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SUMMARY
Responses toward preoperative chemotherapy are heterogeneous in patients with gastric adenocarcinoma.
Existing studies in the field focus heavily on the tumormicroenvironment (TME), whereas little is known about
the relationship between systemic immunity and chemotherapy response. In this study, we collect serum
samples from patients with gastric adenocarcinoma before, on, and after preoperative chemotherapy and
study their immune proteomics using an antibody-based proteomics panel. We also collect surgically re-
sected tumor samples and incorporate multiple methods to assess their TME. We find that both local and
systemic immune features are associated with treatment response. Preoperative chemotherapy induces a
sophisticated systemic immune response indicated by dynamic serum immune proteomics. A pretreatment
serum protein scoring system is established for response prediction. Together, these findings highlight the
fundamental but largely underestimated role of systemic immunity in the treatment of gastric cancer, sug-
gesting a patient stratification strategy based on pretreatment serum immune proteomics.
INTRODUCTION

Gastric cancer, of which gastric adenocarcinoma (GAC) is the

major histological type, is one of themost commonmalignancies

and major causes of cancer-related mortalities worldwide.1,2 A

considerable proportion of patients with gastric cancer are diag-

nosed in the advanced stage, which largely limits treatment effi-

cacy and patient prognosis.3 With surgical resection still being

the mandatory backbone in treatment, several studies, including

JCOG9501 and JCOG9502, have shown that patients with

gastric cancer would not benefit from extended resection.4–6 In

the last decade, neoadjuvant and perioperative treatments

have brought new hope. The MAGIC trial showed that three pre-

operative and three post-operative cycles of ECF (epirubicin,

cisplatin, and 5-fluorouracil) chemotherapy improved the

5-year survival rate from 23% to 36% for patients with resectable

stage II/III gastric cancers compared with surgery alone.7 The

FLOT4-AIO trial further showed that FLOT (5-fluorouracil, folinic

acid, oxaliplatin, and docetaxel) regimen led to better patholog-

ical response rates, R0 resection rates, and overall survival (OS)

compared with ECF or ECX (epirubicin, 5-fluorouracil, and cape-

citabine).8,9 It is recognized that preoperative treatment with

chemotherapy could increase the chance for curative resection,
Cell Repo
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eliminate early microscopic spread, and allow a preoperative

response assessment of adjuvant treatment.10 With new drugs

such as immune checkpoint inhibitors (ICIs) emerging, chemo-

therapy remains the most fundamental and accessible compo-

nent in the perioperative treatment of gastric cancer.

On the other hand, preoperative treatment in gastric cancer is

still controversial, especially in east Asian countries. The re-

sponses toward preoperative chemotherapy are heterogeneous,

while the knowledge of its mechanism is limited.11 Biomarkers

that predict patient response toward preoperative chemo-

therapy are needed to stratify patients for optimal treatment.

Emerging evidence has shown that immunity is involved in pa-

tient response to chemotherapy. Choi et al. reported that stromal

programmed cell death ligand 1 (PD-L1) expression in tumor

specimens predicted the benefit from adjuvant chemotherapy

after D2 gastrectomy for stage II/III gastric cancer.12 Kim et al.

used paired pretreatment and on-treatment gastric biopsy sam-

ples during standard first-line chemotherapy and identified

chemotherapy-induced natural killer (NK) cell infiltration, macro-

phage repolarization, and increased antigen presentation among

treatment responders.13 However, existing studies in the field of

gastric cancer immunology have focused heavily on local im-

mune responses in the tumor microenvironment (TME), and little
rts Medicine 4, 100931, February 21, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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is known about the relationship between systemic immunity and

chemotherapy response in gastric cancer.

Gastric cancer is a systemic disease. Immunity stimulated by

tumor burden and antitumor treatment is coordinated across

different tissues. Profiling the systemic immune landscape or im-

mune macroenvironment as described by Hiam-Galvez et al.14

of patients receiving preoperative chemotherapy is important

for the complete understanding of cancer immunity and mecha-

nism of treatment resistance. Existing systemic immune-inflam-

mation indices such as the neutrophil-to-lymphocyte ratio (NLR)

are mostly dependent on blood cell counts, which limit their di-

mensions.15–17 Serum immune proteomics, with its high content,

would be an ideal reflection of systemic immunity.18–22 In this

study, we collected serum samples from patients with GAC

before, on, and after preoperative chemotherapy and studied

their immune proteomics using an antibody-based proteomic

platform (Olink Target 96 Inflammation panel). We also collected

surgically resected tumor samples from these patients and

incorporated multiplex immunofluorescence (mIF), immunohis-

tochemistry (IHC), and RNA sequencing (RNA-seq) to assess

the TME. Dynamics of serum immune proteomics and their cor-

relations with the TME were studied. Biomarkers were identified

to predict tumor regression, OS, and progression-free survival

(PFS) of patients receiving preoperative chemotherapy.

RESULTS

Study population
Ninety patients with GAC receiving preoperative chemotherapy

and following gastrectomy were included in this study (Figure 1A).

Patients were excluded if they received ICIs during preoperative

periods. Eligible patients were divided into responders (residual

tumor/tumor bed %50% with chemotherapy effect, Becker TRG

score 1–2) and non-responders (Becker TRG score 3). Of 90 pa-

tients, 36 (40%) achieved a tumor regression score of 1–2 and

were regarded as responders. Patients with better tumor regres-

sion had a significantly longer OS compared with non-responders

(Figure S1A). PFS showed a similar trend, though with no statisti-

cal differences (Figure S1B). The basic clinical characteristics of

the patients are summarized in Table S1. Nearly half of the pa-

tients received two-drug cytotoxic chemotherapy, most of which

were SOX (S-1 plus oxaliplatin) or XELOX (capecitabine plus oxa-

liplatin) regimens. The rest of the patients received three-drug

cytotoxic chemotherapy, which was primarily a DOS (docetaxel,

oxaliplatin, and S-1) regimen. By the date of analysis on March

1, 2022, the median follow-up time was 55.8 months (range

from 3.2 to 82.7 months). In the overall population, the median
Figure 1. Dynamics of serum immune proteomics are associated with

(A) Flow chart of sample collection and study design.

(B) Volcano plot showing serum proteins whose levels changed after preoperativ

(C) Volcano plot showing serum proteins whose levels changed after preoperativ

(D) Volcano plot showing serum proteins whose levels changed after preoperativ

(E) Volcano plot showing serum proteins whose absolute level changes after preo

(responder N= 15; non-responder N = 15).

(F) Change in serumprotein level of CXCL5 after preoperative chemotherapy in patie

(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant; n = 3; t test).

See also Figure S1.
PFS was 39.8 months (95% confidence interval [CI], 32.7 to not

reached [NR]), whereas the median OS was 63.9 months (95%

CI, 51.8 to 74.1), with 45 mortalities (50%).

Dynamics of serum immune proteomics are associated
with the response to preoperative chemotherapy
Thirty-seven pretreatment, eight on-treatment, and 83 post-

treatment serum samples from patients receiving preoperative

chemotherapy were collected, among which 30 pretreatment

and 30 post-treatment serum samples were paired (Figure 1A).

