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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Dr Calsina and co-authors have performed whole-exome sequencing of 87 and RNA sequencing of 114 

PPGLs, of which a staggering 99 samples were metastatic (at initial presentation or on follow-up). The 

mutational landscape is presented, with a heavy focus on MSI and tumor mutational burden (TMB). 

Comparisons to the TCGA databse have been performed as well. Higher MSI and TMB were associated 

to metastatic events, Wnt altered PPGLs, tumor size and Ki-67 indices >5%. Moreover, ATRX 

mutations and TERT gene aberrancies (gene expression, promoter mutations, promoter 

hypermethylation and/or copy number gain)w were also associated to metastatic events and higher 

TMB/MSI, mainly in Wnt altered and pseudohypoxic driven tumors. Metastatic PPGLs also carried the 

highest number of copy number alterations. Interestingly, gain of ch. 5p (including the TERT gene 

locus) was independently associated to primary tumors that subsequently metastasized. A gene 

expression signature was furthermore associated to metastastic disease, and CDK1 stood out as the 

most significantly altered gene in terms of expression. As this observation was reproduced using 

immunohistochemistry, the authors pinpoint the potential use of this predictive marker in clinical 

routine. In addition to this, the tumoral immune landscape of the PPGL cohort was detailed using the 

RNA seq data to generate immune profiles - and metastatic primary tumors and metastases were 

more often classified as C4 ("lymphocyte depleted") than non-metastatic cases, and had lower levels 

of CD8+ T-killer cells. PD-L1 immunexpression was especially pronounced in Wnt altered tumors, 

whereas the levels were lowest among pseudohypoxic PPGLs. 

 

The manuscript is well-written, and illustrations are lucid and motivated. The WES and RNA seq 

pipelines and filtering processes are adequately described. While the work is only partly original, as 

MSI and TMB have been previosuly characterized in PPGL, the comprehensive characterization of the 

immune landscape and the sheer size of the cohort make the work clinically motivated. The coupling 

between genotype clusters, TMB/MSI, high-risk alterations (ATRX/TERT) also make clinical sense, and 

therefore renders the association to different immune response profiles significant from an oncology 

perspective. As of this, I believe the data presented in here represents a considerable contribution to 

the field. I do however have several queries for the authors to consider: 

 

Major points: 

 

1. Given the implementation of the 2022 WHO classification of endocrine and neuroendocrine tumors, 

some rare PPGL subtypes are no longer classified as paraganglioma, including gangliocytic PGLs and 

cauda equina PGLs. I could not find information regarding the anatomic localization of each PGL in this 

cohort, so please make sure this submission is updated accordingly. In line with this, reference #73 is 

obsolete and should be replaced by PMID: 35285002. 

 

2.The authors make use of the terminology "aggressive", and define PPGLs as aggressive "when there 

was capsular or adipose 

tissue invasion, vascular infiltration or evidences of multiple recurrences, without certainty of 

metastatic disease". While I agree on some of these parameters (supported by PASS/GAPP histological 

triaging algorithms etc.), isolated capsular invasion is recurrently seen in large PPGL series with 

associated molecular data (PMID: 30451732), and very seldomly coupled to subsequent metastatic 

behavior. While I appreciate that the authors are trying to single out cases with histological worrisome 

features, I still think the parameters used for "aggressive" should be motivated based on previous 

studies. Also, sometimes these cases are referred to as "clinically aggressive" in figures (Figure 2 

etc.), please streamline. 

 

3. Please specify how the tissue from the metastatic PPGLs were collected. Surgical excision? Core 

needle biopsies? I just want to make sure the results are not biased by decalcification reagents (21% 

of cases were bone metastases), and also please state if any of these patients have been treated in 



any kind prior to the extraction of the metastatic tissue (chemo/radiotherpy/targeted therapy). If yes, 

could this have affected the MSI/TMB results? 

 

4. The authors suggest the rapid implementation of CDK1 IHC in clinical routine in order to pinpoint 

metastatic potential of PPGLs. However, the authors made use of an automated scoring algorithm 

which I doubt would be universally accepted without extensive validation. The scoring should therefore 

be presented using standardized eye-balling methodology, also reporting the subcellular localization. 

Please also provide the sensitivity and specificity for this marker in ruling in future metastatic events. I 

assume already metastatic cases were excluded from this IHC? 

 

5. In this manuscript, the PD-L1 immunoreactivity is reported in percentage of tumor cells, and was 

semi-quantitatively scored in three tiers. While not much is known regarding PD-1 blockade in PPGLs, 

I still wonder why the authors did not report the combined positive score (CPS) used for other solid 

tumors? Please explain why PD-L1 expression in tumor-infiltrating lymphocytes was disregarded in 

this aspect. Also, the range for "negative" is 0-15% of tumor cells (row 764). This range is too wide, 

most studies report <1% or above 1% and beyond - in which response to PD-1 blockade can be 

achieved in tumors with for example CPS >5%. 

 

6. Could the immunophenotyping results (ImmunoScore etc.) obtained from the metastases differ 

depending on metastatic site? And if so, could the different metastastic sites affect the interpretation 

of the analyses? One would assume that the immune response should differ between a lymph node 

metastasis and a bone metastasis? 

 

7. Just by eyeballing Figure 1, an IHC panel consisting of ATRX, Ki-67 (5% cut-off) and SDHB would 

potentially be adequate in identifying many of the PPGLs with high TMB/MSI, and probably have high 

sensitivity for most metastatic cases. Since these markers are routinely available in most pathology 

laboratories (while CDK1 is not), please comment on the potential of the former. I assume there are 

no established clinical routine analyses for interrogating TERT expression? 

 

Minor points: 

 

8. What is "normal tissue" in the context of PPGL, do the authors refer to normal adrenal tissue or 

normal paraganglia? This is crucial information. If normal adrenal medullae were assessed, please 

comment on the discreprancies compared to paraganglia. 

 

9. Discussion: "...the molecular switches involved in metastatic progression are likely variable and 

involve non-genetic events." Since the authors are not interrogating the cohort via WGS, but rather 

WES+RNA seq, there is still a possibility that the events driving metastatic spread dwell outside of the 

exome. 

 

10. Row 624: "hypermethylation" is misspelled. 

 

11. Figure 6C: "no-metastatic" --> "non-metastatic". 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Calsina et al. describe the results obtained by the genomic profiling of a large cohort of mPPGLs. They 

integrate their data with those of the TCGA to compare metastatic vs non-metastatic PPGL. 

Comparison of MSI score and TBM show some differences between PPGL and mPPGL. Despite the 

various detailed analyses performed by the group, there is no clear genomic hallmark that predicts 

metastatic vs non-metastatic diseases. However, the study is of interest to the community since the 

data generated can be used for secondary studies. Moreover, the reported immune characterization is 



the main interesting part but could be further expanded. 

 

Major points: 

 

1. The authors mention that they have a good number of tumors (16+4=20) for which there is more 

than one tumor sequenced by WES. However, this is not exploited in the paper. Are these 

multiregional samples, just replicates or longitudinal samples? Even if the number is small, if they 

have longitudinal samples the author should try to exploit these data. Even if these cases are 

multiregional, the evaluation of heterogeneity and subclonal analysis could help to better elucidate the 

heterogeneity of this disease. The authors could try to better describe and exploit these tumors. 

