriptions on the 

difference between the two methods (new Supplementary Figure 8).  

 

According to their definitions, for a given gene and a given cell group, the non-zero 

Tukey's trimean only occurs if the gene is expressed in at least 25% of cells while non-

zero arithmetic mean occurs if the gene is expressed in at least one cell. Because the 

genes only expressed in a small proportion (less than 25%) of cells are filtered out, 

Tukey's trimean benefits to identify the cell-type enriched ligand-target pairs. As expected, 

Tukey's trimean leads to fewer detected interaction pairs than arithmetic mean 

(Supplementary Figures 8a and 8e); however, the interaction pairs produced by Tukey's 



 

trimean show overall higher AUROC and AUPRC than those produced by arithmetic 

mean, suggesting Tukey's trimean is able to infer more reliable interaction pairs 

(Supplementary Figures 8b-8d and 8f-8h).  

 

In the revision, we have added this result on Page 11, and detailed descriptions for 

Tukey's trimean on Pages 24-25.   

 

3. Please rephrase "Assume that the synthesis of the ligand requires m1 steps .....Thus, 

the abundance of ligand for the i-th cell group is modeled as". It's not easy to read and 

understand. 

 

Response: Sorry for the confusion. In the revision, we have rewritten this paragraph on 

Page 25 as follows: “Assume that the synthesis of the ligand requires 𝑚! catalyzing steps; 

for the 𝑠-th catalyzing step (𝑠 = 1,2, … ,𝑚!), let 𝑝" denote the number of isoenzymes that 

catalyze the same chemical reaction (e.g., glutamate decarboxylase 1 and 2 for the 

synthesis of GABA), and 𝐸#,",% (𝑙 = 1,2, … , 𝑝") denote the ensemble average expression of 

the 𝑙 -th isoenzyme for step 𝑠  in cell group 𝑖 . Likewise, let 𝑞  denote the number of 

vesicular transporters for the storage of the same ligand (e.g., vesicular glutamate 

transporter 1, 2, and 3 for the glutamate), and let 𝑉#,% (𝑙 = 1,2, … , 𝑞) denote the ensemble 

average expression of the 𝑙-th vesicular transporter. Then, the abundance of ligand is 

modeled by the 1 +𝑚!  functional groups of genes including one group for vesicular 

transporters and 𝑚! groups for the 𝑚! steps of synthesis. Because a high abundance of 

ligand requires high expressions of all the 1 +𝑚! groups of genes, so the AND logic (i.e., 

geometric mean) is applied among different groups of genes; since the genes within the 

same group are redundant for the same function, the OR logic (i.e., arithmetic mean) is 

applied. Thus, the abundance of ligand for the 𝑖-th cell group is modeled as…” 

 

4. One potential limitation of those permutation-based p-value calculations is that it is very 

time-consuming. Are the random permutations needed for all new applications (data)? If 

so, what is the time complexity? The empirical p-value accuracy depends on the # of 

permutations. A high # of permutations can present a more accurate empirical p-value, 



 

but it will suffer from long computation time. On the other hand, if we reduce # of 

permutations, the p-value calculation loses its accuracy. 

 

Response: Yes, the permutation test will be needed for all new applications. The time 

complexity for the permutation-based p-value calculations is 𝛰(𝑛) where 𝑛 is the number 

of permutations. We agree that there is a trade-off between accuracy and computation 

speed for permutation-based p-value calculations. Nevertheless, as illustrated in the new 

supplementary Figure 3, we find a good consistency between p-values calculated by 100 

and 1,000 permutations – both the slope and R-squared for the linear regression line are 

very close to 1 (slope=0.9987, R-squared=0.9992 for VISp projection networks; 

slope=0.9994, R-squared=0.9994 for ALM projection networks) (new Supplementary 

Figures 3a and 3b). Furthermore, the links detected by 1,000 permutations largely overlap 

with those detected by 100 permutations (344/346 for VISp and 359/364 for ALM), with 

no more than 1.5% of links missed (new Supplementary Figures 3c and 3d). These results 

suggest that we can practically reduce the number of permutations (e.g., 100) to save 

computation time while maintaining good consistency.  

 

In the revision, these results have been added on Page 7. Related discussions are added 

on Pages 21-22 as follows: “There is a trade-off between accuracy and computation 

speed for permutation-based p-value calculations, which are needed for all new 

applications of NeuronChat. A high number of permutations can produce a more accurate 

empirical p-value, but it suffers from long computation time (the time complexity for the 

permutation-based p-value calculations is 𝛰(𝑛) where 𝑛 is the number of permutations). 