Levels of 92 marker proteins in key immune and inflammation

pathways were measured by proximity extension assay (PEA)

using Olink Target 96 Inflammation panel. Comparison of protein

levels in pre- and post-treatment serum samples showed the dy-

namics of serum immune proteomics after preoperative chemo-

therapy. Eighteen of 92 proteins showed a significant change in

both paired and unpaired tests (Figures 1B, S1C, and S1D), indi-

cating sophisticated systemic immune responses induced by

preoperative chemotherapy. Among them, serum C-X-C motif

chemokine ligand 1 (CXCL1) and CXCL5 levels showed a signif-

icant decrease after preoperative chemotherapy (Figure S1D).

Interestingly, Zhou et al. reported that CXCL1 and CXCL5 as

CXCR2 ligands could significantly promote migration of gastric

cancer cells and drive gastric cancer metastasis.24 Downregula-

tion of serum CXCL5 and CXCL1 by chemotherapy may help

prevent gastric cancer metastasis. Indeed, CXCL1/5 levels

decreased in the early cycles of preoperative chemotherapy

(Figure S1E).

We further compared the dynamics of serum immune prote-

omics in patients with different treatment responses. We found

that the responders showed a more dynamic change of serum

immune proteomics after treatment (Figures 1C and 1D). We

also compared the absolute change of protein levels after

chemotherapy between the responders and non-responders

and found that immune protein levels showed overall larger

changes after chemotherapy in the responders (Figure 1E). For

example, the decrease of serum CXCL5 level after treatment

was much milder in the non-responders compared with the

responders (Figures 1C–1F). On-treatment proteomics also

seemed to differ in responders and non-responders (Figure S1E).

For example, serum interleukin receptor subunit b (IL-10RB) and

IL-18 levels tended to increase during chemotherapies in re-

sponders but not in non-responders (Figures S1F and S1G),

though conclusions of this part could be limited by sample

numbers.

Together, these results showed sophisticated systemic im-

mune responses toward preoperative chemotherapy in patients
response to preoperative chemotherapy

e chemotherapy by paired tests (n = 30 pairs).

e chemotherapy by paired tests in the responders (N = 15).

e chemotherapy by paired tests in the non-responders (N= 15).

perative chemotherapy differed between the responders and non-responders

nts with different treatment responses (responderN = 15; non-responder N = 15).
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with GAC. The responders tended to have more dynamic sys-

temic immune responses after preoperative chemotherapy.

TME is associatedwith patient response to preoperative
chemotherapy
We first compared the transcriptomes of tumor samples from

patients with different treatment responses in order to acquire

a general knowledge of tumor local features. Gene set enrich-

ment analysis (GSEA) showed the hallmark pathways altered in

the good responders (Figure 2A). Alteration of pathways like

DNA replication and cell cycle may indicate suppression of can-

cer cell proliferation and regression of tumors. Apart from that,

nearly half of the pathways were associated with immunity,

such as the chemokine signaling pathway and the cytokine-

cytokine receptor interaction pathway (Figures 2B and 2C), indi-

cating the importance of immunity in chemotherapy.

We therefore evaluated the geographical immune landscape in

surgically resected tumor samples by mIF. CD4, CD8, and Foxp3

staining was used to identify different types of T cells. CD68 and

CD163 staining was used to identify macrophages (Figure 2D).

We compared immune infiltration between responders and non-

responders. The cell densities of CD68+ macrophages and

CD68+/CD163+ M2 macrophages were significantly higher in

non-responders (Figures 2E and S2A). Correspondingly, Xing

et al. reported higher CD68+ macrophages infiltration in non-re-

sponders with gastric cancer after neoadjuvant chemotherapy.24

M2 macrophage was also shown to be involved in chemoresist-

ance in various types of cancers.25–29

Meanwhile, we collected 24 pretreatment endoscopic biopsy

samples from patients in the cohort. mIF was used to profile the

pretreatment TME (Figure S2B). Notably, most endoscopic bi-

opsies only got superficial mucosa of stomach, which largely

limited their representativeness of the whole tumors and compa-

rability to surgically resected tissues (Figure S2C). Indeed, mIF

showed that immune cell infiltration in pretreatment TME had no

differences between the responders and non-responders (revised

Figure S2D), which could be a result of the limited biopsy depth

and significant intratumoral heterogeneity of gastric cancer.

Together, these results showed that post-treatment TME was

associated with response to preoperative chemotherapy.

Correlations between serum immune proteomics
and TME
Given that most existing studies of cancer immunology focused

on the TME, we evaluated the correlations between systemic im-

munity and the TME. We also determined the correlation be-

tween serum immune proteomics and immune cell infiltration

in the TME. Interestingly, the post-treatment TME seemed to

be more related to pretreatment than post-treatment serum
Figure 2. TME is associated with response to preoperative chemother

(A) GSEA showing the pathways altered in the tumors of responders (responder

(B) Enrichment plot of chemokine signaling pathway.

(C) Enrichment plot of cytokine-cytokine receptor interaction pathway.

(D) Representative images of multiplex immunofluorescence. Colors of the stain

(E) Comparison of immune cell infiltration in post-treatment tumor samples from

n = 32). Cell density calculated by positive cell numbers/total cell numbers. Data

See also Figure S2.
immune proteomics. Correlations between pretreatment serum

immune proteomics and immune cell infiltration were overall

stronger even with smaller sample numbers (Figures 3A and

3B). For instance, higher pretreatment serum fibroblast growth

factor 21 (FGF21) level was correlated with less infiltration of

CD68+ macrophages, while a higher pretreatment serum trans-

forming growth factor b1 (TGF-b1) level was correlated with

more infiltration of CD4+ T cells (Figures 3C and 3D). In fact,

TGF-b was reported to have pleiotropic effects on the regulation

of effector and regulatory CD4-positive cell responses.30 Corre-

lations between post-treatment serum immune proteomics and

post-treatment immune cell infiltration were also observed. For

instance, a higher pretreatment serum C-C motif chemokine

ligand 11 (CCL11) level was correlated with more infiltration of

CD4+/FOXP3+ T cells (Figure 3E). Wang et al. reported that

CCL11 increased the proportion of CD4+CD25+Foxp3+ regula-

tory T cells (Tregs) in breast cancer.31 More work is needed to

explore whether CCL11 regulates CD4+Foxp3+Treg cell function

in gastric cancer.

We also evaluated the correlations between post-treatment

serum protein level and tumor mRNA level of the 92 immune

genes. Five of the 92 correlations showed statistical significance,

with only two positive, as expected (Figures 3F and S3A–S3E).

The correlation strength of TNFSF12 and CCL4 was actually

marginal (Figures S3A and S3B). The correlations between the

serum protein levels and tissue gene mRNA levels were over-

all weak.

These results showed the communications and interdepen-

dency between systemic immunity and the TME. Research on

the TME cannot fully reveal how the immune system responds

to gastric cancer and antitumor treatment as a whole. More

efforts should be devoted to profiling systemic immunity in

patients with gastric cancer.
The clinical values of classic systemic immune-
inflammation indices
Classic systemic immune-inflammation indices were mostly

based on blood cell ratios and were proven to be linked to pa-

tients’ clinical outcomes.16 We were curious about the connec-

tions between serum immune proteomics and classic systemic

immune-inflammation indices. Thus, we evaluated the correlation

between post-treatment serum immune proteomics and classic

immune-inflammation indices, including the NLR, the platelet-

to-lymphocyte ratio (PLR), the monocyte-to-lymphocyte ratio

(MLR), and the platelet distribution width (PDW) as well as com-

mon blood cell counts. While most correlations were relatively

weak (Figure S3F), serum CXCL5 and CXCL1 levels showed a

strong correlation with platelet count (Figures S3G and S3H).