2. The transcriptomic analysis is based on the integration of different platforms and different dataset 

using combat. If I understand correctly, the supervised analysis of Fig 4a is performed on the 

integrated dataset. Could the relatively low number of differentially expressed (DE) genes depend on 

the over-smoothing induced by Combat? Did the authors try to separately perform supervised analysis 

between mPPGLs and PPGLs? It seems from Figure ED1b that it would be possible. The validation of 

ED5a reports just the 27 genes of Figure 4a. What about all the DE genes in this validation dataset? 

Overall, it seems that the transcriptomic signature is not robust enough and the authors should try to 

better validate the signature. However, the prognostic role of CDK1 is convincing, but not completely 

novel. 

3. The immune landscape is interesting, but it is not related to the metastatic PPGL, rather it confirms 

the heterogeneity of mPPGLs and the lack of differences. Also, the TME subtypes are loosely 

associated with the genomics subtypes with the exception of pseudohypoxic in the Fibrotic TME 

subtype. Figure 7c could be done differentiating metastatic versus non-metastatic. 

4. The data of figure 7e showing the greater infiltration of CD8+ T cells in MAML3-tumors can be 

interesting but is limited few cases. Why this was not detected using the Cybersort deconvolution? 

5. Related to the previous point, the authors describe the TME classification of PPGLs using the large 

dataset and the integrated transcriptomic. However, there is no downstream analysis of these 

clusters. Are there any genomics events associated with these TME clusters? Is there any enrichment 

of genomics drivers in one cluster vs the other? What about the MSI score and TBM that you have 

reported in terms of the genomics clusters? 

6. If the authors want to describe an immune landscape of mPPGLs, that part of the paper completely 

lacks the study of the neoantigens. I suggest, in addition to the TMB, characterizing the neoantigen 

load in the four TME subtypes, and interpreting immuno-editing events. 

7. Fastq files have been deposited on EGA (but still not available). If this study wants to complements 

the TCGA for mPPGLs, the authors should definitely share level 3 data (count matrices, MAF files, copy 

number segment files). 



   
 

   
 

REVIEWER COMMENTS 

 

Reviewer #1, expertise in PPGL subtypes/WES/RNA-seq (Remarks to the Author): 

 

Dr Calsina and co-authors have performed whole-exome sequencing of 87 and RNA 

sequencing of 114 PPGLs, of which a staggering 99 samples were metastatic (at initial 

presentation or on follow-up). The mutational landscape is presented, with a heavy focus on 

MSI and tumor mutational burden (TMB). Comparisons to the TCGA databse have been 

performed as well. Higher MSI and TMB were associated to metastatic events, Wnt altered 

PPGLs, tumor size and Ki-67 indices >5%. Moreover, ATRX mutations and TERT gene 

aberrancies (gene expression, promoter mutations, promoter hypermethylation and/or copy 

number gain)w were also associated to metastatic events and higher TMB/MSI, mainly in 

Wnt altered and pseudohypoxic driven tumors. Metastatic PPGLs also carried the highest 

number of copy number alterations. Interestingly, gain of ch. 5p (including the TERT gene 

locus) was independently associated to primary tumors that subsequently metastasized. A 

gene expression signature was furthermore associated to metastastic disease, and CDK1 

stood out as the most significantly altered gene in terms of expression. As this observation 

was reproduced using immunohistochemistry, the authors pinpoint the potential use of this 

predictive marker in clinical routine. In addition to this, the tumoral immune landscape of the 

PPGL cohort was detailed using the RNA seq data to generate immune profiles - and 

metastatic primary tumors and metastases were more often classified as C4 ("lymphocyte 

depleted") than non-metastatic cases, and had lower levels of CD8+ T-killer cells. PD-L1 

immunexpression was especially pronounced in Wnt altered tumors, whereas the levels 

were lowest among pseudohypoxic PPGLs. 

 

The manuscript is well-written, and illustrations are lucid and motivated. The WES and RNA 

seq pipelines and filtering processes are adequately described. While the work is only partly 

original, as MSI and TMB have been previosuly characterized in PPGL, the comprehensive 

characterization of the immune landscape and the sheer size of the cohort make the work 

clinically motivated. The coupling between genotype clusters, TMB/MSI, high-risk alterations 

(ATRX/TERT) also make clinical sense, and therefore renders the association to different 

immune response profiles significant from an oncology perspective. As of this, I believe the 

data presented in here represents a considerable contribution to the field. I do however have 

several queries for the authors to consider: 

 

Major points: 

 

1. Given the implementation of the 2022 WHO classification of endocrine and 

neuroendocrine tumors, some rare PPGL subtypes are no longer classified as 

paraganglioma, including gangliocytic PGLs and cauda equina PGLs. I could not find 

information regarding the anatomic localization of each PGL in this cohort, so please make 

sure this submission is updated accordingly. In line with this, reference #73 is obsolete and 

should be replaced by PMID: 35285002. 

 



   
 

   
 

R/ We thank the Reviewer for this observation. We have reviewed the localization of the 

PGLs included, and now we can state that non gangliocytic or cauda equina PGL were 

included in the series. We have now incorporated the data regarding anatomic localization 

in Supplementary Table 1. We have also updated the reference as proposed (line 511).  

 

2. The authors make use of the terminology "aggressive", and define PPGLs as aggressive 

"when there was capsular or adipose tissue invasion, vascular infiltration or evidences of 

multiple recurrences, without certainty of metastatic disease". While I agree on some of 

these parameters (supported by PASS/GAPP histological triaging algorithms etc.), isolated 

capsular invasion is recurrently seen in large PPGL series with associated molecular data 

(PMID: 30451732), and very seldomly coupled to subsequent metastatic behavior. While I 

appreciate that the authors are trying to single out cases with histological worrisome 

features, I still think the parameters used for "aggressive" should be motivated based on 

previous studies. Also, sometimes these cases are referred to as "clinically aggressive" in 

figures (Figure 2 etc.), please streamline. 

 

R/ From the 10 tumors classified as aggressive (all of them profiled by RNA-Seq, and 3 also 

by WES), none was classified in this group only due to isolated capsular invasion. Please, 

see below the reasons why each of the tumors were classified as aggressive: 

- for three, the patients had multiple recurrences 

- for three, vascular invasion was described 

- for two, capsular, vascular and adipose tissue invasion was reported 

- for one, capsular and vascular invasion was noted 

- and for another one, the patient had multiple recurrences, and also adipose tissue 

invasion was described 

“Clinically aggressive” has now just been corrected as “aggressive” in the text and figures 

accordingly to Reviewer's comment. Also, we now describe aggressive tumors in the method 

section (line 511-513) as: “Aggressive disease was established when there was capsular or 

adipose tissue invasion, and vascular infiltration or evidences of multiple recurrences, 

without certainty of metastatic disease”.  

 

3. Please specify how the tissue from the metastatic PPGLs were collected. Surgical 

excision? Core needle biopsies? I just want to make sure the results are not biased by 

decalcification reagents (21% of cases were bone metastases), and also please state if any 

of these patients have been treated in any kind prior to the extraction of the metastatic tissue 

(chemo/radiotherpy/targeted therapy). If yes, could this have affected the MSI/TMB results? 

