Cell Reports Medicine, Volume 4

Supplemental information

Two pan-SARS-CoV-2 nanobodies

and their multivalent derivatives

effectively prevent Omicron infections in mice

Honghui Liu, Lili Wu, Bo Liu, Ke Xu, Wenwen Lei, Jianguo Deng, Xiaoyu Rong, Pei Du, Lebing Wang, Dongbin Wang, Xiaolong Zhang, Chao Su, Yuhai Bi, Hua Chen, William J. Liu, Jianxun Qi, Qingwei Cui, Shuhui Qi, Ruiwen Fan, Jingkun Jiang, Guizhen Wu, George F. Gao, and Qihui Wang

Supplementary Materials for

Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives

effectively prevent Omicron infections in mice

Honghui Liu^{1,11}, Lili Wu^{1,11}, Bo Liu^{1,2,11}, Ke Xu^{3,11}, Wenwen Lei^{3,11}, Jianguo

Deng^{4,11}, Xiaoyu Rong^{1,5}, Pei Du¹, Lebing Wang⁴, Dongbin Wang⁴, Xiaolong

Zhang⁶, Chao Su^{1,7}, Yuhai Bi¹, Hua Chen⁶, William J. Liu³, Jianxun Qi^{1,8},

Qingwei Cui⁹, Shuhui Qi², Ruiwen Fan^{2,*}, Jingkun Jiang^{4,*}, Guizhen Wu^{3,*},

George F. Gao^{1,10,*}, Qihui Wang^{1,5,8,12,*}

*Corresponding author. Email: ruiwenfan@163.com (R. F.); jiangjk@tsinghua.edu.cn (J. J.); wugz@ivdc.chinacdc.cn (G. W.); gaof@im.ac.cn (G. F. G.); wangqihui@im.ac.cn (Q. W.).

This PDF file includes

Table S1 to S3 Fig. S1 to S7

	nanobody R14/ RBD	nanobody S43/ RBD		
Data collection				
Space group	P3221	C2221		
Cell dimension				
a, b, c (Å)	92.45, 92.45, 218.745	102.279, 138.886, 122.72,		
α, β, λ (°)	90, 90, 120	90, 90, 90		
Resolution (Å)	2.50-46.22	2.70-50 (2.7-2.8) ^a		
Unique reflections		24629		
R _{merge}		0.176(0.796)		
R _{pim}		0.994(0.872)		
Ι/σΙ		16.4(3.0)		
Completeness (%)		100(100)		
Redundancy		13.1(12.2)		
Refinement				
Resolution (Å)	2.500-46.225	2.686-49.205		
No. reflections	35975	24510		
R _{work} /R _{free}	0.2006/0.2395	0.2038/0.2293		
No. atoms				
Protein	5064	5111		
Ligands	62	104		
Water	200	89		
Average B-factors (Å ²)				
Protein	47.70	46.01		
Ligands	101.79	82.15		
Water	42.83	37.81		
RMSD				
Bond lengths (Å)	0.003	0.003		
Bond angles (°)	0.640	0.603		
Ramachandran plot ^e				
Favored (%)	97.04%	97.67		
Allowed (%)	2.96%	2.33		
Outliers (%)	0.00%	0.00		

Table S1. Data collection and refinement statistics of nanobody R14 or S43 in complex with SARS-CoV-2 RBD. Related to Fig. 6.

The highest resolution shell is shown in parentheses.

SARS-CoV-2 RBD	nanobody R14
Y351	Y104 (2)
R403	D118 (10, 2)
K417	G115 (1)
V445	D30 (1)
G446	T28 (5), L29 (7), D30 (14, 1)
G447	L29 (2)
Y449	L29 (6), D30 (6, 1), Y31 (17, 2), P100 (2), A101 (8), Y103 (4), Y108 (6)
N450	Y103 (2)
L452	T102 (1), Y103 (4)
Y453	G116 (2)
L455	P113 (2), G115 (2), G116 (4)
F456	P113 (2)
T470	Y104 (9)
T478	D62 (1)
V483	Y109 (3), Q111 (2),
F486	G47 (6), V48 (7), S49 (6), C50 (2), S59 (8), Y60 (19), A61 (16)
C488	Q111 (1)
Y489	Q111 (15), C112 (3), P113 (6)
F490	T102 (2), Y104 (9), Y109 (24), Q111 (14, 3)
L492	T102 (5, 1), Y104 (2), Q111 (1)
Q493	T99 (3), P100 (8,1), A101 (1), T102 (13, 1), P113 (1)
S494	P100 (3), A101 (4), T102 (15, 1), Y103 (6, 1)
Y495	P100 (3), D118 (1)
G496	L29 (3), P100 (3)
Q498	T28 (8,1), L29 (12), Y119 (1)
N501	Y119 (1, 1)
Y505	D118 (17, 1), Y119 (3)
Total	377, 17

Table S2. Nanobody R14 in complex with SARS-CoV-2 RBD. Related to Fig. 6.

