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Supplementary Table 1. Clinical characteristics of patients with pheochromocytomas and paragangliomas included in CNIO

series. Related to Fig. 1.

Patient’s Clinical Characteristics

WES series (n = 61)
% (n)

RNA-Seq series (n = 104)
% (n)

Primary tumor localization

PCC 32.8% (20) 37.5% (39)
PGL 31.1% (19) 36.6% (38)
bilateral PCC 3.3% (2) 3.8% (4)
multiple PGL 11.5% (7) 3.8% (4)
PCC+PGL 13.1% (8) 10.6% (11)
NA 8.2% (5) 7.7% (8)
Sex
Female 49.2% (30) 50% (52)
Male 41% (25) 46.1% (48)
NA 9.8% (6) 3.9% (4)
Age at initial diagnosis of PCC/PGL; median (range) in years 38.5 (10-82) 42 (10-82)
Clinical behavior
Non-metastatic disease 3.3% (2) 41.4% (43)
Aggressive disease 4.9% (3) 9.6% (10)
Metastatic disease 91.8% (56) 49% (51)
. - WES series (n = 87) RNA-Seq series (n = 118)
Tissue Sample Characteristics % (n) % (n)

Tumor type
Primary PPGL tumor
Second Primary PPGL tumor
Primary PPGL relapse
Metastases
Normal adrenal medulla
Anatomic localization of primary tumor sequenced
PCC
Abdominal PGL
Thoracic PGL
Head & Neck PGL
Retroperitoneal PGL
Mediastinal PGL
Paravesical PGL
unknown location of PGL

64.4% (56)
4.6% (4)
4.6% (4)

26.4% (23)

0% (0)

50% (32)
6.2% (4)
6.2% (4)
9.4% (6)
16.1% (9)
3.1% (2)
1.6% (1)
9.4% (6)

82.2% (97)
0.9% (1)
2.5% (3)

11.9% (14)
2.5% (3)

55.4% (56)
13.9% (14)
4% (4)
3% (3)
8.9% (9)
1% (1)
1% (1)
12.9% (13)
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Supplementary Fig. 1. Sample workflow for WES and RNA-Seq analyses. (a) A total of 73 patients were enrolled between
January 2017 and April 2019 (blue boxes — CNIO cohort) and included in WES study. For 2.7% of patients, no germline material
was obtained. Sequencing was performed in 97 tumors from 71 patients. However, 2 samples failed during DNA isolation and 1
sample failed WES quality control analysis. In two out of the remaining 94 samples, tumor and germline data did not pair (tested
using WES BAMs with NGSCheckMate) and 5 had a tumor purity lower than 12% (based on WES data using FACETS), and
were excluded from the analysis. In total, 87 pairs of tumor and normal samples were included in this study, representing the
90% of the CNIO collected cohort. From the TCGA series (green boxes), somatic variant calling data from 174 tumors (95%)
was included in the series; 10 tumors were dismissed due to insufficient clinical data available or tumor purity lower than 12%
(estimated using FACETS). In total, 261 paired tumor-germline data was used for the analysis: 61.7% were non-metastatic
primary tumors, 23.7% were metastatic primary tumors, 3.1% were primary tumors from patients with aggressive disease, 1.9%
were relapses from metastatic primary tumors, and 9.6% were metastases. (b) For the RNA-Seq study, in the CNIO series (blue
boxes), 165 patients were enrolled between January 2017 and August 2019. These corresponded to 182 tissue samples, but 20
tumors did not pass the raw RNA-Seq data quality control, 24 had a low tumor purity (estimated by ESTIMATE tumor content
purity; score>5900) and 21 were outliers in the PCA, consensus and hierarchical clustering analyses, so they were dismissed. In
total, 114 tumor samples and 3 normal adrenal medullae were analyzed in the CNIO RNA-Seq study. From the TCGA series
(green boxes), RNA-Seq raw counts were obtained from 187 tissues from 179 patients. In total, 35 samples were removed from
the series either because they did not have associated clinical information, the tumor purity estimation was low (based on re-
analysis using ESTIMATE, score>5900), or clustering analysis identified them as outliers. In total, 150 tumor samples and 2
normal tissues from TCGA were merged together with the 117 samples of the CNIO cohort in a uniqgue matrix. Batch effects
were corrected with ComBat. The final RNA-Seq series is composed by 66.4% non-metastatic primary tumors, 20.5% of
metastatic primary tumors, 5.6% primary tumors from patients with aggressive disease, 1.5% relapses from metastatic primary
tumors, and 6% metastases.