 

R/ In the clinical records of the CNIO series, it is noted that 21 metastatic tissues were 

collected by surgical excision (1 of them was a bone metastasis), 3 of them by core needle 

biopsy (all of them bone metastases) and from 5 tissues we did not have information of the 

collection method. The Anatomic Pathology Departments of the hospitals of origin of the 

metastases were contacted and we have confirmed the methods used to decalcify take into 

account this potential problem. It was used either soft decalcifier EDTA bisodium in acid 



   
 

   
 

buffer, or decalcifiers similar to those used in bone marrow decalcification. The 

decalcification was slow and accompanied by tissue fixation. 

 

Regarding the treatment received before sample collection, we have the information of 61% 

of the patients from whom metastases were collected. From those, only 3 patients received 

radiotherapy before the collection of the tissues used for this study. None of the metastases 

included in the study came from patients receiving chemotherapy or targeted therapies 

before the collection of their tissues. None information is available for the 2 metastases 

included in the TCGA study. Fig R1 shows TMB and MSI scores in patients untreated and 

treated with radiotherapy before tumor sample collection. TMB do not seems to be affected, 

but we do observe a tendency of lower MSI scores in tumors coming from patients treated 

with radiotherapy. One could expect the contrary, as radiation therapy directly affects DNA 

structure by inducing DNA breaks, and therefore potentially increasing MSI score lectures. 

Therefore, and also taking into account that we only have 3 metastases radiotherapy 

treated, we believe that this variable is not biasing nor TMB neither MSI score results. This 

is the reason why we are maintaining these tumors in the study. Moreover, as these are the 

ones presenting the lowest MSI scores, if they were excluded from the study, the differences 

of the metastases in comparison to the other tumor types would be even more accentuated 

in Fig 2c. If the Reviewer still considers that these 3 samples should be excluded, we would 

be willing to do so.  

 

 
 

 

 

 

 

 

 

 

 

Fig R1. (a) TMB and (b) MSI score (extracted with MANTIS) 

across PPGL metastases. To test differences between not 

treated and radiotherapy-treated metastases a Mann-Whitney-

Wilcoxon (MWW) two-sided test was used. 

 

 

4. The authors suggest the rapid implementation of CDK1 IHC in clinical routine in order to 

pinpoint metastatic potential of PPGLs. However, the authors made use of an automated 

scoring algorithm which I doubt would be universally accepted without extensive validation. 

The scoring should therefore be presented using standardized eye-balling methodology, 

also reporting the subcellular localization. Please also provide the sensitivity and specificity 

for this marker in ruling in future metastatic events. I assume already metastatic cases were 

excluded from this IHC? 

 

R/ We have tried to establish an eye-balling methodology to score the CDK1 IHC as the 

Reviewer proposed, and we can conclude that, at least in this small series, we are not able 
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to identify in a qualitative manner differences in the CDK1 levels between non-mPPGLs and 

m-PPGLs. Therefore, the Reviewer is right and we cannot state that CDK1 IHC could 

experiment a rapid implementation in clinical routine at the moment. To evaluate CDK1 IHC, 

a digital pathology method is needed to quantitatively measure the protein levels of CDK1. 

These methods are expected to enhance precision, reproducibility and be scalable by AI-

powered analysis tools. However, what it is true is that there are still many challenges this 

technology may face if adopted in clinical settings (reviewed in Baxi, V. Mod Pathol. 2022). 

Consequently, we have eliminated the part of the text where we discussed about its rapid 

implementation. 

 

We are certain that CDK1 mRNA is overexpressed in mPPGLs, therefore we believe that 

CDK1 mRNA expression quantification would be a quicker tool to be implemented in the 

clinical routine. The classification power of CDK1 expression has been evaluated by 

computing a receiver operating characteristic (ROC) curve. Continuous expression of CDK1 

in our cohort and in the independent PPGL cohort we used to validate some of our findings 

showed a high accuracy for this classifier (Fig R2). The sensitivity and specificity reported 

for dichotomized high CDK1 protein levels reported in Reviewer#1, question#7 using the 

series of tumors with all variables analyzed available was 64.7% and 85.2%, respectively 

 

 

 

 

 

 

 

 

 
Fig R2. ROC curve analysis showing the accuracy of CDK1 

expression to discriminate mPPGL patients. All samples used in 

Fig 4d,e were included in the analysis.  

 

 

The subcellular localization was nuclear and it has been added in the manuscript text (line 

244-245) as follows: “We also validated by immunohistochemistry (IHC) higher CDK1 

protein levels in the nucleus of primary metastatic tumors (Fig. 4f)”.  

 

Regarding the Reviewer’s comment “I assume already metastatic cases were excluded from 

this IHC?”, we can state that metastases were not included in the analysis; only primary 

tumors that were classified as metastatic at diagnosis or during clinical follow-up. It is true 

that primary tumors from metastatic patients at diagnosis should not be included when 

defining a marker of risk of metastasis, but our IHC series was composed by only n=7 

primary tumors from patients with metachronous metastatic disease, and therefore, currently 

we do not have enough statistical power for that type of analysis. However, a ROC curve 

analysis could be performed using the expression matrix which includes a sufficient number 

of metachronous cases. If synchronous cases are excluded from the analysis, the elevated 
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CDK1 expression for identifying metastatic cases shows even higher accuracy (AUC=0.807; 

95% CI=0.712-0.903) than when synchronous cases are included (Fig R2), leading us to 

believe that if we had more metachronous cases in the IHC series we might see the same. 

 

5. In this manuscript, the PD-L1 immunoreactivity is reported in percentage of tumor cells, 

and was semi-quantitatively scored in three tiers. While not much is known regarding PD-1 

blockade in PPGLs, I still wonder why the authors did not report the combined positive score 

(CPS) used for other solid tumors? Please explain why PD-L1 expression in tumor-infiltrating 

lymphocytes was disregarded in this aspect. Also, the range for "negative" is 0-15% of tumor 

cells (row 764). This range is too wide, most studies report <1% or above 1% and beyond - 

in which response to PD-1 blockade can be achieved in tumors with for example CPS >5%. 

 

Following the Reviewer’s comment we have re-assessed using a semi-automatic digital 

image analysis workflow in QuPath the CPS taking into account whole slides. The Reviewer 

is right regarding the established range set for the “negative” tier, and therefore we have 

downgraded the “negative” tier to CPS<5%, set an “intermediate” (+) positivity (CPS=5-20%) 

and a “high” positivity to CPS>20% (Fig R3).  

 

 
Fig R3. Quantification of PD-L1 IHC within (a) genomic subtype in a subset of n=44 PPGLs and (b) tumor 

behavior in a subset of n=41 PPGLs (three PPGLs classified as aggressive were omitted from the analysis). 

Two-sided Freeman-Halton test was used to test for differences between groups. P values shown in (a) are the 

ones obtained from the analysis of MAML3 class and the other groups. The other groups among them do not 

exhibit statistically significant differences.  

 

Methods for assessing PD-L1 expression are known to vary slightly between assays, as do 

positive cut-off values for predicting response to immunotherapy, which can range from 1% 

to 100% depending on the test and cancer type. For patients who may benefit from PD-L1 

testing, selecting the best test to evaluate the biomarker is not always straightforward. The 

FDA has validated and approved different immunohistochemical assays for different tumor 

types using different PD-L1 antibodies, cut-off values for positivity and scoring systems, 

including both Tumor Proportion Score (TPS) and CPS (reviewed in Li et al. Br J Cancer. 