The numbers in parentheses of nanobody R14 residues represent the numbers of vdw contacts the indicated residues conferred. The numbers behind comma suggest numbers of potential H-bonds between the pairs of residues. vdw contact was analyzed at a cutoff of 4.5 Å and H-bonds at a cut off of 3.5 Å.

SARS-CoV-2 RBD	nanobody S43
Y369	Y107 (23, 1)
F374	T108 (2)
S375	T108 (2), C109 (1), G110 (5, 1), W111 (1), T112 (10,1), D113 (1)
Т376	T108 (3), T112 (9, 1), D113 (10,1)
F377	Y106 (2), Y107 (17, 1), T108 (12, 1)
K378	V104 (3), Y105 (5), Y106 (3), Y107 (1), D113 (8, 1)
C379	G103 (1), V104 (4), Y105 (14, 2)
Y380	D100 (1), S102 (4), G103 (4), V104 (13)
G381	G103 (1), Y105 (4)
V382	Y105 (12)
S383	Y105 (7)
P384	Y105 (6), Y106 (4), Y107 (4)
G404	W111 (5), T112 (2)
D405	W111 (3)
V407	T112 (8)
R408	E98 (13, 1), T112 (3,1), F114 (2), G115 (2)
P412	Y101 (1), S102 (4)
G413	Y101 (4)
Q414	E98 (4, 1), P99 (4, 1), Y101 (1)
D427	S102 (1)
V503	W111 (8)
G504	W111 (3)
Y508	W111 (7), T112 (4)
Total	276,14

Table S3. Nanobody S43 in complex with SARS-CoV-2 RBD. Related to Fig. 6.

The numbers in parentheses of nanobody S43 residues represent the numbers of vdw contacts the indicated residues conferred. The numbers behind comma suggest numbers of potential H-bonds between the pairs of residues. vdw contact was analyzed at a cutoff of 4.5 Å and H-bonds at a cut off of 3.5 Å.

Figure S1. The generation and determination of nanobodies. Related to Fig. 1. (A) Overview of the nanobody generation process. (B) Diversity of amino acid sequences in biopanning steps. (C) ELISA binding to different antigens from SARS-CoV-2 and SARS-CoV by R14 or S43, respectively.

Figure S2. Gating strategy and binding determination between nanobodies and SARS-CoV-2 or SARS-CoV by a FACS-based assay. Related to Fig. 1. GFP-fused SARS-CoV-2 or SARS-CoV spike (S) protein was transiently expressed on the surface of BHK-21 cells, and strained with his-tagged nanobodies. 'NC' presents negative control that was performed without nanobody protein. 'PC' presents positive control that was performed with one nanobody that can bind to both SARS-CoV-2 and SARS-CoV S protein. Then flow cytometry were conducted using BD FACSCanto. Cells were gated based on the FSC-A and SSC-A (P1).

Figure S3. Gating strategy and blocking evaluation. Related to Fig. 1. FACS-based assay showing that R14 and S43 can block SARS-CoV-2 RBD binding to human ACE2 (hACE2). hACE2-GFP fusion protein was transiently expressed on the surface of BHK-21 cells and stained with SARS-CoV-2 RBD protein, which are pre-incubated with His-tagged R14 or S43. Experiments were performed twice, and one representative data is displayed. 'BC' presents the blank control that was performed without nanobody. R23, as an irrelevant nanobody, presents the negative control. Then flow cytometry were conducted using BD FACSCanto. Cells were gated based on the FSC-A and SSC-A (P1).

Figure S4. Neutralization curves of nanobodies and their multivalent derivatives against pseudotyped SARS-CoV-2 variants or sub-variants in Vero cells. Related to Fig. 4. Experiments were independently repeated three times with similar results, and one representative curve is displayed. The orange, blue, green and violet lines indicated the neutralization curves of the monomeric, dimeric, trimeric and decameric antibodies, respectively.