Supplementary Fig. 2
a b
CNIO WES
>40.000 variants

germline variants

(1) I “somatic” events
863 (165-17984)

A

events in non-coding regions

A

() B “somatic” coding events
202 (49-7735)

germline-like events (MAF>0.1)

A

(3) g filtered-somatic coding events
152 (42-1667)

artefacts (IGV manual curation)

4) true-somatic coding variants
32 (1-234)

events with VAF<0.1
5) true-somatic coding events, VAF>0.1
19 (0-142)
low impact variants

6) ]l true-somatic coding events, VAF>0.1,
moderate & high impact consequence

13 (0-79)

moderate impact variants 4/1

@ N true-somatic coding events, VAF>0.1,
high impact consequence

6 (0-34)

TCGA WES

(1) I ‘“somatic” events
46.5 (26-126)
events in non-coding regions
2 - “somatic” coding events
39.5 (20-120)

germline-like events (MAF>0.1)

(3) I filtered-somatic coding events
33 (14-72)

events present in <2 mutation calls

4) true-somatic coding variants
12 (2-43)

events with VAF<0.1

(5) true-somatic coding events, VAF>0.1
9 (2-36)

low impact variants

OGN | true-somatic coding events, VAF>0.1,
moderate & high impact consequence

6 (1-31)

moderate impact variants 4

) - true-somatic coding events, VAF>0.1,
high impact consequence

3 (0-13)

Supplementary Fig. 2. Pipeline for variant filtering and candidate gene prioritization. Numbers in bold under each
category stand for the median number of events found in the 87 WES from the CNIO cohort (a) or 174 WES from the TCGA
cohort (b); range is shown in brackets. Variants included in categories (5), (6) and (7) are the ones used in all subsequent
analyses. VAF: Variant allele fraction. Color code is the same as in Fig. 2.
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plot of time to progression (time between the first PPGL diagnosis and the first documented metastasis) is shown together with
the P-value calculated using a log-rank test. Median progression time (+ standard error) of each group is depicted in the
corresponding color. Patients without evidence of metastases were censored at the date of the last follow-up. n: number of
patients. MSI score according to (d) tumor volume (cm3) (n=28), (e) % Ki67 positive cells (n=16) and (f) MKI67 mRNA
expression (n=191). Volumes and % Ki67 positive cells data, when available, were extracted from the pathological anatomy
reports received with each specimen. High MKI67 mRNA expression indicates levels above the 3 quartile value of the whole
cohort and low MKI67 mRNA low expression when levels were beneath the 3 quartile value. (g) Landscape of ATRX and
TERT alterations in the whole cohort. Two-sided Fisher’'s exact test was used to test for differences between metastatic (as in
Figure 2I) and non-metastatic groups. ATRX mutations (Supplementary Table 2), and TERT alterations (which includes high
TERT expression, TERT amplification, TERT promoter (pTERT) mutations and hypermethylation) were considered. (h) MKI67
expression, (i) Ki67 positive cells (%) and (j) tumor volume (cm3) in ATRX/TERT-wild-type (WT) and in ATRX/TERT-altered
tumors (n=191, n=16 and n=28, respectively for h, i and j). Two-sided MWW was used to test for differences. For all box-plots in
this figure: the median value is marked, and Tukey whiskers are represented.