Nevertheless, we find a good consistency between p-values calculated by 100 and 1,000 

permutations, and the links detected by 1,000 permutations largely overlap with those 

detected by 100 permutations with no more than 1.5% of links missed (Supplementary 

Figure 3). These results suggest that one may reduce the number of permutations (e.g., 

default number 100 in NeuronChat) to save computation time while maintaining the 

accuracy of p-value calculations.”      



 

Response to Reviewer #2  
(Remarks to the Author):  (A MORE READABLE PDF VERSION IS ATTACHED BELOW!)  

This manuscript presents NeuronChat, a novel package for predicting and visualizing 

neuron-type-specific communication networks from neurotaxonomically classified single-

cell RNA-seq expression data. The concept here, and as pioneered by previous studies 

(e.g., cited Ref. #36), is to use products of mRNA abundance metrics from ligand-receptor 

pairs as predictions cell-cell signaling between pairs of transcriptomically defined cell 

types. The method is introduced in the present work making use of a mouse cortex 

neurotaxonomy and genome-wide scRNA-seq datasets from cited Ref. #3 and then 

demonstrated by applications to human control/autism neurotaxonomies from scRNA-seq 

datasets from Ref. #22. Given the very large numbers of cell types and ligand-receptor 

pairs recognized today in virtually all metazoan brains, improved abilities to develop 

specific and testable hypotheses regarding communications between specific cell types 

seem certain to advance neuroscience.  

…. 

In summary, this work represents an advance in a comparatively new area of quantifying 

interaction networks from single cell expression data. While we remain enthusiastic, the 

manuscript should be improved as indicated to make NeuronChat more fully useable and 

indicate its contribution to an exciting research approach to cell network communication 

 
Response:  We thank the reviewer for the positive evaluation and the valuable comments. 

Below we provide detailed responses to each specific comment.  

 

1. A major strength of the present work is thus development of a computational package 

for visualizing and exploring such predictions. Unfortunately, the presentation as it stands 

lacks clarity at some critical junctures and leaves room for doubt as to the strength and 

accuracy of the "inferences" claimed as results from NeuronChat. The lack of 

presentation clarity is most severe in the critical section of Results entitled "Benchmarking 

of NeuronChat". Noting the many "false positives" evident in Figs. 2b and 2g, juxtaposed 

with the high incidence of "true positives" in these graphs, it is hard to see support for the 

statement that "NeuonChat is able to predict neural connectivity accurately and robustly". 



 

(...particularly the part about "accurately"...). This is particularly so given that products of 

numerous glutamate receptor genes are expressed in virtually all CNS neurons and that 

Cck and Cckbr transcripts are abundant in almost all cortical glutamatergic neurons. We 

may be missing something here, but we fear that many other readers may have a problem 

with this critical passage. This section could use a very substantial re-write aimed either 

at more clearly leading the reader to the stated conclusion and/or softening the conclusion 

of "accuracy".  

 

Response: Sorry for the confusion. In the revision, we have removed the entire sentence 

about “….accurately and robustly” as well as the word “accurate” or accurately” in other 

parts of the manuscript. In addition, we pointed out the caveats of our predictions at 

several places. For example, in the section “Benchmarking of NeuronChat”, we’ve added 

“Please note that a small portion of the communication links predicted are incorrect for 

both of the two cases (e.g., 3/21 for Figure 2b and 7/30 for Figure 2g)”. Please see more 

updates in the section “Benchmarking of NeuronChat”.  

 

2. Another major issue is that the precise workflow is not clearly illustrated, and Figure 1 

presents this workflow only in very general terms. While Figure 1 is attractive, a more 

detailed illustration of how interactions are represented, how gene expression is used to 

infer connection strength, and at least an indication of the computational model approach 

would help. It is difficult to understand this workflow, except at a very conceptual level, 

through initial text in the manuscript. For example, in the annotation of these interactions, 

is this a strictly binary interaction or does the data base indicate interaction strength in 

any way? This additional clarification to the manuscript is important as that while 

considerable methods are developed for the statistical methodology, the overall workflow 

must be first rigorously presented. The quantification model of the gene expression 

interactions is novel in many ways and a strength of the paper, and the permutation 

testing framework is an important addition to this approach.  

 

Response: Thank you for the good suggestion. In the revision, we have modified Figure 

1 to clearly illustrate the computational workflow of NeuronChat (revised Figure 1). 



 

Specifically, in the revised Figure 1b, we show how the ligand and target abundance is 

estimated from gene expressions, how the permutation test is performed, and what the 

output communication strength matrix looks like. We have also added an example of the 

interaction list in Figure 1a to illustrate how ligand-target pairs in the database are curated. 