With CXCL1 and CXCL5 are usually involved in the homeostasis
apy

n = 6; non-responder n = 16). Immune-related pathways are marked in red.

ing of different protein markers are indicated.

patients with different treatment responses (responder n = 20; non-responder

are represented as the mean ± SEM (*p < 0.05; t test).
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Figure 3. Correlations between serum immune proteomics and TME

(A) Correlations between pretreatment serum immune proteomics and post-treatment immune cell infiltration in TME. The rho values of correlations with p <0.05

are indicated by different colors, n = 19.

(B) Correlations between post-treatment serum immune proteomics and post-treatment immune cell infiltration in TME. The rho values of correlations with p

<0.05 are indicated by different colors, n = 46.

(C) Correlation between pretreatment serum FGF21 level and post-treatment CD163+ cell infiltration in TME.

(D) Correlation between pretreatment serum TGFB1 level and post-treatment CD4+ cell infiltration in TME.

(E) Correlation between post-treatment serum CCL11 level and post-treatment CD4+FXOP3+ cell infiltration in TME. The rho and p values of Spearman’s cor-

relation as indicated.

(F) The p and rho values of Spearman’s correlation between tissue genemRNA level and serum protein level of 92 proteins. n = 22 paired samples. Proteins with p

<0.05 are marked in green. Proteins with positive correlation are marked in red. Proteins with negative correlation are marked in blue.

See also Figure S3.
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and function of neutrophil,15,32,33 more work is needed to under-

stand this unexpected but interesting correlation. We also evalu-

ated the correlation between classic systemic immune-inflamma-

tion indices and TME features. No correlations were observed
6 Cell Reports Medicine 4, 100931, February 21, 2023
between post-treatment classic immune-inflammation indices

and immune cell infiltration in the TME (Figure S3I).

We further explored the clinical values of classic systemic

immune-inflammation indices and evaluated the treatment
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(D) ROC curve demonstrating the treatment response predictive accuracy of pretreatment serum PD-L1 level.

(E) Post-treatment serum PD-L1 level showed no difference between responders (N = 18) and non-responders (N = 19).

(F) ROC curve demonstrated the treatment response predictive accuracy of post-treatment serum PD-L1 level.

See also Figure S4.
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response predictive values of NLR, PLR, MLR, and PDW.

Receiver operating characteristic (ROC) curves of the four

indices were drawn with the highest area under the curve

(AUC) of 0.602 (Figure S3J). Proportional hazard regression

showed the prognostic values of the four indices. No index

showed significant prognostic values in univariable Cox

regression either for OS or PFS, while a higher NLR was

linked to shorter OS in multivariable Cox regression with hazard

ratio 1.172 (95% CI, 1.0066–1.3639) (Figures S3K and S3L).

Correspondingly, previous reports had shown the NLR as a

negative prognostic factor in gastroesophageal junction and

GAC.17,34 Overall, the prognostic values of the four indices

were limited.

Post-treatment tumor stromal PD-L1 level and
pretreatment serum PD-L1 level both predict
preoperative chemotherapy response
PD-L1 is a key immune-regulatory molecule. Upon interacting

with its receptor, PD-1, PD-L1 suppresses the cytotoxic T cell
immune response and thus participates in tumor immune

escape. Choi et al., based on CLASSIC trial cohort, reported

that the stromal PD-L1 level could predict benefit from adjuvant

chemotherapy after D2 gastrectomy for stage II/III gastric can-

cer.14 Utilizing a similar staining scoring system based on PD1/

PDL1 immunohistochemistry (IHC) staining, we found the non-

responders tended to have higher stromal PD-L1 staining scores

in surgically resected tumor samples (Figures 4A and 4B). Stro-

mal PD-1 staining showed a similar trend, though this was not

statistically significant (Figures S4A and S4B). However, PD-L1

staining in tumor areas showed no correlation with treatment

response (Figure 4A). These results showed that stromal PD-

L1 levels in the tumors could predict preoperative chemotherapy

response and indicated that PD-1/PD-L1 pathways may play a

role in chemoresistance in gastric cancer.

However, the response predictive value of post-treatment

stromal PD-L1 could be largely limited due to its lateness. An

ideal predictor should be pretreatment. Stromal PD-L1 staining

of pretreatment endoscopic biopsies was shown not able to
Cell Reports Medicine 4, 100931, February 21, 2023 7
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predict treatment response (Figures S4C and S4D). Thus, we

further evaluated the clinical significance of pretreatment serum

PD-L1 levels. Interestingly, pretreatment serum PD-L1 levels

showed a difference in patients with different treatment re-

sponses (Figure 4C). Responders had lower serum PD-L1 levels

before treatment, while treatment seemed to blunt this differ-

ence, as no significant difference was observed in post-treat-

ment samples (Figure 4E). ROC curves were used to evaluate

the response predictive value of pre- and post-treatment serum

PD-L1 levels. AUC of pretreatment serum PD-L1 levels was

0.737 (95% CI, 0.569–0.904), while AUC of post-treatment

serum PD-L1 levels was �0.5 (Figures 4D and 4F), indicating

that the pretreatment serum PD-L1 level was a promising

response predictor of preoperative chemotherapies. Patients

with high pretreatment serum PD-L1 levels (>5.084 normalized

protein expression [NPX]) tended to show poorer response to

preoperative chemotherapies (Figure S4E).

We also evaluated the on-treatment serum PD-L1 level of pa-

tients with different treatment responses. Serum PD-L1 seemed

to increase during treatment in responders. The on-treatment

serum PD-L1 level of responders was significantly higher

(Figures S4F and S4G). One potential reason for this difference

could be the destruction of tumor cells. More samples and

further research were needed to confirm this finding and reveal

potential mechanisms. Correlation between pathological PD-

L1/PD-1 level and serum PD-L1 level was further measured.

Among different pairs, pretreatment serum PD-L1 level and

post-treatment stromal PD-1 level showed the strongest correla-

tion (Figure S4H). The pretreatment serum PD-L1 level may link

to the infiltration of PD-1+ immune cells in tumors after

chemotherapy.

Together, these results indicate that both the post-treatment

tumor stromal PD-L1 level and pretreatment serum PD-L1 level

could predict preoperative chemotherapy response while the

pretreatment serum PD-L1 level should have greater clinical

significance.

Pretreatment serum CCL20 level predicts response to
preoperative chemotherapy
We further compared the pretreatment serum immune prote-

omics in patients with different treatment responses, inspired

by the findings in PD-L1 (Figure 5A). Ten proteins showed a dif-

ference with p <0.05. Among them, the pretreatment CCL20

level showed the most significant difference. Notably, we

also compared the post-treatment serum immune proteomics
Figure 5. Pretreatment serum CCL20 level predicts response to preop

(A) Comparison of pretreatment serum protein levels in responders (N = 18) and

(B) Responders (N = 18) had lower serum CCL20 level before treatment compar

(C) ROC curve demonstrates the treatment response predictive accuracy of pre

(D) Responders (N = 6) had lower tumor CCL20 mRNA level after chemotherapy

(*p < 0.05; t test).

(E) Post-treatment serum CCL20 level showed no difference between responder

(F) Serum CCL20 level in healthy people and in patients with gastric cancer befo

(G) Biopsy tumor sample CCL20 mRNA level decreased during chemotherapy in

(H) Post-treatment tumor ABCB, CEBPB, and FOXO1 mRNA level showed no di

(I) Higher pretreatment CCL20 level was linked to higher stromal PD-1 staining in

(J) Patient stratification strategy proposed by publications in other cancer types

See also Figure S5.
in patients with different treatment responses, and the differ-

ences were much weaker compared with pretreatment samples

(Figure S5A).