2022). The specific test needed to assess PD-L1 expression depends on the type of cancer 

and the specific immune checkpoint inhibitor therapy being considered. For example, in the 

single clinical trial in which PD-1 checkpoint inhibitor has been tested in mPPGLs (Jimenez 

C et al. Cancers 2020), Merck 22C3 antibody was used for PD-L1 staining. To evaluate 

these IHCs, an H-score ≥42·5 was used as cut-off value, even though not identifying an 

association between PD-L1 positivity and clinical response. Exploratory studies in PPGLs 

(Celada et al. J Pathol. 2022 and Guo et al. Hum Pathol. 2018) using the same PD-L1 

antibody used in our study, established different scoring methods too. The first one states:  
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“PD-L1 immunostaining was evaluated as positive when all tumor cells or any percentage 

of them showed membrane immunostaining”, while the second one estimated positive cells 

on a scale of 0 to 100% by establishing a semiquantitative immunohistoscore (IHS) as 

follows: “The average intensity of staining cells was given a score from 0 to 3 (0 = none; 1 = 

weak; 2 = intermediate; 3 = strong). The IHS was calculated by multiplying the percentage 

and intensity scores, and the continuous HIS, ranging from 0–300, was categorized around 

the median of the distribution. Cases with a focal pattern of PD-L1 expression of moderate 

intensity in more than 5% of the tumor cells were considered positive (HIS > 10)”. 

 

All of this indicates that there is a clear need to establish a standardized method to asses 

PD-L1 IHC specifically for PPGLs, which should determine the antibody to be used, the cut-

off value for positivity and the scoring system. Ultimately, to associate this standardized 

method to the clinical response to PD-1/PD-L1 checkpoint inhibitors, a protocol for validation 

of the method in a clinical trial should be included. For all these reasons, we believe that the 

scoring system chosen in this study is still acceptable, pending the establishment of a 

standardized method for PPGLs. However, we agree with the Reviewer on the fact that 0-

15% cannot be called “negative” and, therefore, we have changed the nomenclature by 

indicating in Fig 7D, ED Fig 12b and in the methods section (line 809-810) the TPS range 

per tier. If the Reviewer still considers it necessary, we could replace Fig 7D and ED Fig 12b 

for Fig R3a,b.  

 

6. Could the immunophenotyping results (ImmunoScore etc.) obtained from the metastases 

differ depending on metastatic site? And if so, could the different metastastic sites affect the 

interpretation of the analyses? One would assume that the immune response should differ 

between a lymph node metastasis and a bone metastasis? 

 

R/ We agree with the Reviewer that the TME can differ depending on metastatic site, as it 

has been reported for other tumor types. We have now evaluated immunoscore, immune 

cell levels inferred with CIBERTSORTx and the expression of the presented 

immunomodulators (IM) from Fig 7c in the metastases included in the CNIO cohort with 

RNA-Seq data available. As expected, we observed a tendency of higher immunescore in 

lymph nodes metastases (Fig R4a, MWW to test for differences between lymph nodes and 

other metastatic sites: P=0.306). Unsupervised hierarchical clustering based on the 

Euclidean distance matrix of Z scores of immune cell levels showed that metastases partially 

segregated by target organ, and revealed that metastases from the same patient (A and B) 

did show more similarities (Fig R4b). We also examined the expression of IM discovering 

that metastases continued to tend to cluster by metastasis site, but metastases from the 

same patient had very distinct IM expression levels (Fig R4c).  

 

Therefore, these analyses have indeed revealed heterogeneity of cell fractions and IM 

expression across individual metastases, reinforcing the notion of a variable spatial 

architecture of the TME. The initial study did not aim the examination of the TME across 

different metastases, and therefore the number of metastasis from different target organs is 

limited to draw conclusions. A larger series of metastases (both from different sites and 



   
 

   
 

within a patient) is needed in order to conclude if the TME in metastases from PPGLs simply 

reflect the metastatic organ site, or mirrors e.g. specific genomic features. Both possibilities 

have already been described in metastatic breast cancer (De Mattos-Arruda, et al. Cell Rep. 

2019). When expanding the series, characterization of the TME composition across 

metastases from individual cases would also be interesting, as it could have implications for 

immune checkpoint inhibitor therapy because, for example, CD274 (PDL1) expression was 

different across metastases from patient A (Fig R4c).  

 

 
Fig R4. The tumor microenviroment is heterogeneous across metastases. (a) Immunescore, (b) immune cell 

levels and (c) immunomodulator expression across metastases. Different colors denote metastatic organ site as 

shown in the legend. ‘A’ and ‘B’ indicate metastases from the same patient. 

 

We acknowledge the Reviewer for bringing this important issue up. Although the results 

obtained from these analyses are promising, they are still based on a very small number of 

cases, and conclusions have to be taken with great caution. This is the reason why we are 

not including them in the body of the article.   

 

However, what is important to note is that metastases were only included, with respect to 

the characterization of the TME, in the analyses represented in Figures 6A, 7A, and ED Fig 

10B-C (before ED Fig 9B-C) and 11A (before ED Fig 10A), as it is indicated in the figure 
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legends. We believe that the inclusion of these data does not bias any of the conclusions 

presented, but if the Reviewer deems it appropriate, we could remove those data from those 

particular figures.   

 

7. Just by eyeballing Figure 1, an IHC panel consisting of ATRX, Ki-67 (5% cut-off) and 

SDHB would potentially be adequate in identifying many of the PPGLs with high TMB/MSI, 

and probably have high sensitivity for most metastatic cases. Since these markers are 

routinely available in most pathology laboratories (while CDK1 is not), please comment on 

the potential of the former. I assume there are no established clinical routine analyses for 

interrogating TERT expression? 

 

R/ We have evaluated the ability of ATRX, Ki-67 and SDHB to identify PPGLs with high 

TMB/MSI by calculating the area under a receiver operating characteristic (ROC) curve 

(AUC). To perform the analysis, we have used ATRX status (ATRX-mutated, as no ATRX 

IHC was available for this study), high MKI67 expression (as we had very few Ki-67 IHC 

available) - the threshold for high MKI67 expression was established by the tumor with the 

lowest MKI67 expression among those positive for Ki-67 IHC (>5% positive cells) -, and 

SDHB status (SDHB-mutated). Only primary tumors with all data available were included for 

the analysis (n=156). We observed that none of the variables individually was able to identify 

tumors with high TMB or MSI. When combining the three variables to predict both high TMB 

and high MSI score, the AUC was 0.64 (95%CI=0.43-0.84) and had low sensitivity (Fig 

R5a,b).   