Correspondingly, the paragraph related to Figure 1 is modified to reflect these changes.  
 

3. The analysis and comparison of the VISp and ALM datasets from the Allen Institute is 

a strength of the manuscript and offers some interesting communication links for follow 

up. The analysis in this part of the manuscript is generally rigorously accomplished, 

however, methods used for aggregating intercellular communication should be prioritized 

as to which are the best approaches the methods do not make this clear.  

 

Response: We thank the reviewer for the good suggestion. To justify the choice of 

aggregation method for communication networks over ligand-target pairs, in the revision 

we have compared four different aggregation methods on inferring neuronal connectivity 

(new Supplementary Figure 9).  

 

Given the sending and receiving cell group, aggregation method #1 sums the 

communication strength values over interaction pairs, denoted as “weight”; aggregation 

method #2 counts the number of links with non-zero communication strength over 

interaction pairs, denoted as “count”; aggregation method #3 counts the number of links 

with non-zero communication strength while assigning the weight of the interaction pair 

as the information flow, denoted as “weighted count”; aggregation method #4, denoted 

as “thresholded weight”, sums the communication strength values over all interaction 

pairs with the communication strength values filtered by a threshold for each interaction 

pair.  For the “thresholded weight” method, we choose the threshold for an interaction 

pair as the 80% quantile of all communication strength values for the interaction pair. This 

is because the 80% quantile leads to overall higher AUROC/AUPRC than other 

thresholding quantiles, except a slightly lower AUROC for ALM projection network (new 

Supplementary Figures 9a-9b and 9e-9f).    

 



 

Among the four aggregation methods, “thresholded weight” with 80% quantile produces 

the highest AUROC/AUPRC values for the VISp projection network (new Supplementary 

Figures 9c-9d), and produces the second highest AUROC/AUPRC that is only slightly 

lower than the best ones for the ALM projection network (new Supplementary Figures 9g-

9h). Due to finite sampling in the permutation test, the predicted communication networks 

may fluctuate among different repeated simulations; however, “thresholded weight” leads 

to smaller variations in AUROC/AUPRC than other aggregation methods for repeated 

simulations, thus robustly minimizing the randomness generated in the permutation test 

(Supplementary Figure 9). Based on these observations, we choose the “thresholded 

weight” as the best aggregation method for benchmarking, and the other three 

aggregation methods are optional in our NeuronChat package.  

 

These results have been added on Pages 11-12. Descriptions of the four methods are 

added to the Methods section on Page 29.   

 

4. It also seems likely that caveats about potential disconnects between transcript metrics 

and abundance of proteins or their enzymatic products.  

 

Response:  Thank you for pointing out the limitation. We agree that there exist gaps 

between transcript levels and the abundance of proteins or metabolites. In the revision, 

we have added a paragraph on Page 22 to discuss the limitation and practicality of 

modeling protein/metabolite abundance from transcriptomics, as follows: “Like other 

existing methods for inferring cell-cell communications, NeuonChat estimates the 

abundance of ligands and target proteins from transcriptomics that could be inconsistent 

with protein or metabolite levels. In principle, NeuronChat can be applied to proteomics 

and metabolomics data to infer ligand-target interactions if the data becomes available. 

With the single-cell proteomics and metabolomics techniques lagging behind 

transcriptomics in coverage of molecules or throughput49, 50, for now the transcriptomics 

data remain as a main data source for cell-cell communication inference.”  

 



 

5. Additionally, the molecular interactions database is quite small at 373 entries and the 

results of the present work may be biased by this size restriction.  

 

Response:  Thanks for pointing this out. In the revision, we have added a discussion 

about NeuronChatDB’s limited coverage and its potential effects, and we also pointed out 

that users can easily update the NeuronChatDB with new interactions, to expand the 

analysis reach. On Pages 22-23 we have added: “While NeuronChatDB includes major 

small-molecular neurotransmitters, most of the neuropeptides, some gasotransmitters, 

gap junction proteins as well as synaptic adhesion molecules, there may be missing 

information in the curated interaction entries, leading to bias in the inference.  

Nevertheless, NeuronChat allows easy updating of the database with user-defined 

interactions that are not included in the current version, to expand its applicability for more 

interactions.”  

 

6. Though the NeuronChat software package potentially offers considerable value, the 

present documentation falls short of enabling its effective use. The software package itself 

does not completely meet the standards proposed in the manuscript. There are a large 

number of installation dependencies in the code and these reviewers were unable to fully 

resolve them with the present R version. It would be most helpful to have a short example 

tutorial in illustrating one or more of the results of the manuscript, beyond the code the 

figures. If the clarity of presentation and software documentation can be improved as we 

suggest below and the claims of accuracy can be more clearly supported or else 

attenuated appropriately, NeuronChat has the potential to evolve into a valuable 

increment in the cellular neuroscientist's toolkit.  