Recent publications have established CCL20 as an important

mediator of chemoresistance in different cancers.35–39 As sum-

marized in Figure S5B, Chen et al. reported that chemotherapy

induced CCL20 by a positive feedback loop between nuclear

factor kB (NF-kB) and CCL20 and mediated chemoresistance

by upregulating ATP-binding cassette subfamily B member 1

(ABCB1) expression in breast cancer. Wang et al. reported that

chemotherapies upregulated CCL20 via FOXO1/CEBPB/NF-kB

signaling in colorectal cancer cells and that secreted CCL20 re-

cruited Tregs to promote chemoresistance. Liu et al. reported

that cisplatin-stimulated classically activated macrophages

(CAMs) promote ovarian cancer cell migration by increasing

CCL20 production. Overall, existing publications indicate that

CCL20 upregulation is induced by chemotherapy and that

increased CCL20 production promotes chemoresistance.

However, our findings showed that the above model may not

conserve in gastric cancer. We found that responders of preop-

erative chemotherapy had a significantly lower serum CCL20

level before the initiation of treatment (Figure 5B). The pretreat-

ment serum CCL20 level predicted treatment response with an

AUC of 0.769 (95% CI, 0.614–0.925) (Figure 5C) and indicated

that patients with gastric cancer differed in serum CCL20 level

before treatment. Consistent with existing publications, the

CCL20 mRNA level was upregulated in tumors of non-re-

sponders (Figure 5D). However, post-treatment serum CCL20

levels showed no difference between responders and non-re-

sponders, indicating the decoupling of serum and tumor

CCL20 levels (Figure 5E). Interestingly, referring to serum and tis-

sue proteomics of resectable gastric cancer reported by Shen

et al.,40 we found that patients with gastric cancer tended to

have higher serum CCL20 levels compared with healthy people

(Figure 5F). Tumor samples also showed higher CCL20 protein

levels compared with normal gastric tissues (Figure S5C). How-

ever, resection of tumors by gastrectomy did not recover serum

CCL20 levels and instead further increased serum CCL20 levels

(Figure 5F). These results indicate that serum CCL20 was not a

systemic reflection of tumor CCL20 but an important component

of systemic immunity toward gastric cancer and chemotherapy.

We also validated the signaling model of CCL20 upregulation

proposed by existing publications. Kim et al. collected the

paired pretreatment and on-treatment gastric biopsy samples

in treatment-naive patients undergoing first-line standard
erative chemotherapy

non-responders (N = 19).

ed with non-responders (N = 19).

treatment serum CCL20 level.

compared with non-responders (N = 16). Data are represented by violin plot

s (N = 33) and non-responders (N = 50).

re and after gastrectomy.

patients with gastric cancer.

fference between responders (N = 33) and non-responders (N = 50).

post-treatment tumors.

and this study in gastric cancer.

Cell Reports Medicine 4, 100931, February 21, 2023 9



0

1.0

0.5

−2

0

2

C
C

L3

C
X

3C
L1

T
N

F
B

C
D

24
4

IL
10

C
X

C
L1

0

P
D

−
L1

IL
10

R
B

IL
15

R
A

C
X

C
L9

T
N

F
R

S
F

9

C
C

L2
0

IL
17

C

T
G

F
B

1

C
X

C
L5

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 4
3

C
lu

st
er

 1
C

lu
st

er
 2

C
lu

st
er

 4
3

Cluster 1 Cluster 2 Cluster 43

Cluster 1 Cluster 2 Cluster 3 Cluster 4

BA

C D

0

25

50

75

100

1 2 3 4 Cluster1

Lauren

diffuse

Intestinal

mixed
pe

rc
en

ta
ge

(%
)

P=0.011

Specificity

S
en

si
tiv

ity

0.2

0.4

0.6

0.8

0

1.0

0.20.40.60.8 01.0

-0.843

AUC: 0.907

PSRscore-H PSRscore-L

E F G

0

1

2

3

Staining 
Score

sPD-L1
(P = 0.424)

PSRscore-H L

0

25

50

75

100

pe
rc

en
ta

ge
(%

)

chemotherapy

plus

R NR

ICIs 

CCL20

IL15RA

CCL3

CXCL5

H L

PSRscore

neutralizing Abs

inhibitors

GC

Pretreatment Serum Response predictive score 

CCL3    

IL15RA 

CXCL5 

CCL20

-0.0695

-0.1925

0.2826

-0.4420

*

*

*

*

+

+

+

>=-0.843

Yes

No

PSRscore-H

PSRscore-L

H I

Responders Non-Responders

Responders Non-Responders

Figure 6. A pretreatment serum protein panel to predict the response to preoperative chemotherapy

(A) Unsupervised consensus clustering of pretreatment serum protein levels identified four clusters of patients.

(B) Pretreatment serum protein levels of four clusters.

(C) Treatment response in four clusters of patients.

(D) Lauren classification of tumors in four clusters of patients. p value was calculated by chi-squared test.

(E) ROC curve demonstrates treatment response predictive accuracy of pretreatment serum response predictive score (PSRscore).

(F) Formula of PSRscore.

(legend continued on next page)

10 Cell Reports Medicine 4, 100931, February 21, 2023

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
chemotherapy without PD-1 blockade.13 We analyzed their tran-

scriptome data and found that chemotherapies did not increase

CCL20 mRNA level in tumor samples. Instead, CCL20 mRNA

level decreased after chemotherapy (Figure 5G). This finding

challenged the assumption that CCL20 upregulation was

induced by chemotherapy in gastric cancer. Meanwhile,

ABCB1,CEBPB, and FOXO1mRNA levels showed no difference

either between the tumors with different responses (Figure 5H) or

between biopsy samples before and after chemotherapy (Fig-

ure S5D). Rather, a higher pretreatment serum CCL20 level

was linked to less infiltration of CD4+ T cells in tumors (Fig-

ure S5E). CD4+ T cells mediated immune response and were

crucial in achieving a regulated and effective immune response

to tumors. At the same time, higher pretreatment serum

CCL20 levels correlated with more stromal infiltration of PD-1+

or PD-L1+ cells (Figures 5I and S5F), which should be key

mediators of tumor immune escape. Together, these results

demonstrated that serum CCL20 induced a systemic immuno-

suppressive environment for chemoresistance.

As summarized in Figure 5J, existing publications proposed

that upregulation of CCL20 in tumors was induced by chemo-

therapy and that increased CCL20 production promoted chemo-

resistance. However, we found that patients differed in serum

CCL20 level before the initiation of chemotherapy. Patients

with higher pretreatment serum CCL20 levels tended to have

poorer treatment response. The potential mechanism is that

serum CCL20 induced a systemic immunosuppressive environ-

ment. These findings suggest the combination of immuno-

therapy with chemotherapy in patients with high pretreatment

serumCCL20 levels. Extensive effort had been devoted to devel-

oping inhibitors of the CCR6-CCL20 axis (CCR6 is the cellular

receptor of CCL20).37,41 Disruption of the CCR6-CCL20 axis

by antibodies or antagonists has shown potential in cancer treat-

ment. Pretreatment serum CCL20 levels may help pick patients

who can potentially benefit from CCR6-CCL20 inhibitors. In

addition, these findings showed that the pretreatment period

was an irreplaceable time window for patient stratification by

serum proteinmarkers.We therefore decided to further establish

a pretreatment serum protein panel for the prediction of preop-

erative chemotherapy response.