 
Fig R5. Receiver operating characteristic curve analysis showing the ability of SDHB-mut, ATRX-mut and high 

MIK67 expression to predict cases with (a) high MSI score and (b) high TMB  

 

Therefore, we believe that the identification of tumors with high TMB or MSI could be more 

efficaciously performed using an NGS panel rather than the proposed IHC panel. Guidelines 

have been proposed to assess TMB from NGS panels (Merino et al. J Immunother Cancer 
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2020). In fact, it is stated that less mutated tumors (as would be the case for PPGLs) are the 

ones that show less variability between panel and WES results. At the moment, there are 

two targeted NGS panels to assess TMB, which are more cost effective and have a lower 

turn-around time than WES, and that have been authorized by the FDA (Foundation 

Medicine FoundationOne CDx test and the Memorial Sloan Kettering Cancer Center MSK-

IMPACT). Of course, testing and validation of its utility for PPGLs would be strictly needed. 

Furthermore, a customized NGS panel sequencing the loci used for MSI score calculation 

could also be designed.  

 

Thanks to this Reviewer question, however, we have now evaluated the ability to predict 

mPPGL of high MSI score, high TMB, chr 5 gain and high CDK1 expression, as well as the 

ability of the known markers of mPPGL (Krebs cycle gene mutations, MAML3-fusion, TERT-

alt, ATRX-mutations and high MKI67 expression) by calculating the ROC’s AUC of each 

event individually and combining them. Variables were dichotomized and all possible 

combinations were tested (n=511) in the n=156 tumors in which we had data for all variables.  

The AUC, 95%CI and sensitivity/specificity per each classifier are now in Supplementary 

Table 3. The best classifier is the one that takes into account ATRX-mutations, high MSI 

score, high CDK1 expression and MAML3-fusions, showing a 100% sensitivity with the 

highest ability to predict mPPGL (AUC = 0.902, 95%CI = 0.855-0.948) (Fig R6).  

 

 
Fig R6. Receiver operating characteristic curve analysis showing the ability of the best classifier for mPPGL  

(ATRX-mut, high MSI score, high CDK1 expression and MAML3-fusion), the ability of the classifier that includes 

the already known mPPGL markers (ATRX-mut, germline Krebs cycle mutations, MAML3-fusion and high MIK67 

expression), and the ability of each event independently. The AUC, 95%CI and sensitivity/specificity for the rest 

of the calculated classifiers is in Supplementary Table 3.  

 

We have now included this analysis into the ms text as follows: 

Results section (line 262-272) – “We evaluated the classification power of the potential 

markers of mPPGL described in this study: high MSI score, high TMB, gain of chr 5 and high 

CDK1 expression. We also aimed to assess their power in combination with the already 
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described markers of mPPGL (germline mutation in Krebs cycle genes, MAML3-fusion, 

TERT-alt, ATRX-mutation and high MKI67 expression). The area under the receiver 

operating characteristic curves (AUC under ROC) of each event individually and all 

combinations possible (n=511) were computed. The AUC, 95% confidence interval (CI) and 

sensitivity/specificity per each classifier are in Supplementary Table 3. The best classifier is 

the one that takes into account ATRX-mutations, high MSI score, high CDK1 expression 

and MAML3-fusions, showing a 100% sensitivity with the highest ability to predict mPPGL 

(AUC = 0.902, 95%CI = 0.855-0.948) (Extended Data Fig. 7).” 

Discussion section (line 439-444) – “Given what has been reported to date, it will be 

extremely difficult to identify a single molecular marker capable of accurately predicting the 

metastatic behavior of these tumors. Therefore, it is of particular interest that our study 

describes a classifier that takes into account only 4 events (ATRX-mutations, high MSI 

score, high CDK1 expression and MAML3-fusions) and achieves a sensitivity of 100%. 

Further validation will be necessary, but we are, for the first time, looking at a classifier that 

could identify all patients at risk of metastasis at the time of diagnosis of the primary tumor.” 

Methods section (line 719-726) – “The individual variables to be evaluated were 

dichotomized as previously explained. The total number of possible classifiers was 

dichotomized by computing all possible combinations with the 9 events to be evaluated 

(n=511). We set as 1 - when any of the evaluated events included in the classifier was 

present; 0 - when none of the events was present. This analysis was executed using the 

dichotomized matrix with the samples for which we had all the data available (n=156). We 

calculated the area under the receiver operating characteristic curves (AUC under ROC) of 

each event individually and all combinations possible (n=511).” 

 

Regarding the use of a potential IHC panel proposed by the Reviewer to identify mPPGLs, 

we could state that according to our data (ATRX-mut, high MIK67 expression and Krebs 

cycle gene-mut), it would only have a sensitivity of 58.8% and specificity of 86.9%. This 

information can now be seen in Supplementary Table 3. Therefore, the classifier we propose 

improves, by far, the ability to predict mPPGL. 

 

Finally, and regarding the last question, the Reviewer’s assumption is correct. We have 

searched and have been unable to identify any established clinical routine test for 

interrogating TERT expression.    

 

Minor points: 

 

8. What is "normal tissue" in the context of PPGL, do the authors refer to normal adrenal 

tissue or normal paraganglia? This is crucial information. If normal adrenal medullae were 

assessed, please comment on the discreprancies compared to paraganglia. 

  

R/ We have included 5 “normal tissues”. Three of them are from the CNIO cohort, and as 

described in Extended Figure 1B, they are normal adrenal medullae. We have now corrected 

Supplementary Table 1: instead of “Adjacent Normal Tissue”, now it reads “normal adrenal 

medulla”. The other 2 tissues labeled as “normal tissue” come from the TCGA project and 



   
 

   
 

we don’t know their origin. We agree with the Reviewer that there are clear differences 

between adrenal medulla and normal paraganglia, but, in fact, these data were not used for 

any of our analyses. Therefore, our results will remain the same regardless of the origin of 

the so-called normal tissues. The RNA-Seq data from these "normal" tissues have been 

deposited in EGA, along with those from our tumor series, since we believe they may be of 

great in use in future studies. If the Reviewer deems it convenient, we can delete this 

information from the body of the article. 

 

9. Discussion: "...the molecular switches involved in metastatic progression are likely 

variable and involve non-genetic events." Since the authors are not interrogating the cohort 

via WGS, but rather WES+RNA seq, there is still a possibility that the events driving 

metastatic spread dwell outside of the exome. 

 

R/ The Reviewer is right. We have added this information in the discussion. Now, it reads 

(line 428-432): “Therefore, and even though PPGL tumor formation is clearly driven by 

germline or somatic mutations, our data suggest that the molecular switches involved in 

metastatic progression are likely variable and may involve non-genetic events. However, 

future efforts should also be directed towards performing WGS to capture potential 

alterations in non-coding regions or large rearrangements”. 

 

10. Row 624: "hypermethylation" is misspelled. Amended 

 

11. Figure 6C: "no-metastatic" --> "non-metastatic". Amended 

 

 

Reviewer #2, expertise in bioinformatics and immunogenomics (Remarks to the Author): 

 

Calsina et al. describe the results obtained by the genomic profiling of a large cohort of 

mPPGLs. They integrate their data with those of the TCGA to compare metastatic vs non-

metastatic PPGL. Comparison of MSI score and TBM show some differences between 

PPGL and mPPGL. Despite the various detailed analyses performed by the group, there is 

no clear genomic hallmark that predicts metastatic vs non-metastatic diseases. However, 

the study is of interest to the community since the data generated can be used for secondary 

studies. Moreover, the reported immune characterization is the main interesting part but 

could be further expanded. 