Supplementary Table 2. ATRX mutations

patient

D Primary Relapse Metastasis
METASTATIC
c.1094del; p.Asn365ThrfsTer2 €.1094del; p.Asn365ThrfsTer2
#1 frameshift_variant - frameshift_variant
VAF=0.38 VAF=0.45
" c.1485del; p.Lys495Asnfs*19
frameshift_variant - NA
VAF=0.39
¢.6875del: p.Pro2292GInfs2s  ©8875del; ¢.6875del: p.Pr02292GInfs*28
#3 ) . p.Pro2292GInfs*28 . .
frameshift_variant frameshift variant frameshift_variant
VAF=0.71 VAF=073 VAF=0.65
metastasis 1: ¢.1501G>T,;
p.Glu501Ter
. stop_gained
44 ;i441;3i:;p.elu481Ter . VAF=0.67
v Alg:?) 76 metastasis 2: ¢.1441G>T,;
e p.Glu481iTer
stop_gained
VAF=0.38
€.2914_2917del;
*
45 p.Asp97?Argfs_ 30 _ NA
frameshift_variant
VAF=0.79
€.3622dup; p.lle1208AsnfsTer4
#6 frameshift_variant - NA
VAF=0.87
€.1493_1496del;
47 NA _ p.Arg49£_3LysfsTer15
frameshift_variant
VAF=0.4
c.5268_5272+7del
#8 NA - splice_donor_variant

VAF=0.36

NON-METASTATIC

#9

c.5657G>A; p.Pro1886Leu
missense_variant - deleterious
VAF=0.37

NA: non-available; — : no-occurrence; VAF: variant allele fraction
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Supplementary Fig. 4. Somatic copy number alterations (SCNA) profile in mPPGLs (Il). The data included correspond to
234 tumor-normal pairs from the CNIO and TCGA cohorts. (a) Progression-free survival analysis of patients according to
primary tumors’ SCNA burden (based on the number of events), respectively. Only primary tumors from non-metastatic and
metastatic patients included. Higher SCNA burden indicates tumors with values > than the median (n=95), while lower SCNA
burden < than the median (n=109). Kaplan-Meier plot of time to progression (time between the first PPGL diagnosis and the first
documented metastasis) is shown together with the P-value calculated using the log-rank test. Median progression time (
standard error) of each group is depicted in the corresponding color. Patients without evidence of metastases were censored at
the date of the last follow-up. n: number of patients. (b) SCNA events across PPGL tumors per genomic subtype including all
tissues available (n=213), only non-metastatic tumors (n=136), or only metastatic primary tumors (n=50) with SCNA events data
available. Two-sided MWW was used to test for differences. For all box-plots in this figure: the median value is marked, and
Tukey whiskers are represented.
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Supplementary Fig. 5. mPPGL transcriptomic profile (ll). (a) Selected gene signature associated with mPPGL in an
independent cohort (Burnichon et al., 2011). mRNA expression levels of the 27 selected genes, tumor behavior, genomic
subtype and genotype are depicted in rows; primary tumors appear in columns. MWW two-sided test was applied to test for
differences in expression between groups (metastatic and non-metastatic tumors), * : P<0.05 and ** : P<0.001. Only probes with
> log2 fold-change between groups are shown. A- differential expressed genes in an independent DE analysis in this cohort.
(b) Univariate (black) and multivariate (blue) logistic regression analysis of metastasis risk. Gene expression was dichotomized
as follows: for down-regulated genes in mPPGLs, median expression was used as threshold (0 — below the median expression
level; 1 — above the median expression level); for up-regulated genes in mPPGLs, high expression was considered for those
with levels > than the 3 quartile (0 — below the 3 quartile threshold value; 1 — above the 3 quartile threshold value).
Multivariate analysis included as covariate genomic subtype. (c) String-db (https://string-db.org/) network view of the 15 genes
forming the validated mPPGL signature. Network nodes represent proteins, and edges symbolize protein-protein interactions
(line thickness indicates the strength of data support of that interaction). Minimum required interaction score was set to 0.4.
Node color refers to the enriched gene set they belong to, as shown in the legend. Enrichment analysis was performed using
the ‘analysis’ tool of String; FDR values shown are the ones calculated by String after correcting p-values for multiple testing
using Benjamini-Hochberg procedure. (d) Combined multivariate logistic regression analysis of metastasis risk using data
included in Fig. 4b,c. Gene expression was dichotomized as detailed before. Genomic subtype and series (this study and
Burnichon’s study) were used as covariates for the analysis. (e) Correlation between CDK1 gene expression and protein levels
measured by IHC in a subset of tumors with both data available (n=21). Two-sided Pearson’s correlation coefficient is shown, P