 

Response:  Sorry for the confusion about the software documentation and thank the 

reviewer for the good suggestion. In the revised Github repository of NeuronChat 

(https://github.com/Wei-BioMath/NeuronChat), we have added a short tutorial at a 

conspicuous position of the README file so that users can easily view it and quickly start 

the NeuronChat analysis. We have also provided instructions and links to guide users for 

accessing a full and detailed tutorial, to reproduce results in the manuscript.  To help 



 

users for easy installation, in the revised README file, we have included detailed 

instructions for resolving some common issues that users may encounter during 

installation.   

 

7. Finally, while we are enthusiastic about the package and approach the value of 

NeuronChat might be further enhanced and clarified by citing some precedents within it 

neuroscientific scope. One of these is already cited as Ref. #36, but the current citation 

only references one table that pairs neuropeptide precursors and their receptors. The 

authors should note that this publication is specifically about network predictions from 

scRNA-seq data made according to the same general logic that is at the heart of 

NeuronChat and directly based on the same Allen Institute neurotaxonomy and dataset 

as much of work presented in the current manuscript. Citation of two additional previous 

publications would be appropriate  

1. Smith SJ, Hawrylycz M, Rossier J, Sumbul U: New light on cortical neuropeptides 

and synaptic network plasticity. Curr Opin Neurobiol 2020, 63:176-188. PMID: 

32679509  

 

2. Smith SJ: Transcriptomic evidence for dense peptidergic networks within forebrains 

of four widely divergent tetrapods. Curr Opin Neurobiol 2021, 71:100-109. PMID: 

34775262  

These two publications both make neurotaxonomic/transcriptomic network predictions 

based on the same ligand-receptor products as the present manuscript, but also point 

toward the necessity of prediction testing and relevant experimental and phylogenomic 

tests.  

 

Response: Thank you for pointing out the three publications related to neural-specific 

network predictions. In the revision, we introduced the progress that has been made by 

the three publications on Page 3 as follows: “Smith et al. predicted 37 neuropeptide 

networks among cortical neuron types by taking the interaction score as the product of 

transcript levels of neuropeptide precursor and the cognate G-protein-coupled receptor16-

18, but didn’t include neurotransmitter signaling.” 



 

Response to Reviewer #3  
 

In the manuscript “Inferring neuron-neuron communications from single-cell 

transcriptomics through NeuronChat”, Zhao et al. adopted a conventional cell-cell 

communication framework to make a specialized methodology for inferring neuron-

neuron communication based on scRNA-seq data. More precisely, the method is built 

upon the tool CellChat which was developed and published by the same lab a while back. 

The authors named their new tool NeuronChat. From an application standpoint, like 

CellChat, which is one of the most popular tools for cell-cell communication analysis, 

NeuronChat is a well-documented R package, with clear tutorials accompanied. Both 

CellChat and NeuronChat generate very nice visualization. I do think NeuronChat is a 

great piece of software extension.  

 

Response:  We thank the reviewer for the positive evaluation and the valuable comments. 

Below we provide detailed responses to each specific comment.  

 

1. However, almost all analysis in NeuronChat, such as latent patterns, functional 

similarity, have already been highlighted in the original CellChat paper. The 

methodological details explained in the methods section 

look very similar to CellChat. I feel that from a method development standpoint, with 

respect to CellChat, the novelty of NeuronChat is rather incremental. 

 

Response: Thank you for pointing this out. In the revision, we have added new 

functionality in two ways: using spatial data for inference of cell-cell communication 

networks and a new multilayered visualization of spatial cell-cell communication (new 

Figure 7), in an added new section “NeuronChat utilizes spatial transcriptomics to infer 

and visualize neural-specific communication networks”. 