A pretreatment serum protein scoring system to predict
the response to preoperative chemotherapy
Comparing pretreatment serum protein levels in patients with

different treatment responses (Figure 5A), we included 15 pro-

teins with p <0.1 into consensus clustering. Based on the

consensus cumulative distribution function (CDF) plot, delta

area plot, and manual inspection of the consensus matrices,

we found four pretreatment serum subtypes (Figures 6A, 6B,

and S6A–S6H). Among them, cluster 2 was linked to a signifi-

cantly better treatment response in patients (Figure 6C).

This uncensored clustering was also associated with clinical

characteristics of patients like the Lauren classification of
(G) Treatment response in patients with high/low PSRscores.

(H) Post-treatment stromal PD-L1 level in patients with different PSRscores (high

(I) The pretreatment patient stratification strategy based on PSRscore.

See also Figure S6.
tumors. Cluster 1 and 4 were linked to a higher proportion of in-

testinal-type adenocarcinoma (Figure 6D).

Taking clinical practicability into consideration, we further

used the least absolute shrinkage and selection operator

(LASSO) model to establish a pretreatment serum response pre-

dictive score (PSRscore) for the prediction of preoperative

chemotherapy response (Figures S6I and S6J). Briefly, LASSO

regression is a type of linear regression that uses shrinkage for

variable selection or parameter elimination. With an appropriate

l value, the formula of PSRscore was limited to the serum levels

of four proteins: CCL3, IL-15Ra), CXCL5, and CCL20 (Figures 6F

and S6K). The ROC curve of PSRscore, with AUC 0.907 (95%CI,

0.814–1.000), determined the cutoff value to be �0.843 (Fig-

ure 6E). Patients were divided into PSRscore-high and -low

groups (Figure 6F). A low PSRscore was linked to a significantly

poorer treatment response (Figure 6G). In addition, patients with

low PSRscores numerically have more stromal infiltration of PD-

1+/PD-L1+ cells and higher tumor PD-L1 staining in post-treat-

ment tumors (Figures 6H and S6L), which usually led to

indications of anti-PD-1/PDL1 therapies.

Besides CCL20, pretreatment serum levels of CCL3, IL-15Ra,

and CXCL5 were included in the PSRscore. Higher serum CCL3

and IL-15Ra levels and lower CXCL5 levels were linked to poorer

treatment response (Figure S6K). Research has shown that

CCL3 was involved in immune escape and chemoresistance in

different cancers.42 A high level of CCL3 was associated with

increased intratumor infiltration of Tregs, tumor-associated

macrophages (TAMs), and myeloid-derived suppressor cells

(MDSCs).43–45 CCL3-driven recruitment of TAMs has been

recognized as a driver event in metastatic niches.46 Neutralizing

antibodies and inhibitors of CCL3 have been developed and

have shown potential in anticancer treatment.47–49 There is

currently a limited understanding of the role of IL-15Ra and

CXCL5 in chemoresistance. More work is needed to explore

their functions in gastric cancer.

The PSRscore scoring system could help to stratify patents

with GAC and screen out those whomay not benefit from preop-

erative chemotherapies alone. For this group of patients, our

work strongly implied that patients may benefit from a combina-

tion of immunotherapies such as ICIs or CCL3/20 neutralizing

antibodies/inhibitors (Figure 6I). A prospective trial could be de-

signed to validate this strategy, and a validation cohort would

need to be established to validate the sensitivity and specificity

of this scoring system.

The prognostic value of TME and serum immune
proteomics
We further evaluated the prognostic value of the TME and serum

immune proteomics. All basic clinical characteristics with pre-

dictive value in univariable Cox regression as well as age and

gender were included in the multivariable Cox regression

(Tables S2 and S3). Immune cells shown to be predictors of

OS or PFS are listed in forest plots together with their hazard
[H]: N = 18, low [L]: N = 14). p value was calculated by chi-squared test.
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Figure 7. High post-treatment serum IL-10RB level predicted poor prognosis of patients having preoperative chemotherapy

(A) Hazard ratios (HRs) of post-treatment serum protein levels for overall survival (OS) calculated by univariable/multivariable cox regression.

(B) HRs of post-treatment serum protein levels for progression-free survival (PFS) calculated by univariable/multivariable Cox regression. The length of the

horizontal line represented the 95% confidence interval of HR for each protein. The vertical solid line represented HR = 1.

(C) Kaplan-Meier curves of OS for patients with high (N = 61) and low (N = 22) post-treatment serum IL-10RB level. The p value of the log rank test is indicated.

(D) Kaplan-Meier curves of PFS for patients with high (N = 56) and low (N = 20) post-treatment serum IL-10RB level. The p value of the log rank test is indicated.

See also Figure S7 and Tables S1–S3.
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ratios (Figures S7A and S7B). Kaplan-Meier curves of represen-

tative survival predictors were drawn (Figures S7C–S7F). No im-

mune cell types were independent prognostic factors of OS,

while the infiltration of CD68+ macrophages predicted shorter

PFS confirmed by log rank test, univariable Cox regression,

and multivariable Cox regression (Figure S7C). Infiltration of

CD68+ macrophages was also shown to be a negative prog-

nostic factor of OS by log rank test, though not independent

(Figure S7D).

Post- and pretreatment serumproteins shown to be predictors

of OS or PFS were also listed in forest plots together with their

hazard ratios (Figures 7A, 7B, S7G, and S7H). Kaplan-Meier
12 Cell Reports Medicine 4, 100931, February 21, 2023
curves of representative survival predictors were drawn

(Figures 7C, 7D, S7I, and S7J). Among them, high post-treat-

ment serum IL-10RB level was linked to both significantly shorter

OS and PFS, confirmed by log rank test, univariable cox regres-

sion, and multivariable cox regression (Figures 7C and 7D). This

indicated that the post-treatment serum IL-10RB level was a

strong negative survival predictor for patients having preopera-

tive chemotherapy. Notably, the serum IL-10RB level showed a

significant increase after preoperative chemotherapies, indi-

cating its potential participation in preoperative chemotherapy

responses (Figure S1D). Reports about the role of IL-10 signaling

in gastric cancer have been limited. More work is needed to
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understand the role of IL-10RB in gastric cancer preoperative

treatment.

DISCUSSION

In the last decade, efforts have been devoted to revealing the

role of immunity in cancer. Immunotherapy brought break-

throughs in gastric cancer treatment, and ICIs became first-

line treatment of advanced gastric or esophageal adenocarci-

noma (GEAC).50 However, no treatment has successfully

challenged the backbone status of chemotherapies in the peri-

operative treatment of gastric cancers. Immunity is thought to

play a key role in patients benefiting from perioperative chemo-

therapy.11–13,24 However, existing studies have focused heavily

on local immune responses in the TME. An improved under-

standing of immunity in gastric cancer must assess, in particular,

systemic immunity. We used serum immune proteomics and

classic systemic immune-inflammation indices to profile sys-

temic immunity and studied its associations with the TME as

well as treatment response. We found that preoperative treat-

ment induced sophisticated systemic immune responses indi-

cated by dynamic immune proteomics. Meanwhile, patients

with better treatment response showed a more dynamic change

of serum immune proteomics after treatment. TME was also

shown to be associated with the response to preoperative

chemotherapy. However, it will bemore practical to a predict po-

tential response before treatment is administrated. Excitingly,

we found that pretreatment serum levels of PD-L1 and CCL20

were predictors of preoperative chemotherapy responses,

consistent with their known roles in immunosuppression. A pre-

treatment serum protein panel was further established for

response prediction, which was able to precisely screen out pa-

tients who may not respond to preoperative chemotherapies

alone. As to this part of patients, we believed they would benefit

from the combination of immunotherapy and chemotherapy. The

post-treatment serum level of IL-10RB was also established as a

strong predictor of prognosis for patients with gastric cancer.