value and the 95% confidence band of the best-fit line.
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Supplementary Fig. 6. Breakdown of the biological processes into the gene sets identified by GSEA to be differentially
represented in metastatic primary versus non-metastatic tumors (related to Fig. 4g). (a) cell cycle and DNA replication, (b)
translation and ribosomes, (c) DNA repair and TP53 pathway, (d) ubiquitin and proteasome, (e) WNT pathway, (f) cilium, (g)
Rho-GTPases, (h) ion transport, (i) GPCR, (j) circulatory system-vasculature development, (k) nervous system, (I) ECM

organization, (m) cell adhesion and motility, (n) mitochondrial processes, and (0) immune response.
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Supplementary Fig. 7

0+ . T r x 1
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1- Specificity
AUC [95% CI] P-value Sensitivity Specificity
ATRX-mut/ high MSI score/ high CDK1 expr./ MAML3-fusion == 0.902 [.855, .948] 8.58e-13 100 80.3
ATRX-mut/ TERT-alt/ Krebs Cycle gene-mut/ MAML3-fusion/ high MIK67 expr. == 0.793 [.706, .879] 1.83e-7 82.3 76.2
high MSI score === 0.819[.719, .920] 1.29e-8 64.7 99.2
high CDK1 expr. 0.750 [.647, .852] 8.70e-6 64.7 85.2
high TMB 0.688 [.574, .801] 8.26e-4 44.1 93.4
Krebs Cycle gene-mut == 0.671 [.558, .785] 2.27e-3 44.1 90.2
TERT-alt 0.642 [.527, .757] 1.15e-2 38.2 90.2
high MIK67 expr. 0.587[.470, .703] 0.12 20.6 96.7
chr 5 gains 0.568[.452, .683] 0.23 17.6 95.9
MAML3-fusion == 0.557 [.442, .672] 0.31 14.7 96.7
ATRX-mut == 0.555[.440,.670] 0.33 11.8 99.2

Supplementary Fig. 7. Receiver operating characteristic curve analysis showing the ability of the best classifier for
MmPPGL (ATRX-mut, high MSI score, high CDK1 expression and MAML3-fusion), the ability of the classifier that includes the
already known mPPGL markers (ATRX-mut, germline Krebs cycle mutations, MAML3-fusion and high MIK67 expression), and
the ability of each event independently. The AUC, 95%CI and sensitivity/specificity for the rest of classifiers is in Supplementary
Data 1.
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Reactome pathways

M Nervous system development & neuron projections

M Actin cytoskeleton

[Jother terms

ECM organization

M Circulatory system development/morphogenesis
[ Cell adhesion and motility

Supplementary Fig. 8. Functional enrichment analysis of mutated genes in mPPGLs. Related to Fig. 5. (a) Gene sets

enriched

list of 323 mutated genes in the metastatic primary tumors using GO enrichment analysis tool

in the

enrichment-analysis/). Only those gene sets with a fold-change enrichment (FCe)>1.8 and

(http://geneontology.org/docs/go-

FDR<0.05 by Fisher’s Exact test were considered. Column height indicates FCe as specified in the left y-axis; black dots show -

log,o(FDR) as detailed in the right y-axis. (b) GSEA analysis of gene sets appeared in (A) using RNA-Seq series of metastatic

versus non-metastatic primary tumors. Column height shows the normalized enrichment score (NES) as quantified in the left y-

axis; black dots display -log;,(FDR) as indicated in the right y-axis. The 52 gene sets identified are listed in the bottom of panels

(A) and (B); the letters’ font is related to the annotated data repository used (GO Biological Process, GO Molecular Function, GO