 

Major points: 

 

1. The authors mention that they have a good number of tumors (16+4=20) for which there 

is more than one tumor sequenced by WES. However, this is not exploited in the paper. Are 

these multiregional samples, just replicates or longitudinal samples? Even if the number is 

small, if they have longitudinal samples the author should try to exploit these data. Even if 

these cases are multiregional, the evaluation of heterogeneity and subclonal analysis could 



   
 

   
 

help to better elucidate the heterogeneity of this disease. The authors could try to better 

describe and exploit these tumors. 

 

R/ We agree with the Reviewer that this is a very important point and we are fully confident 

of the potential information these studies would bring to the PPGL community. In fact, our 

group is currently developing a new project in which we attempt to collect and evaluate an 

increased number of patients/samples in order to explore intratumor heterogeneity and 

evolution with sufficient statistical power. Also, and thanks to Reviewer #1-comment #6, we 

will now also aim to examine the TME across different metastatic sites.  

 

In this new research line, we will track the evolution of pheochromocytoma by inferring clonal 

structure in primary-relapse-metastases trios to study the different patterns of metastatic 

spread (e.g. depending on rapid progression to multiple tissue seeding sites or stable 

disease). In a preliminary analysis, we have identified that high impact consequence variants 

(category 7) clones tend to be selected in the metastases (Fig R7), revealing the potential 

of this study.  

 

  
 

Fig R7. Characterization of metastazing clones. Dots symbolize 

the percentage of the average of each type of clone (determined 

by the cancer cell fraction value –CCF – calculated as in 

TRACERx study; non-selected = only present in primary tumor, 

maintained = present in primary and metastasis with similar CCF, 

and selected = subclonal in primary (0.1<CCF<0.5) and clonal in 

metastasis (CCF>0.5) or not present in primary and subclonal or 

clonal in metastasis) per each paired tumor. Paired t-test is used 

to test for differences between tumor clones “not selected” and 

“selected” in metastasis. (A) Clones of variants with low-, 

moderate- and high- impact consequence, (B) Clones of variants 

with high impact consequence. Clones of high impact 

consequence are significantly more selected in metastases.  

 

 

In a similar direction, we also want to decipher the clonal origin of multifocal PPGLs, as has 

recently been done for small intestine neuroendocrine tumors (Elias, E et al. Nat Commun. 

2021).  

 

As the Reviewer mentions, the cohort of multiple sequenced tumors per patient is small. 

Specifically, for 4 patients, we sequenced multiple primary tumors; for 1 patient, we have 

WES available from the primary tumor and its relapses; for another patient, we sequenced 

multiple primary tumors and one of its metastases; for 3 patients, we sequenced the primary 

tumor, its relapse and a metastatic tissue; and for 11 patients we sequenced the primary 

tumor and it(s) metastasis(es). As the objective of the present manuscript was not directed 

at exploring the tumor evolution and intratumor heterogeneity, we did not sequence further 

longitudinal samples nor did we include multi-regional samples from each tumor.  
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Importantly, we are also planning to delineate the different mutational processes causing 

chromosomal instability (CIN) in PPGLs by quantifying copy number signatures using the 

approach developed by our collaborators (Drews RM et al. Nature 2022). We aim at 

exploring the evolution of CIN in PPGLs. However, we need first to adapt the current 

approach to be able to detect the type of CIN causing the acquisition of each copy number 

alteration. Unfortunately, the development and validation of this new approach will take 

longer than the time allotted for this revision to include in the present article. 

 

2. The transcriptomic analysis is based on the integration of different platforms and different 

dataset using combat. If I understand correctly, the supervised analysis of Fig 4a is 

performed on the integrated dataset. Could the relatively low number of differentially 

expressed (DE) genes depend on the over-smoothing induced by Combat? Did the authors 

try to separately perform supervised analysis between mPPGLs and PPGLs? It seems from 

Figure ED1b that it would be possible. The validation of ED5a reports just the 27 genes of 

Figure 4a. What about all the DE genes in this validation dataset? Overall, it seems that the 

transcriptomic signature is not robust enough and the authors should try to better validate 

the signature. However, the prognostic role of CDK1 is convincing, but not completely novel. 

 

R/ Integration of genomic data from different studies and platforms increases statistical 

power, but is often hampered by batch effects. The batch effect adjustment step is essential 

to eliminate unwanted variation in the data caused by differences in technical factors 

between batches which can produce false positives in differential expression and therefore 

erroneous results. It is possible that genes with the lowest variation between conditions 

might be susceptible not to be found significantly differentially expressed after batch effect 

adjustment. However, batch effect adjustment methods such as Combat intends to remove 

batch effects and keep the biological signal in the data; therefore, genes with significant 

differences can be detected. In this regards, we identified 351 genes DE (FDR<0.05; 

log2FC>|0.75|). The selection of the 27 genes was performed taking into account also the 

DE between metastatic and non-metastatic within each genomic subtype, as stated in 

methods (line 700-704) as follows: “Differential expression analysis was executed between 

non-metastatic and primary metastatic tumors within each genomic subtype with 

DESeq2v1.18.1 using estimate score as a covariate. Best candidates were ranked, and only 

those with |log2 fold-change|>0.75 in all analyses and FDR<0.01 in differential expression 

analysis including all cases were selected." Therefore, the low number of genes shown in 

the mPPGL-related signature are extremely robust and genotype independent.  

 

Regarding the second question, we have not performed a supervised analysis between 

mPPGL and PPGLs separately in the two cohorts (CNIO and TCGA) before batch effect 

correction with Combat. The reasons why we have not proceed to do so are as follows:  

(1) All analyses with RNA-Seq data have been performed using the integrated dataset 

(Figure 4 through Figure 7); by keeping the integrated cohort from the beginning, we 

ensured a homogenized data set. 

(2) The use of the integrated dataset allows for greater statistical power 



   
 

   
 

(3) The TCGA and CNIO cohorts are very different in terms of the number of non-

mPPGLs and mPPGLs (the TCGA series is enriched in non-mPPGLs, and the CNIO 

one in mPPGLs); if the analyses are performed separately, the results could be 

heterogenous.  

 

Another concern that the Reviewer is raising in this section is about a DE analysis in the 

validation. We have now performed this DE in the independent cohort and applied the same 

filtering criteria as for the discovery cohort. As an exception, we did not take into account 

the Wnt-signaling subtype to filter for FC (as the validation dataset has only only 1 mPPGL 

and 3 non-mPPGLs from this subtype); in addition, only probes with lower FDR per each 

gene were selected. As a result from this analysis, we identified 165 DE genes, 7 of which 

had been identified through the analysis in our cohort, CDK1 being one of them. We have 

now highlighted them with a triangle in Extended Data Figure 5a. The representation of 

these 165 DE genes is in Fig R8a. After a univariate and multivariate logistic regression 

analysis (Fig R8b), 145 still remained significant as potential markers of risk of metastasis. 