 

Specifically, we have shown the added functionality using three spatial transcriptomics 

datasets based on three different sequencing techniques including seqFISH+, MERFISH, 

and Visium. The seqFISH+ dataset includes mRNA expressions of 10,000 genes in 913 



 

cells in the mouse somatosensory cortex and subventricular zone, where there are 358 

excitatory neurons of four types. The MERIFH dataset includes mRNA expressions of 

258 genes in approximately 300,000 cells (including nine glutamatergic subclasses and 

five GABAergic subclasses as well as non-neuronal subclasses) in the mouse primary 

motor cortex and its adjacent areas. The Visium dataset includes mRNA expression 

profiles in 2,702 spots of a coronal slice of the mouse brain, and these spots are classified 

into seven clusters. For all three ST datasets, we first computed the communication 

networks among cell types (or spot clusters) without imposing spatial constraints. The 

neural-specific signals can transmit over long spatial distances through various physical 

connections among neurons that may locate far apart. To better visualize spatial 

communication, we have developed a new multilayered visualization functionality to 

illustrate together the spatial communications network, cell type/spot cluster annotation, 

and tissue image/ anatomic reference (new Figures 7a-7c).  

 

To study the potential spatial effect on communication networks, next we have 

characterized the spatial proximity among cell types by calculating spatial proximity 

enrichment score similar to a previous study (Giotto). Using this information, we can 

remove communication links with their spatial proximity scores lower than a given 

threshold. Since GABAergic neurons generally have localized axonal arbors and the 

connection probability among them decreases with inter-neuronal distance, we showcase 

this functionality by applying it to communications among five GABAergic subclasses (i.e., 

Lamp5, Sncg, Vip, Sst, and Pvalb) of the MOp cortex (new Figures 7d and 7e). This 

spatial constraint functionality has been implemented as a user option in NeuronChat. 

 

The above results have been added on Pages 19-20.  

 

2. The authors emphasized that neural communication is mediated by neurotransmitters, 

which are non-peptides and thus excluded from most existing ligand-receptor databases. 

The authors therefore curated a list of neuron-specific ligand-receptors, which are not 

included in CellChat. Their efforts are appreciated. Nevertheless, the abundance of small 

molecules cannot be directly measured in scRNA-seq data, authors therefore used the 



 

expression of the related enzymes as a proxy. While the proxy makes sense, they are 

also quite the obvious choice. Stoichiometric effects of metabolites and pathways 

dependency are not considered. There are a few recently published methods that 

leverage single-cell RNA-seq data to estimate metabolic flux, for instance, the tool scFEA 

(https://genome.cshlp.org/content/31/10/1867), and therefore go beyond the simple proxy 

used by NeuronChat. 

 

Response: Thank you for the nice suggestion, and we agree with the reviewer’s point. In 

the revision, we have provided a comparison between the ligand abundance by 

NeuronChat and scFEA-derived metabolite surrogates in identifying neural-specific 

communication networks (new Supplementary Figure 7). We have added related results 

and discussions on Pages 10-11 and Page 21, respectively.     

 

Specifically, to investigate the effects of different metabolite surrogates in identifying 

neural-specific communication networks, in the revision, using glutamate as an example, 

we have provided a comparison between NeuronChat’s ligand abundance and eight 

scFEA-derived surrogates (including metabolite balance and seven module fluxes) in 

predicting VISp and ALM projection networks. For each of the nine glutamate surrogates, 

we calculated AUROC and AUPRC values for the communication networks of 24 

glutamate-mediated interaction pairs, and found that NeuronChat’s ligand abundance 

shows middle or above ranking in AUROC (or AUPRC) median among the nine glutamate 

surrogates (new Supplementary Figures 7a and 7c). For the communication network 

aggregated over 24 glutamate-mediated interaction pairs, NeuronChat’s ligand 

abundance ranks #2 in both AUROC and AUPRC for predicting VISp and ALM projecting 

networks among the nine glutamate surrogates (new Supplementary Figures 7b and 7d). 

While some of the scFEA-derived surrogates indeed show higher AUROC (or AUPRC) 

values than NeuronChat’s ligand abundance, the difference between NeuronChat’s 

ligand abundance and the best scFEA-derived surrogate is minimal. These results 

indicate that NeuronChat’s ligand abundance works relatively well despite its simplicity.  

 



 

The results have been added on Pages 10-11. Related discussions have been added on 

Page 22 as follows: “While NeuronChat’s computational workflow has been optimized to 

predict neuronal connectivity, the settings can be expanded to incorporate more refined 

models, for example, for estimating the abundance of small molecular neurotransmitters. 

For such cases, the stoichiometric effects of metabolism and pathways dependency may 

be included in addition to using expressions of only synthetic enzymes and vesicular 

transporters. By comparing nine glutamate abundance surrogates, we find that some of 

the scFEA-derived surrogates show higher AUROC (or AUPRC) values than 

NeuronChat’s ligand abundance (Supplementary Figure 7). While the difference between 

NeuronChat’s ligand abundance and the best scFEA-derived surrogate is small, it 

suggests ways in improving the prediction accuracy of neuronal connectivity.” 