1:1 binding with dissociation time of 300s

1:1 binding with dissociation time of around 80s

		R14	TR14	MR14	S43	T \$43	MS43
Prototype (with 300s)	ka (1/Ms)	3.6±0.9e+5	4.2±0.5e+5	5.6±1.1e+5	4.0±0.1e+5	6.9±0.3e+5	1.1±0.1e+6
	kd (1/s)	-	-	-	1.2±0.5e-4	1.3±0.2e-4	1.1±0.1e-4
	K _D (nM)				0.3±0.1	0.2±0.04	0.1±0.01
	Chi ²	8	1.3	0.8	2.5	5.1	0.9
	Rmax	1233.4	295.2	287.3	613.4	889.1	88.2
BA.1 (with 300s)	ka (1/Ms)	1.2±0.2e+5	8.7±4.8e+5	8.6±2.6e+5	3.1±0.1e+5	8.0±2.0e+5	9.4±2.6e+5
	kd (1/s)	4.3±2.2e-4	6.8±2.0e-4	6.3±1.1e-4	7.5±0.7e-4	1.1±0.03e-3	1.8±1.1e-3
	K _D (nM)	3.2±1.1	0.88±0.35	0.77±0.26	2.5±0.3	1.5±0.5	2.4±2.2
	Chi ²	1.1	4.2	2.6	19.3	3.2	2.8
	Rmax	127.9	63.9	56.8	395.7	218.5	163.2
BA.2 (with 300s)	ka (1/Ms)	4.3±0.4e+5	5.2±1.3e+5	6.4±2.1e+5	3.1±4.5e+5	1.5±0.2e+5	1.3±1.9e+6
	kd (1/s)	2.4±0.8e-4	3.9±3.1e-4	2.9±2.4e-4	1.6±1.5e-3	6.6±0.3e-4	3.4±2.3e-3
	K _D (nM)	0.57±0.13	0.70±0.38	0.44±0.36	2.7±0.8	4.6±0.8	5.6±3.4
	Chi ²	29.7	80.8	91.2	4.3	0.6	1
	Rmax	166.6	330.4	295	270.8	124.6	92.9
BA.3 (with 300s)	ka (1/Ms)	7.2±1.8e+4	7.3±4.3e+4	8.9±7.8e+8	1.9±0.1e+4	3.6±2.1e+4	2.3±0.7e+4
	kd (1/s)	1.4±0.3e-3	3.5±1.4e-3	1.5±1.0e+1	7.2±0.4e-4	1.2±0.5e-3	7.6±1.0-4
	K _D (nM)	20.2±1.6	24.9±13.2	20.5±11.5	37.5±3.5	35.1±7.7	36.7±1.9
	Chi ²	3.4	3.9	3.3	0.8	0.4	0.6
	Rmax	278.2	112.2	146.1	859.1	1174	675
BA.2.12.1 (with 80s)	ka (1/Ms)	2.1±0.1e+5	5.0±0.5e+5	7.2±7.2e+5	4.1±2.5e+5	3.5±3.2e+5	1.8±1.1e+5
	kd (1/s)	6.7±1.3e-3	1.9±0.4e-2	4.5±2.9e-2	2.7±2.2e-2	2.6±2.3e-2	1.4±0.8e-2
	K _D (nM)	32.6±4.5	38.2±3.7	39.0±8.8	71.5±11.5	75.9±7.0	79.3±5.3
	Chi ²	30.8	8.7	60.5	6.2	8.2	4.9
	Rmax	445.7	151.2	326.3	102.3	115.5	76
BA.4/5 (with 80s)	ka (1/Ms)	1.3±0.2e+6	2.7±3.3e+6	1.1±1.0e+7	4.0±0.5e+5	3.8±0.5e+5	3.8±0.3e+5
	kd (1/s)	5.8±1.0e-2	1.5±1.6e-1	4.9±3.8e-1	4.0±0.3e-2	1.9±0.1e-2	8.6±0.5e-2
	K _D (nM)	43.3±0.03	61.4±10.3	50.3±10.3	100±7.9	51.8±8.0	69.8±14.5
	Chi ²	26.1	7.7	27.3	8	9.2	3.7
	Rmax	270.5	98.6	126.8	95.3	67.3	42.7

Figure S5. The binding kinetics of antibodies to RBDs of SARS-CoV-2 and Omicron sub-variants using a BIAcore 8K system in single-cycle mode. Related to Fig. 4. The raw curves are shown as black

dotted lines. The fitting curves with the dissociation time of 300s and 80s using 1:1 Langmuir binding model are shown as red and violet solid lines, respectively. The values of k_a , k_d , K_D , and the parameters (Chi² value and R_{max}) are listed as the mean \pm s.d. of three independent experiments. "-" represents no detectable dissociation from the RBD.

Figure S6. Gel filtration profile of SARS-CoV-2 RBD and R14 (A) or S43 (B). Related to Fig. 6. The SARS-CoV-2 RBD, R14 or S43 proteins elute as single monomer peaks in the gel filtration curves. The SARS-CoV-2 RBD/R14 complex or SARS-CoV-2 RBD/S43 complex displays a shifted complex peak. All the samples were assessed by SDS-PAGE.

Figure S7. The amino acid substitutions on RBDs of VOCs and VOIs, and structural details of key mutations in Omicron sub-variants interacting with R14 or S43. Related to Fig. 6. (A) The schematic diagram shows the SARS-CoV-2 S protein. The amino acid substitutions on RBDs of five VOCs and two VOIs are displayed. (B-F) Binding face between RBD and R14 (B-D) or S43 (E-F). BA.1 RBD (7X1M) and BA.4 RBD (7ZXU) were used to align with Prototype RBD binding with R14 or S43. All structures were shown in cartoon with the key residues in stick. H-bonds were shown as dotted lines with a cutoff of 3.5 Å.