However, although the multivariate analysis used as a co-variate the genomic subtype, we 

still could observe a marked associated expression to genotype of some of the genes, which 

was barely appreciable in our 27 gene signature reported and extracted from our cohort (Fig 

4a). As we can observe, some of the genes extracted from this validation cohort show a 

similar expression pattern between mPPGL and pseudohypoxic non-mPPGLs (more 

evident with SDHx in the upper right part of the Figure R8a). The reason for this could be 

that our cohort, apart from being larger than the validation one (n=231 vs 186), has a better 

representation in the number of tumors belonging to each genomic subtype. Specifically, 

our cohort has lower number of pseudohypoxic tumors within mPPGLs and a higher number 

of pseudohypoxic tumors within non-mPPGLs than the validation cohort (60% vs 70%, and 

38% vs 33%, respectively). This results in the fact that the 30.3% (44/145) of the genes that 

appear significant in the DE of the validation cohort have also been previously associated 

to a certain genotype (reported by Burnichon et al. 2011 and/or López-Jiménez et al. 2010), 

while only 1 (PAH) of the 27 genes (3.7%) form our signature appear in that list. Accordingly, 

we have now eliminated PAH from the mPPGL-related signature, reducing our signature to 

a 26-genes signature. Figures 4a, 4b, 4c and ED Figures 5a, 5b, 5c and 5d have been 

modified accordingly, as well as the text (lines 226 to 236).  

 

 



   
 

   
 

       
Fig R8. mPPGL transcriptomic profile in 

independent cohort. (a) Gene signature 

associated with mPPGL. mRNA expression levels 

of the 165 differential expressed selected genes; 

tumor behavior, genomic subtype and genotype 

are depicted in rows; primary tumors appear in 

columns (n=230). (b) Univariate (black) and 

multivariate (blue) logistic and Cox regression 

analysis of metastasis risk. Gene expression was 

dichotomized as follows: for down-regulated 

genes in mPPGLs, median expression was used 

as threshold (0 – below the median expression 

level; 1 – above the median expression level); for 

up-regulated genes in mPPGLs, high expression 

levels > than the 3rd quartile (0 – below the 3rd 

quartile threshold value; 1 – above the 3rd quartile 

threshold value). Multivariate analysis included as 

covariate genomic subtype. Only data from 

primary tumors from non-metastatic and 

metastatic patients was included. 
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In this study we have identified 26 genes DE between mPPGLs and non-PPGLs, 

independent of genotype, 14 of which have value for stratifying patients according to 

metastatic risk in two different cohorts (ED Fig 5c,d). Given that we have used the largest 

series of well-characterized cases described to date, we believe that it is difficult to obtain a 

validation series for this study. We certainly agree with the Reviewer that the signature 

should be validated in future studies. Toward this goal, we plan to leverage the European 

Network for the Study of Adrenal Tumors (ENS@T) consortium to conduct a powerful large, 

multicenter and prospective study of this 14-gene signature. We would also like to take the 

advantage to validate either the expression of CDK1 and/or a digital pathology methodology 

to evaluate CDK1 protein levels as a prognostic factor to be potentially implemented in the 

clinical setting.  

 

3. The immune landscape is interesting, but it is not related to the metastatic PPGL, rather 

it confirms the heterogeneity of mPPGLs and the lack of differences. Also, the TME subtypes 

are loosely associated with the genomics subtypes with the exception of pseudohypoxic in 

the Fibrotic TME subtype. Figure 7c could be done differentiating metastatic versus non-

metastatic. 

 

R/ We believe that there has been some kind of confusion and that the Reviewer was 

referring to Extended Data Fig 10c (now ED Fig 11e), as figure 7c is related to the expression 

in different immunomodulatory genes. If so, also the proportion of tumors per TME subtype 

according to their behavior was already shown in Extended Data Fig 10a (now ED Fig 11a). 

If we have misunderstood what the Reviewer is referring to, please let us know and we will 

be happy to follow up.  

 

4. The data of figure 7e showing the greater infiltration of CD8+ T cells in MAML3-tumors 

can be interesting but is limited few cases. Why this was not detected using the Cybersort 

deconvolution?  

 

R/ CD8+ T cell infiltration in MAML3 positive tumors in the present manuscript using 

CIBERTSORTx was not shown as we considered that the discovery RNA-Seq cohort had 

few MAML3+ tumors (6% of the whole series) to extract conclusions. In contrast, the FFPE 

series used to detect by IHC CD8+ T cells was enriched in MAML3 tumors (7/44, 15,9%) 

allowing us to have more robust and comparable results.  

 

However, as proposed by the Reviewer, we have now gathered CIBERSORTx results from 

our cohort and also obtained CIBERSORTx output from an independent cohort (Burnichon 

et al., 2011). We have compared relative CD8+ T cell levels in MAML3-related mPPGLs with 

other mPPGL of the other genomic subtypes (Fig R9). Although a tendency of a greater 

infiltration of CD8+ T cells is observed in MAML3 tumors, no statistically significance was 

reached. 

 

 



   
 

   
 

Fig R9. Standarized CD8+ T cell levels estimated with 

CIBERSORTx in mPPGLs from our cohort and independent 

cohort according to genomic subtype.  

 

 

 

 

It is also important to mention that there are important caveats when using the presented 

bulk RNA-Seq data for immune phenotyping. For most tumors included in the CNIO series, 

tumor selection (>60% cancer cells) was performed by a pathologist, as well as for all TCGA 

samples, thus potentially removing the most immune-infiltrated tumor regions from analysis. 

Figure R10 are representative images of a CD8 IHC in a MAML3 tumor. As the reader can 

appreciate, region IV has a much elevated number of CD8+ T cells in comparison with region 

II (≈ 5-fold). Whereas with the quantification of CD8 IHC we took into account the whole 

slide, some of the tissues included in the bulk RNA-Seq were selected to have as much 

tumor content as possible. Therefore, if hypothetically region II was selected for RNA-Seq 

analysis, the number of these cells would have been underestimated. In fact, CIBERSORTx 

output was only partially correlated with IHC scoring (r=0.50; P=0.025). 

 

This does not mean that the conclusions that we present in this ms are not reliable, but what 

is true is that, most probably, the differences between the immune cell types detected by 

CIBERSORTx without having made a selection of tumor cells would have been more 

significant. Meaning that the levels of tumor-infiltrating leukocytes in certain tumors (most 

certainly MAML3-related ones) would be higher. This issue was also discussed by Thorsson 

et al. (Cancer Cell. 2019), who presented the immune landscape in all TCGA samples.     

 

 



   
 

   
 

 
 

Fig R10. Representative images of an IHC for CD8 of a MAML3-tumor. (I) Whole slide section; (II) and (IV) 

close-up of two distant regions of the slide indicated in (I) with a red rectangle – scale bar=200μm; (III) and (V) 

close-up from previous images in region indicated with black rectangle – scale bar=100μm. 

 

5. Related to the previous point, the authors describe the TME classification of PPGLs using 

the large dataset and the integrated transcriptomic. However, there is no downstream 

analysis of these clusters. Are there any genomics events associated with these TME 

clusters? Is there any enrichment of genomics drivers in one cluster vs the other? What 

about the MSI score and TBM that you have reported in terms of the genomics clusters?  

 

R/ We have evaluated the association between TME subtypes and the 9 genomic events 

that we have assessed as markers of mPPGL (Reviewer#1, question#7) (Fig R11). 

I
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Fig R11. Association analysis between the TME subtypes (as in the manuscript)  and the nine genomic 

alterations shown in the top-axis of the figure. The length of the bars represents the % of tumors with each of 

the top-axis alterations in each TME subtype; the scale of the % for each alteration is the same – as shown on 

the y-axis scale for “high CDK1”. Black bars are present for alterations with significant association after applying 

a Chi-squared test; grey bars are present for alterations with non-significant association with TME subtypes.  