 

3. As the only quantitative justification of NeuronChat, the authors used two projective 

networks identified using retrograde labeling as the gold standard. Even though a 

reference is provided, it seems that the details of the two networks were not mentioned. I 

assume retrograde labeling measure connections in a single-cell level, but NeuronChat 

predicts connections in cell-type level. It is not clear how sensitivity and specificity are 

defined. As the topology of the gold standard networks might affect the results (for 

instance, a cell-type is connected to many other cell-type, making prediction easier), the 

current AUC values (0.83, 0.76 etc.) will make more sense if the authors could repeat the 

analysis but shuffling the edges in the gold standard networks. I wonder if the resultant 

AUCs would reduce to 0.5. If not, I am not sure how to interpret the current AUC values, 

which are already not too impressive. 

 

Response: We thank the reviewer for the good suggestion of additional benchmarking. 

To determine whether the specific graph topology of ground truth labels makes the 

prediction task easy for NeuronChat, in the revision we perturb the ground truth labels by 

shuffling cell type labels of graph nodes while keeping the same graph topology, and then 

calculate AUROC and AUPRC (new Supplementary Figure 1). We find that the AUROC 

for the shuffled ground truth labels leads to a distribution with a mean around 0.5, 

indicating a poor prediction ability for those shuffled labels with even the same topology 



 

(new Supplementary Figures 1a, 1c, 1e, and 1g). We also show that the AUROC for the 

original ground truth labels is significantly higher than those for shuffled labels (p-values 

are 0.010±0.0036 and 0.017±0.0048 for VISp and ALM projection networks, respectively). 

Similar results are also obtained for the calculation of AUPRC (new Supplementary 

Figures 1b, 1d, 1f, and 1h), suggesting NeuronChat’s prediction ability doesn’t directly 

reflect the specific graph topology of ground truth labels. These new results have been 

added on Page 6.  

 

To address the reviewer’s concerns on the two projection networks, in the revision we 

have added detailed descriptions regarding how retrograde labeling identifies neural 

connections and how the coarse-grained projection networks at the cell-type level are 

obtained. Please see the description on Pages 5-6: “The connections from excitatory 

neurons of VISp and ALM to their cortical target regions were identified using 

monosynaptic retrograde labeling3, where the viral tracers are injected into target regions 

and move towards the presynaptic neurons via retrograde axonal transport without further 

spreading to indirectly contacted cells, allowing the identification of direct neural 

connections21-25. By grouping retrogradely labeled neurons using their cell type 

annotations, we obtain the coarse-grained projection networks composed of directed links 

from excitatory neuron types in VISp and ALM to their cortical target regions (Figure 2a 

for VISp and Figure 2f for ALM), which are then used for subsequent benchmarking.” 

  



 

 
Revised Figure 1. Overview of NeuronChat.  
(a) Overview of NeuronChat database. NeuronChat database includes ligand-target pairs required for chemical 

synapse, electrical synapse and synaptic adhesion (left panel). There are a total of 373 ligand-target pairs for both 
human and mouse, curated into five categories based on the type of the ligand (middle panel). The interaction pair list 

includes the ligand, target, and genes contributing to them (right panel). Note that genes contributing to the ligand are 

categorized into different groups (indicated by colors) based on their biological functions such as synthesis or vesicular 

transport.  
(b) Schematic diagram to illustrate the computational model of NeuronChat. The communication strength characterizes 

the coordinated expression of genes required for ligand emission in the sender cell group, and the expression of the 

target gene in the receiver cell group. The statistical significance of a communication link is determined by the 
permutation test (* and ns represent significant and not significant, respectively). Only significant links are kept in the 

output communication strength matrix while values for not significant links are set to be zeros. See Methods for details.  

(c) Functionalities of NeuronChat: visualization and analysis of the intercellular communication networks, making 
systemic comparisons across different biological contexts, and multi-layered visualization for spatial transcriptomics.  



 

 
New Figure 3. Comparison of NeuronChat, CellPhoneDB, and CellChat in predicting VISp and ALM projection 
networks.  
(a) Typical ROC curves (left panel) and PR curves for the three methods.  

(b) The boxplots of AUROC (left panel) and AUPRC (right panel) values for 100 repeats of the aggregated VISp 

projection networks inferred by the three methods. Each boxplot represents 100 independent repeated computations. 
Boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 

outliers. Note that no variation in each boxplot is observed because the aggregated method ‘thresholded weight’ 

reduces the fluctuation caused by finite sampling in the permutation test (see also Supplementary Figure 9).  
(c) The number of detected interaction pairs for the three methods.  