The role of intratumoral PD-L1 in immunosuppression and che-

moresistance has been well established. However, the studies in

soluble PD-L1 were limited. Our work found that serum PD-L1

levels had differed in patients before the initiation of chemo-

therapy. Patients responding to chemotherapies tended to have

lower serum PD-L1 levels. More work is needed to explore

whether soluble PD-L1 plays a role in chemoresistance. Similar

findings were found in CCL20, a chemokine known to participate

in chemoresistance in various cancer types. Our work showed

that the existing model of CCL20-induced chemoresistance pro-

posed in other cancer types may not conserve in gastric cancer.

The view that the alternation of CCL20 was a consequence of

chemotherapies deprived the initiative of clinicians to stratify

and intervene patients ahead of treatments. Our findings, instead,

showed that patients with different treatment responses have

differed in serum immune proteomics before the initiation of

chemotherapy, which brought forward the timewindow of patient

stratification and intervention. Inspired by PD-L1 and CCL20, we

developed a pretreatment serum protein panel for the prediction

of preoperative chemotherapy response called the PSRscore. By

calculating the pretreatment serum protein level of four immune
proteins, patients could be stratified into two groups. The

PSRscore-low group tended to have poorer treatment response

and may benefit from the combination of immunotherapies. This

scoring system has great potentials of clinical translation for pa-

tient stratification. Notably, the establishment of the PSRscore

was based on an Asian cohort receiving platinum-based chemo-

therapies. How these immune markers will perform in non-Asian

patients receiving Taxol-based regimens needs to be further

validated.

We believed that serum protein biomarkers have special clin-

ical significance in the pretreatment stratification of patients with

gastric cancer. Almost all the existing molecular classifications

of gastric cancer depended on surgically or endoscopically re-

sected tumor tissues. With TCGA classification as the most

famous example, microsatellite instability (MSI)-type patients

were shown to benefit more from immunotherapies, while ge-

nomically stable (GS)-type patients responded poorly to chemo-

therapies.51,52 However, these molecular classifications are

rarely used in clinical practice. One important reason would be

thatmostmolecular classifications depend on sophisticatedmo-

lecular technologies such as qPCR, in situ hybridization, or even

omics technologies, which are not accessible inmost clinics. Be-

sides, obtaining tumor samples before operations is dependent

on gastroscopic biopsies in gastric cancer. Significant intratu-

moral heterogeneity of gastric cancer and limited biopsy depth

largely impair the representation of biopsy samples.53–56 Deter-

mining molecular classifications of gastric cancer has thus

been quite difficult before gastrectomy. Comparably, serum pro-

teomics incorporate both the systemic and tumor local features

and are thus sensitive and informative. Serum samples can be

easily obtained in clinics with limited harm to patients. Serum

protein biomarkers like prostate-specific antigen (PSA) or a-feto-

protein (AFP) have been used in the diagnosis and follow up of

cancer for decades. Devices and trainees for the measurement

of serum proteins are widely available in various hospitals. These

factors endow the studies in serum proteomics of gastric cancer

with great clinical significance. A serum protein classification of

gastric cancer should be established in the future to guide peri-

operative treatment of gastric cancer.

Limitations of the study
There are some limitations of the study that should be noted.

First, the number of on-treatment serum samples was relatively

small, which limited the statistical power to draw some conclu-

sions. Second, mIF only measured key immune cells in the

TME. Single-cell sequencing could be used for better profiling

of the TME. Third, some conclusions and proposals of this study

should be further validated in a prospective cohort of patients

receiving preoperative chemotherapy or even a randomized

controlled trial. These limitations should be taken into consider-

ation when interpreting the data.

In summary, we profiled both systemic immunity and the TME

in patients with gastric cancer and showed their association with

preoperative chemotherapy response. Serum biomarkers were

identified for the prediction of treatment response and prog-

nosis. This work emphasized the fundamental, but largely under-

estimated, role of systemic immunity in the preoperative chemo-

therapy of gastric cancer, supporting a patient stratification
Cell Reports Medicine 4, 100931, February 21, 2023 13
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strategy based on pretreatment serum immune proteomics and

highlighting the importance of profiling immunity as a whole in

future studies.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Xuefei
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Materials availability
This study did not generate new, unique reagents.

Data and code availability
All raw data generated by this study have been deposited in the Chinese national genomics data center (https://ngdc.cncb.ac.cn),

under accession number NGDC: OMIX001799 and OMIX001800, which are publicly accessible. Additional data related to this paper

may be requested from the authors. Public datasets used in this study were downloaded from resources as described in primary

manuscripts.13,40

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study cohort
This study included ninety gastric adenocarcinoma patients who underwent gastrectomy after preoperative chemotherapy in Zhong-

shan Hospital of Fudan University (Shanghai, China) from 2016 to 2019. Key eligibility criteria included (1) pathological diagnosis of

gastric adenocarcinoma with available serum samples, frozen tissues, formalin fixation and paraffin embedding (FFPE) tissues, and

follow-up information; (2) received at least two cycles of standard preoperative chemotherapies before gastrectomy without ICIs. (3)

eligible serum samples atR1 timepoint. (4) No other significant systemic diseases including autoimmune disorders. (5) not involved
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in previous procedures. Patients were retrospectively involved and 90 patients met the eligibility criteria. The basic clinical charac-

teristics including the gender and age of the patients were summarized in Table S1. Theworkflowof the studywas shown in Figure 1A.

All patients received fluorouracil-based treatment regimens such as XELOX (oxaliplatin, 130 mg/m2, intravenously, day 1; and cape-

citabine, 1000 mg/m2, orally, days 1–14), SOX (oxaliplatin 130 mg/m2, intravenously, day 1; and S-1, 40–60 mg, twice a day, orally,

days 1–14) or DOS (docetaxel 60 mg/m2, intravenously, day 0; oxaliplatin 130mg/m2, intravenously, day 1; and S-1, 40–60mg, twice

a day, orally, days 1–14). Pretreatment serum samples were collected within 14 days before the initiation of preoperative chemother-

apies. On-treatment serum samples were collected in day 1 of any on-treatment cycles before infusion of medicines. Post-treatment

serum samples were collected after all cycles of preoperative chemotherapy, within 7 days before operations. Peripheral blood sam-

ples were collected into a 10 mL EDTA tube before centrifugation for serum samples. Tumor regression was evaluated according to

Becker TRG score57 by at least two experienced pathologists independently. Patients with residual tumor/tumor bed %50%

with chemotherapy effect (Becker TRG score1-2) was regarded as responders. This study was conducted in accordance with the

Declaration of Helsinki and was approved by the Institutional Review Board of Zhongshan Hospital of Fudan University. Written con-

sents were obtained from all participants.