 

We had already observed an enrichment of the pseudohypoxic cluster in subtype F (before 

Extended Data Fig. 10c, now ED Fig 11e), which here is observed also for those tumors 

with germline Krebs cycle mutations (P=1·10-4). Bagaev et al. (Cancer Cell, 2021) reported 

high chromosomal instability (CIN) in melanoma subtypes D and F, and we believe that the 

high MSI score detected in subtype F (P=0.047) could be related to this CIN. Bagaev et al. 

also showed the highest proliferation rate in subtype D; accordingly, we have observed the 

highest proportion of tumors with high MIK67 in subtype D (P=0.001). Finally, high CDK1 

expression was associated with subtype D and F (P=5·10-4). MAML3-fusions, ATRX-alt, 

high TMB, TERT-alt and chr5 gains did not show significant association with any TME 

subtype.  

 

Regarding the existence of an enrichment of genomic drivers in one group vs the other, we 

believe that this was already explored in the initial version of our ms. This is represented in 

Extended Data Fig. 11e (before ED Fig 10c), and in the ms text (lines 369-379) it reads: 

“TME subtype proportions also differed between immune subtypes (Extended Data Fig. 11d) 

and PPGL genomic subtypes (Extended Data Fig. 11e). The pseudohypoxic cluster was 

mainly enriched in the fibrotic subtype, characterized by high vascularity and an 

immunosuppressive phenotype and as recently reported by Celada et al.; in contrast, the 

kinase signaling cluster was highly represented in the immune-enriched non-fibrotic 

subtype, reflecting the influence of the genomic subtypes on TME. These differences were 

also evident when comparing Fges scores between genomic subtypes (Extended Data Fig. 

11f). We observed higher representation of a Th1 signature and checkpoint molecules in the 

kinase signaling tumors, and the pseudohypoxic tumors were characterized by higher 

signature Fges scores related to angiogenesis and fibrosis (cancer-associated fibroblasts, 

matrix remodeling, endothelium), as already reported.”   

 

Concerning the association of differential TMB across genomic subtypes, we believe this 

was also explored in the original version of our article. In Extended Data Fig. 3a,b we plot 

TMB according to genomic subtype, and the text reads (lines 158-159): “We also observed 

a significantly different TMB among genomic subtypes, with the Wnt-altered subtype having 

the highest values, regardless of tumor behavior (Extended Data Fig. 3a,b)”. We have now 
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explored the MSI score in the different genomic subtypes and cannot see any difference 

within the groups (Fig R12).  

 

 

 

 

 

 

 

 

 
Fig R12. MSI score among PPGL tumors with different 

genomic subtype in non-metastatic tumors, and in 

primary tumors from mPPGLs.  

 

 

In our opinion, the new analyses do not add substantial information to our article and, 

therefore, we have not included it in the body of the ms. However, if the Reviewer considers 

it interesting, we would proceed to add it, as well as to perform association analyses with 

any other genomic events that may be considered of interest. 

 

6. If the authors want to describe an immune landscape of mPPGLs, that part of the paper 

completely lacks the study of the neoantigens. I suggest, in addition to the TMB, 

characterizing the neoantigen load in the four TME subtypes, and interpreting immuno-

editing events. 

 

R/ We thank the Reviewer for this important suggestion. We have now characterized the 

neoantigen load per sample and associated it with the four TME subtypes. We did not 

observe significant differences in neoantigen load or TMB between TME subtypes (Fig 

R13a,b), finding expected due to their highly significant correlation (Fig R13c). However, a 

trend towards a higher load of both was noted in IE/NF and D. A higher mutational load in 

IE/NF and a higher chromosomal instability also in D had already been described by Bagaev 

et al. (Cancer Cell. 2021). Therefore, we believe that these trends will be confirmed if a 

larger series with greater representation of these two subtypes is constructed.  
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Fig R13. (a) Neoantigens load and (b) TMB across the different TME subtypes in primary PPGL tumors. P shown 

in the figure corresponds to a Krustal-Wallis test. (c) Correlation between TMB and neoantigen load. Pearson’s 

correlation coefficient is shown 

 
We have now included this information in the ms (line 368-369) as follows: “We also 

observed a trend towards TME subtypes being associated to neoantigen load and TMB 

(Extended Data Fig. 11b,c)”. The methodology for neoantigens identification was also 

included in the methods section (line 775-787): “Manually curated somatic SNVs and indels 

from the CNIO and TCGA cohort were annotated with VEP v106 using the required and 

useful VEP options specified in the pVACtools documentation. Coverage information for 

variant sites was retrieved from tumor and normal bam files using bam-readcount (Larson. 

genome/bam-readcount. GitHub (https://github.com/genome/bam-readcount). For this 

purpose, the Docker 1.1.1 image of mgibio/bam_readcount_helper-cwl was used and the 

collected data were added to the annotated VFC files with the vcf-readcount-annotator from 

the VAtools package (http://vatools.org). HLA class I typing was performed on each sample 

with POLYSOLVERv4. pVACseq from the pVACtools package version 3.0.2 was then used 

for epitope prediction. The epitope length was set to 8-11 and the prediction algorithms were 

all those available for MHC Class I (NetMHCpan, NetMHC, NetMHCcons, PickPocket, 

SMM, SMMPMBEC, MHCflurry and MHCnuggetsI). The epitopes provided by pVACseq in 

the filtered files, which are those passing binding affinity and sequence-based thresholds 

were the ones used to establish the neoantigen load per sample.” 

 

Thanks to this Reviewer’s point, we have also evaluated the neoantigens load in MAML3-

tumors compared to other PPGLs. As reported by Yang et al. (Nat Med. 2019), gene fusions 

are a source of immunogenic neoantigens. With this new analysis, now, we can corroborate 

this finding in our MAML3-fusion tumors. These new data has been incorporated in a new 

figure (Figure 7e), and the results now reads (line 392-393): “A higher neoantigen load was 

also observed in MAML3-tumors compared to all other tumors (MWW test: P=0.0067; Fig. 

7e).”, as well as it has been added in the discussion (line 468).  

7. Fastq files have been deposited on EGA (but still not available). If this study wants to 

complements the TCGA for mPPGLs, the authors should definitely share level 3 data (count 

matrices, MAF files, copy number segment files). 
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R/ The Reviewer is right and level 3 files are much more useful resource than raw files. 

Therefore, we have now added to the same EGA submission the expression data (count 

matrix), and the VCF files with the variant calling results (for both SNV/INDELs and CN).  

 

Just to clarify, Fastq files were already available at the time of ms submission (now, also 

level 3 files) for Reviewers to consult through a specific reviewer account that EGA had to 

provide to the journal editor upon request. Please, let us know if we can facilitate this process 

in any way.  



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I would like to thank the authors for the clear and elaborate revision. I agree with the responses to my 

previous queries and the changes made to improve the content, and have no further issues to report. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Calsina et al. have performed further analyses and clarified some of the points raised in the previous 

submission. 

I believe the paper represents an excellent contribution to understanding the molecular features of 

mPPGL, and I am satisfied with this revision. 
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