(d-e) The boxplots of AUROC (d) and AUPRC (e) values for the individual VISp projection networks inferred by the 

three methods. Boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers. 

(f-j) Repeat analysis for ALM projection network, analogous to (a-e).  



 

 
New Figure 7. Multi-layered visualization for spatial data and inference of spatially constrained communication 
network 
(a-c) Multi-layered visualization for three spatial transcriptomics datasets generated by different techniques seqFISH+ 

(a), MERFISH (b), and Visium (c). Each plot includes the raw tissue slice image/anatomic reference (bottom), cell/spot 
annotation in space (middle), and the aggregated communication network with the top 10 links shown (top). The width 

of a link indicates the sum of communication strengths over all significant ligand-target pairs. See Supplementary Figure 

12 for the full aggregated networks. The bottom image in (b) is the brain anatomic reference (Image credit: Allen Institute 
for Brain Science. [http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960348]).  

(d) Bar plot showing the cell proximity enrichment scores for all pairwise interacting cell types. The cell proximity 

enrichment scores are calculated based on all 64 MERFISH slices. The score>0 (bars in red) and score<0 (bars in 
cyan) represent enriched and depleted proximity between interacting cell types, respectively.  

(e) The inference of spatially constrained communication network for GABAergic neurons. Left panel: the cell proximity 

network. Links in red or grey represent enriched or depleted proximity between interacting cell types, respectively; the 
width of a link indicates the strength of enrichment or depletion. Middle panel: cell-cell communication network without 

spatial constraint, calculated based on scRNA-seq data26 for the same brain region and same cell types (2,044 single 

cells in total). The width of a link indicates the sum of communication strengths over all significant ligand-target pairs. 
Right panel: the spatially constrained cell-cell communication network, obtained by removing links with depleted 

proximity from the original cell-cell communication network. See also Supplementary Figure 13.  

 



 

 
New Supplementary Figure 1.  Benchmarking NeuronChat with shuffled ground truth labels.   
(a-b) The distribution of AUROC (a) and AUPRC (b) values for 1,000 times of cell type label shuffling in the VISp 

projection network. The red line indicates the original AUROC/AUPRC for the VISp projection network without label 
shuffling.  

(c-d) The distribution of p-values for AUROC (c) and AUPRC (d). The p-value is defined as the proportion of 

AUROC/AUPRC values that are larger than or equal to the original one (indicated by the red line in a-b), based on 100 
independent repeated simulations. Mean±SD for the p-values is 0.010±0.0036 for AUROC and 0.012±0.0038 for 

AUPRC.  

(e-h) Repeat analysis for ALM projection network, analogous to (a-d). Mean±SD for the p-values is 0.017±0.0048 for 

AUROC and 0.0087±0.0033 for AUPRC. 
  



 

 
New Supplementary Figure 3.  Comparison of p-values and number of links calculated by 100 and 1,000 
permutations.  
(a-b) The scatter plot of p-values calculated by 100 and 1,000 permutations for VISp (a) and ALM (b) projection network. 
The dots in each plot represents all non-zero cell-cell communication links for all possible interaction pairs. The plot 

shows the permutation test's original p-values that are not adjusted by Benjamini-Hochberg procedure. The regression 

line, regression equation, and adjusted R-squared are shown in each plot. 
(c-d) Comparison of the number of links detected by 100 and 1,000 permutations for VISp (c) and ALM (d) projection 

network. 



 

 
New Supplementary Figure 7.  Comparison between NeuronChat’s ligand abundance and scFEA-derived 
metabolite surrogates in identifying glutamate-mediated communication networks.  
(a) Boxplots of AUROC (upper panel) and AUPRC (lower panel) values of 24 glutamate-mediated communication 

networks for predicting the VISp projection network, for the nine glutamate surrogates. For the metabolic module 
representing the opposite direction of glutamate accumulation (e.g., M_48), we use the maximum flux value among all 

cells minus the original flux as the surrogate for glutamate, denoted by the original module name with a suffix “r” (same 

for b, c, and d). Boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 

range; points, outliers.  
(b) Barplots of AUROC (upper panel) and AUPRC (lower panel) values of the aggregated glutamate-mediated 

communication networks for predicting VISp projection network, for the nine glutamate surrogates.  

(c-d) Repeat analysis for ALM projection network, analogous to (a-b). 
 



 

 
New Supplementary Figure 8. Comparison of Tukey’s trimean and arithmetic mean in predicting VISp and ALM 
projection networks.  
(a) The number of detected interaction pairs for the VISp projection networks for the two mean methods.  

(b-c) Boxplots showing the AUROC (b) and AUPRC (c) values of the individual VISp projection networks for the two 

mean methods. Boxplot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers. 