METHOD DETAILS

Serum immune proteomics
Proteomic analyses were performed at the laboratory of Sinotech Genomics company (Shanghai, China) without any other informa-

tion given. The analyses were based on Olink proteomics Target 96 inflammation panel with Proximity Extension Assay (PEA) tech-

nology,58,59 which was based on pairs of antibodies equipped with single-strand oligonucleotide DNA barcodes. Target binding by

paired antibodies generated double-stranded DNA amplicons, which could be further quantified to indicate protein levels. Analyses

were run with recommended internal control, and inter-plate variability was adjusted by intensity normalization. Protein levels were

given as normalized protein expression (NPX) data, which were relative and log2 transformed. A high NPX value corresponded to a

high protein concentration. An increase of the NPX value by 1 corresponded to a doubling of the protein level. Target 96 inflammation

panel included 92 proteins in important immune and inflammation pathways as listed in Table S4.

PD-1/PD-L1 immunohistochemistry staining
PD-1/PD-L1 immunohistochemistry staining was performed on 4-mm thick formalin-fixed, paraffin-embedded (FFPE) tissue

sections. PD-1 was stained with anti-PD-1 (EPR4877(2), Abcam) primary antibody while PD-L1 was stained with anti-PD-L1

(SP142, Abcam primary antibody according to the standard procedures of immunohistochemistry. The intensity and percentage

of PD-1/PD-L1 expression in tumor cells and stromal immune cells were evaluated by 2 experienced pathologists independently.

PD-L1/PD-1 positivity in stromal/tumor cells was scored as 0, 1, 2, or 3 for <1%,R1%, but <5%,R5%, but<10%, orR10% of cells

per area.12

Multiplex immunofluorescence
Multiplex immunofluorescence (mIF) was performed on 4-mm thick formalin-fixed, paraffin-embedded (FFPE) tissue sections ac-

cording to standard procedures. Briefly, tissue sections were stained consecutively with antibodies against the following: FOXP3

(GB112325, Servicebio), CD163(GB14027, Servicebio), CD68(GB113150, Servicebio), CD4 (GB11064, Servicebio) and CD8

(GB12068, Servicebio). The complete stained slides were scanned with the PANNORAMIC MIDI II automatic digital slide scanner

system (3dhistech, Hungary). Quantification of cell density (positive cells/mm2 and positive cells/total cells) and colocalization of

the biomarkers were performed on completely stained slides using the HALO platform (Indica Labs, USA). Human tonsil FFPE tissues

were used with and without primary antibodies as positive and negative (autofluorescence) controls, respectively.

RNA sequencing
Total RNA was extracted from 22 frozen tumor specimens using the RNeasy mini kit (Qiagen, Germany). Paired-end libraries were

synthesized using the TruSeqTM RNA Sample Preparation Kit (Illumina, USA) following manufacturer’s instructions. Prepared RNA-

seq libraries underwent sequencing on the Illumina NovaSeq 6000 (Illumina, USA). Paired-end sequence files (fastq) were mapped to

the reference genome (hg 38). Differential genes were calculated by DESeq2 R package.60 ClusterProfiler R package61 was used for

gene set enrichment analysis (GSEA) of Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets. Gene sets with both nominal

p value and false discovery rate q-value of <0.05 were considered as significantly enriched pathways.

Classic systemic immune-inflammation indices
Results of white blood cell count (WBC), absolute neutrophil count (ANC), absolute lymphocyte count (ALC), absolute monocyte

count (AMC), platelet count (PLT), and platelet distribution width (PDW) within 7 days before gastrectomy were extracted from pa-

tients’medical records. Indiceswere calculated using the standard formula: neutrophil to lymphocyte ratio (NLR) = ANC/ALC, platelet

to lymphocyte ratio (PLR) = PLT/ALC, monocyte to lymphocyte ratio (MLR) = AMC/ALC.
e2 Cell Reports Medicine 4, 100931, February 21, 2023
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Consensus clustering and LASSO regression
Unsupervised clustering methods (K-means) for dataset analysis were used to identify pretreatment proteomic patterns and classify

patients for further analysis. A consensus clustering algorithm was applied to determine the number of clusters. This procedure was

performed using theConsensuClusterPlus R package62 andwas repeated 1,000 times to ensure the stability of classification. LASSO

regression was used to establish pretreatment serum response predictive score (PSRscore) for the prediction of preoperative

chemotherapy responses. The glmnet R package63 was used to perform the LASSO regression model analysis. A l value = 0.16

with log (l) = �1.834 was chosen by cross-validation via the 1-SE criteria. The optimal tuning parameter resulted in four non-zero

coefficients as indicated in Figure 6F.

QUANTIFICATION AND STATISTICAL ANALYSIS

The normality of the variables was tested by the Shapiro-Wilk normality test. For comparisons of two groups, statistical significance

for normally distributed variables was estimated by paired/unpaired student t tests, and nonnormally distributed variables were

analyzed by Wilcoxon rank-sum test. Correlation coefficients were computed by Spearman or Kendall rank correlation as indicated.

The Kaplan–Meier method was used to generate survival curves for the different groups and the log rank test was used to determine

statistical significance. The hazard ratios of univariate or multivariate cox proportional hazards regression model were determined by

the Survminer R package. The R package pROC was used to plot and visualize receiver operating characteristic (ROC) curves and

calculate the area under the curve (AUC) to evaluate the treatment response accuracy of different indices. For all analyses, a two-

sided p value of <0.05 was considered statistically significant and p values were marked as * <0.05, ** <0.01, *** <0.001,

**** <0.0001, ***** <0.00001, NS not significant. All data were analyzed using R Statistical Software (version 4.1.0).
Cell Reports Medicine 4, 100931, February 21, 2023 e3
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Figure S1. Dynamics of serum immune proteomics during and after preoperative chemotherapy, 
related to Figure 1. (A). Kaplan–Meier curves of overall survival (OS) for patients with different treatment 
responses. Log-rank test showed p=0.033. (B) Kaplan–Meier curves of progression-free survival (PFS) for 
patients with different treatment responses. Log-rank test showed p=0.1909. (C) Volcano plot showed serum 
proteins whose levels changed after preoperative chemotherapy in unpaired tests (before n=37, after n=83). 
(D) The dynamics of the serum proteins showing a significant change after preoperative chemotherapy in 
both paired and unpaired tests. Only paired serum samples were shown. (E) Dynamics of serum proteins 
showing a significant change during preoperative chemotherapy. (F) Dynamics of serum IL10RB level during 
preoperative chemotherapy in responders and non-responders. (G) Dynamics of serum IL18 level during 
preoperative chemotherapy in responders and non-responders.  



 

Figure S2. Pretreatment TME features based on endoscopic biopsy, related to Figure 2. 
 (A) Comparison of immune cell infiltration in post-treatment tumor samples in patients with different 
treatment responses (responder n=20; non-responder n=32). Cell density calculated by positive cell 
numbers/area(mm2). (B) Flow chart of endoscopic biopsy sample collection (C) Representative images of 
surgically resected samples and endoscopic biopsies. (D) Comparison of immune cell infiltration in 
pretreatment endoscopic biopsy samples from patients with different treatment responses (responder n=9; 
non-responder n=11). Cell density calculated by positive cell numbers/total cell numbers.    