Cellular Component or Reactome pathways) as indicated in the legend. The terms related to ‘circulatory system

development/morphogenesis’ are shown in red, those related to ‘ECM organization’ in yellow, those involved in ‘cell adhesion

and motility’ in green, those associated with ‘NS development and neuron projection’ in blue, and those related to ‘actin

cytoskeleton’ in purple.
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Supplementary Fig. 9. Functional enrichment analysis of CN-altered genes in mPPGLs. Related to Fig. 5. (a) Gene sets
found enriched in the list of 911 genes with differing CN-alterations in the metastatic primary tumors (see methods) using GO
enrichment analysis tool (http://geneontology.org/docs/go-enrichment-analysis/). Only those gene sets with fold-change
enrichment (FCe)>1.8 and FDR<0.05 by Fisher's Exact test were considered. Column length indicates FCe as specified in the
top horizontal-axis; black dots show -log,,(FDR) as detailed in the bottom horizontal-axis. (b) GSEA analysis of gene sets
appeared in (A) using RNA-Seq series of metastatic versus non-metastatic primary tumors. Column length shows the
normalized enrichment score (NES) as quantified in the top horizontal-axis; black dots display -log,,(FDR) as indicated in the
bottom horizontal-axis. The 120 gene sets identified are listed in the left of panels (A) and (B); the letters’ font is related to the
annotated data repository used (GO Biological Process, GO Molecular Function, GO Cellular Component or Reactome
pathways) as indicated in the legend. The terms related to ‘translation and ribosomes’ are shown in blue, those related to ‘DNA
repair and TP53 pathway’ in green, those involved in ‘splicing’ in grey, those associated with ‘cell cycle and chromatin
regulation’ in pink, and those related to ‘ubiquitin and proteosome’ in brown.
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Supplementary Fig. 10. Immune landscape in PPGLs (ll). (a) Progression-free survival analysis of patients according to
immune subtype (n=118 for C3 and n=101 for C4). Kaplan-Meier plot of time to progression (time between the first PPGL
diagnosis and the first documented metastases) is shown together with the P-value shown inside the plot was calculated using a
log-rank test. Patients without evidence of metastases were censored at the date of the last follow-up. Only data from primary
tumors was used to distinguish patients between clusters. Patients with tumors within C5 were not included in this analysis due
to the low number of samples. (b) Box-plots depicting the ImmuneScore in the different tumor tissue types (n=262). Two-sided
KW test was used to test for differences. The median value is marked, and Tukey whiskers are represented. (c) Median gene
enrichment score of the different Fges in non-metastatic, aggressive, metastatic primary tumors, and metastases. KW was
applied to test for differences between groups; P-value is shown. (d) Relative to Fig. 6e. Kaplan-Meier plots of time to
progression in patients according to primary tumors immune cell type levels. Only primary tumors from non-metastatic and
metastatic patients included. High levels (above the median level of the whole group) of the cell type is represented in red
(n=110 for B cells naive, n=56 for B cells memory, n=110 for plasma cells, n=87 for eosinophils, n=35 for CD4 activated, n=108
for CD4 resting, n=113 for CD8, n=92 for T follicular helper, n=113 for monocytes, n=38 for macrophages MO0, n=89 for
macrophages M1, n=108 for macrophages M2, n=51 for DCs resting, n=109 for DCs activated, n=89 for mast cells resting and
n=109 for mast cells activated) and low expression (below the median level) in blue (n=112 for B cells naive, n=166 for B cells
memory, n=112 for plasma cells, n=135 for eosinophils, n=187 for CD4 activated, n=114 for CD4 resting, n=109 for CD8, n=130
for T follicular helper, n=109 for monocytes, n=184 for macrophages MO0, n=132 for macrophages M1, n=114 for macrophages
M2, n=171 for DCs resting, n=113 for DCs activated, n=136 for mast cells resting and n=113 for mast cells activated) . P-values
shown inside the plots were calculated using a log-rank test. Patients without evidence of metastases were censored at the date
of the last follow-up. n: number of patients.
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Supplementary Fig. 11. Immune landscape in PPGLs (lll). Percentage of tumors per TME subtype according to their (a)
clinical behavior, (d) immune subtype or (e) genomic subtype. P-values were calculated using a two-sided Chi-squared test. (b)
Neoantigen load and (c) TMB across the different TME subtypes in primary PPGL tumors with WES and RNA-Seq data
available (n=180). The median value is marked, and Tukey whiskers are represented. P shown in the figure corresponds to a
two-sided Krustal-Wallis test. (f) Median gene signature score of the different Fges in primary tumors according to their genomic