(d) Distributions of AUROC (left panel) and AUPRC (right panel) values of the individual VISp projection networks for 

the two mean methods.  

(e-h) Repeat analysis for ALM projection network, analogous to (a-d).  



 

 
New Supplementary Figure 9. Optimization of the aggregation method.  
(a-b) Boxplots of AUROC (a) and AUPRC (b) values for 100 repeats of the aggregated VISp projection networks at 

different quantile thresholds of the aggregation method “thresholded weight”. Boxplot elements: center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. 
(c-d) Boxplots of AUROC (c) and AUPRC (d) values for 100 repeats of the aggregated VISp projection networks for 

four different aggregation methods. For the aggregation method “thresholded weight”, the thresholding parameter is 

chosen as 80% quantile of communication strength values for each interaction pair. Boxplot elements: center line, 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. 
(e-h) Repeat analysis for ALM projection network, analogous to (a-d).  

  



 

 
New supplementary Figure 12.  Inference of communication network for three spatial transcriptomics datasets.  
(a-c) The raw tissue slice image/brain region annotation diagram (first panel), spatial map (second panel), full 

aggregated communication network (third panel), and aggregated communication network with top 10 links shown 
(fourth panel), for three spatial transcriptomics datasets generated by different techniques including seqFISH+ (a), 

MERFISH (b), and Visium (c). In spatial maps, a dot represents the centroid of a cell (for a-b) or a spot (for c). The 

communication network summarizes the communication strength over interaction pairs (i.e., the “weight” aggregation 

method). For seqFISH+ and Visium datasets, the communication networks are directly calculated from the spatial 
transcriptomics; for the MERFISH dataset, the communication network is calculated using single-cell RNA-seq data 

(4,461 cells of seven glutamatergic subclasses) for the same brain region. For (b), the brain region annotation image 

(Image credit: Allen Institute for Brain Science. [http://atlas.brain-map.org/atlas?atlas=1#atlas=1&plate=100960348]) 
highlights the mouse primary motor cortex region (in purple); the spatial map only shows the glutamatergic cells in one 

representative coronal slice (slice id: mouse1_slice212).  



 

 

New supplementary Figure 13. The spatial map of GABAergic neurons for the MERFISH dataset.  
(a) Spatial map of five subclasses of GABAergic neurons in a coronal slice (slice id: mouse1_slice212). A dot 

represents the centroid of a cell.  

(b) Distribution of the y-axis coordinate for the five GABAergic subclasses shown in (a). The y-axis coordinate roughly 

represents the range from cortical layer L1 (top) to L6b (bottom). 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have addressed most of my major comments. Specifically, 1) the authors added new 

analyses on single-cells spatial data. A spatial constraint functionality was also added as a function of 

neuronchat. 2)The benchmarking analyses were also added, as suggested. The neuronchat was 

compared to state-of-the-art tools such as Cellphonedb and Cellchat, and demonstrated superior 

performance. All other minor comments were also addressed. I have no further comments and now 

support the publication of this manuscript. 

Reviewer #2 (Remarks to the Author): 

The authors are to be congratulated on a very responsive revision of a manuscript which now very 

clearly describes the development and use of an excellent software tool likely to be of great use in 

neuroscience. 

Reviewer #3 (Remarks to the Author): 

The authors have substantially improved the manuscript with new spatial omics data applications. All 

my concerns were well addressed. It will be a useful tool for neuroscience field and beyond. 



Response to Reviewers #1, #2 and #3 

REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have addressed most of my major comments. Specifically, 1) the authors 
added new analyses on single-cells spatial data. A spatial constraint functionality was 
also added as a function of NeuronChat. 2)The benchmarking analyses were also added, 
as suggested. The NeuronChat was compared to state-of-the-art tools such as 
CellPhoneDB and CellChat, and demonstrated superior performance. All other minor 
comments were also addressed. I have no further comments and now support the 
publication of this manuscript. 

Reviewer #2 (Remarks to the Author): 

The authors are to be congratulated on a very responsive revision of a manuscript which 
now very clearly describes the development and use of an excellent software tool likely 
to be of great use in neuroscience. 

Reviewer #3 (Remarks to the Author): 

The authors have substantially improved the manuscript with new spatial omics data 
applications. All my concerns were well addressed. It will be a useful tool for neuroscience 
field and beyond. 

Response:  We thank the reviewers for the positive evaluation and the helpful 

suggestions in the first round of review. Since all reviewers have no further comments, in 

this revision we only revised the manuscript to comply with the editorial requests.  