fibrosis

subtype. Two-sided KW was applied to test for differences between groups; significant p-values are shown.
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Supplementary Fig. 12. Immunogenomics as a theranostic tool
in the immunotherapy contexture (Il). (a) Expression (median
normalized z-score expression) of 75 immunoregulators selected by
Thorsson et al. In black, those included in Fig. 7c. Those in grey and
green were not included due to unavailability of expression levels for
all the tumors of the series: in grey, genes whose levels were only
available for the TCGA series; and in green, genes which were
discarded in a previous QC steps to obtaining the final matrix of
both cohorts. Expression is shown according to the clinical behavior
and genomic subtype. Two-sided MWW was applied to test for
between metastatic and non-metastatic primary tumors; KW was
used to test for differences between the different genomic subtypes;
significant p-values are shown in the figure (b) Quantification of PD-
L1 IHC staining in a subset of n=41 PPGLs. Quantification is
represented within tumor behavior. Three PPGLs classified as
aggressive were omitted from the analysis. Two-sided Freeman-
Halton test was used to test for differences between groups.
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Supplementary Fig. 13. Composition of the tumor immune infiltrate. Related to Fig. 6b. Top: relative levels of the different
immune cell classes estimated with CIBERSORTX (blue-lower levels, yellow-higher levels) by genomic subtype (in the following
order: pseudohypoxic, kinase signaling and Wnt-altered). Two-sided Krustal-Wallis test (KW) was used to test for differences
between the different genomic subtypes; significant p-values are shown in the figure. Bottom: Plot showing the -log;,(P)
resulting from a MWW analysis to define differences between metastatic primary versus non-metastatic tumors in the different
immune cell classes by genomic subtype. The ‘sign(effect)’ indicates the direction of the fold-change between the proportions in
both groups. Columns that surpass the red dashed line indicates P<0.05. Cell types with >85% of the samples with ‘0Os’ were
excluded from the analysis.



Supplementary Table 3. Clinical characteristics of patients with pheochromocytomas and paragangliomas included in FFPE
series.

Patient’s Clinical Characteristics FFPE series (n = 44)

% (n)
Primary Tumor Type
PCC 56.8% (25)
PGL 40.9% (18)
NA 2.3% (1)
Sex
Female 45.4% (20)
Male 54.5% (24)
Age at initial diagnosis of PCC/PGL; median (range) in years 50 (15-82)
Clinical behavior
Non-metastatic disease 50% (22)
Aggressive disease 6.8% (3)
Metastatic disease 43.2% (19)
Supplementary Table 4. Variant impact consequence classification
Variant . PolyPhen/SIFT/CONDEL predictions and COSMIC FATHMM prediction
e VEP annotation .
classification* (if any)
splice_region_variant -
start_retained_variant -
LOW impact stop_retained_variant -
synonymous_variant -
missense_variant benign/tolerated/neutral by all in silico predictors and neutral by COSMIC

protein_altering_variant -
inframe_deletion -
inframe_insertion -
missense_variant at least one predictor benign/tolerated/neutral
splice_acceptor_variant
splice_donor_variant -

MODERATE impact

stop_gained -
HIGH impact frameshift_variant -
stop_lost -
missense_variant all predictors as damaging/ deleterious/ deleterious
all annotations pathogenic by COSMIC

* as in Calculated variant consequences by Ensembl Variation (https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html)



https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html
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Supplementary Fig. 14. Effect of sequencing depth on variant calling. (a) Actual and downsampled depth (to resemble the
median coverage of the TCGA cohort) of ten randomly selected samples. Comparison of variant calling count (b) and purity (c)
in the selected samples. VAF: variant allele frequency. In c, the R squared (r), the P-value and the 95% confidence band of the
best-fit line resulting from a linear regression analysis are shown.