 



Figure S3. Correlations between local and systemic immune features and clinical value of classic 
systemic immune-inflammation indices, related to Figure 3. (A) Correlation between post-treatment 
serum TNSF12 level and tissue TNF12 mRNA level. (B) Correlation between post-treatment serum CCL4 
level and tissue CCL4 mRNA level. (C) Correlation between post-treatment serum CCL23 level and tissue 
CCL23 mRNA level. (D) Correlation between post-treatment serum IL6 level and tissue IL6 mRNA level. 
(E) Correlation between post-treatment serum HGF level and tissue HGF mRNA level. The rho values and 
p values of Spearman’s correlation were indicated. (F) Correlations between post-treatment serum proteomics 
and four immune-inflammation indices, and common blood cell counts. Rho values of correlations with p 
value<0.05 were indicated by different colors as indicated (G) Correlation between post-treatment serum 
CXCL5 level and peripheral blood platelet count. (H) Correlation between post-treatment serum CXCL1 
level and peripheral blood platelet count. Rho and p values of Spearman correlation as indicated. (I) 
Correlations between classic systemic immune-inflammation indices and immune cell infiltration in TME. 
The rho values of correlations with p value<0.05 were indicated by different colors as indicated. (J) ROC 
curve demonstrating treatment response predictive accuracy of four classic systemic immune-inflammation 
indices. (K) Hazard ratio (HR) of four classic systemic immune-inflammation indices for overall survival 
(OS) calculated by univariable/multivariable cox regression. (L) Hazard ratio (HR) of four classic systemic 
immune-inflammation indices for progression-free survival (PFS) calculated by univariable/ multivariable 
cox regression. 
 
 



 
Figure S4. Correlation between tissue PD1/PD-L1 staining and serum PD-L1 level, and their 



associations with treatment response, related to Figure 4. (A) Treatment response in patients (n=70) with 
different stromal PD-1 staining scores. (B) Stromal PD-1 staining scores in patients with different treatment 
response (responders n=33, non-responders n=50). (C) Treatment response in patients (n=17) with different 
stromal/tumor PD-L1 staining scores of their pretreatment endoscopic biopsies. (D) Pretreatment stromal 
PD-L1 staining scores of patients with different treatment responses. (E) Treatment responses in patients with 
high (>5.084 NPX, n=14) and low (<5.084 NPX, n=23) pretreatment serum PD-L1 level. (F) Dynamics of 
serum PD-L1 level during preoperative chemotherapy. (G) On-treatment serum PD-L1 level differed in 
patients with different responses. (H) Correlation between surgical pathology PD-L1 /PD-1 level and serum 
PD-L1 level. Tau values of Kendall rank correlation were indicated. 
 



 

 Figure S5. Potential role of CCL20 in chemoresistance, related to Figure 5. (A) Comparison of post-
treatment serum protein levels in responders and non-responders. (B) Mechanisms of CCL20 upregulation 
reported in breast cancer (BC), ovarian cancer (OC), and colorectal cancer (CRC). (C) Gastric tumor had 
higher CCL20 protein level compared with normal gastric tissues. (D) Biopsy tumor sample showed no 
change in ABCB, CEBPB, and FOXO1 mRNA level before and during treatment in patients with gastric 
cancer undergoing first-line standard chemotherapy. (E) Higher pretreatment CCL20 level was linked to less 
CD4(+) T cell infiltration in post-treatment tumors. (F) Higher pretreatment CCL20 level was linked to higher 
stromal PD-L1 staining in post-treatment tumors. 



 
Figure S6. Unsupervised consensus clustering and LASSO model of pretreatment serum proteomics, 
related to Figure 6. (A -E) Consensus matrix heat maps based on the number of clusters (from k=2 to 6). (F) 
Cumulative distribution function (CDF) under corresponding k values. (G) Relative change in area (delta 
area) under the cumulative distribution function (CDF) curves when the cluster number varies from k=2 to 
6. (H) Sample clustering under different k values. (I) Average error and standard deviation over the folds after 



k-fold cross-validation in LASSO model. (J) Misclassification error in different λ value. A λ value= 0.16 with 
log (λ) = -1.834 was chosen by cross-validation via the 1-SE criteria. (K) Responders (n=18) had lower serum 
CCL3 and IL15RA level and higher CXCL5 level before chemotherapy compared with non-responders 
(n=19). (L) Post-treatment stromal PD-1 level and tumor PD-1/PD-L1 level in patients with high/low 
PSRscores (H: n=18, L: n=14). 



 

Figure S7. Prognostic value of immune cell infiltration in TME and pretreatment serum proteomics, 
related to Figure 7. (A) Hazard ratios (HR) of different immune cell infiltration in TME for overall survival 
calculated by univariable/ multivariable cox regression. (B) HR of different immune cell infiltration in TME 
for progression-free survival calculated by univariable/ multivariable cox regression. The length of the 
horizontal line represented the 95% confidence interval of HR for each protein. The vertical solid line 
represented HR= 1. (C) Kaplan–Meier curves of PFS for patients with high (n=15) and low (n=33) CD68(+) 
cell infiltration. (D) Kaplan–Meier curves of OS for patients with high (n=15) and low (n=37) CD68(+) cell 
infiltration. (E) Kaplan–Meier curves of PFS for patients with high (n=17) and low (n=31) CD68(+) and 
CD163(-) cell infiltration. (F) Kaplan–Meier curves of OS for patients with high (n=18) and low (n=34) 
CD68(+) and CD163(-) cell infiltration. The p value of Log-rank test and HR of multivariable cox regression 
were indicated. (G) Hazard ratios (HR) of pretreatment serum protein levels for overall survival calculated 
by univariable/ multivariable cox regression. (H) HR of post-treatment serum protein levels for progression-
free survival calculated by univariable/ multivariable cox regression. The length of the horizontal line 
represented the 95% confidence interval of HR for each protein. The vertical solid line represented HR= 1. 
(I) Kaplan–Meier curves of overall survival (OS) for patients with high (n=27) and low (n=10) post-treatment 
serum IL13 level. (J) Kaplan–Meier curves of progression-free survival (PFS) for patients with high (n=7) 
and low (n=26) post-treatment serum IL13 level. The p value of Log-rank test and HR of multivariable cox 
regression were indicated. 
  



Tables 
Table S1. Clinical characteristics of patients, related to Figure 7. 

Response  Good Poor Total   P value 

N  36 54 90   

gender = M (%)  26 (72.2) 42 (77.8) 68 (75.6)  0.726 
age = >=60 (%)  19 (52.8) 32 (59.3) 51 (56.7)  0.696 
location = non-AEJ (%)  31 (86.1) 39 (72.2) 70 (77.8)  0.196 
Lauren (%)      0.846 
   diffuse  9 (25.0) 14 (25.9) 23 (25.6)   

   Intestinal  15 (41.7) 25 (46.3) 40 (44.4)   

   mixed  12 (33.3) 15 (27.8) 27 (30.0)   

differentiation (%)      0.083 
   G2  11 (30.6) 8 (14.8) 19 (21.1)   

   G3  24 (66.7) 46 (85.2) 70 (77.8)   

   Gx  1 (2.8) 0 (0.0) 1 (1.1)   

regimens (%)      0.167 
   Two-drug  14 (38.9) 29 (53.7) 43 (47.8)   

  Three-drug  21 (58.3) 21 (38.9) 42 (46.7)   

   Other  1 (2.8) 4 (7.4) 5 (5.6)   

ypT (%)      0.312 
   1a  2 (5.6) 1 (1.9) 3 (3.3)   

   1b  3 (8.3) 1 (1.9) 4 (4.4)   

   2  10 (27.8) 12 (22.2) 22 (24.4)   

   3  11 (30.6) 20 (37.0) 31 (34.4)   

   4a  9 (25.0) 20 (37.0) 29 (32.2)   

   X  1 (2.8) 0 (0.0) 1 (1.1)   

ypN (%)      <0.001 
   0  19 (52.8) 8 (14.8) 27 (30.0)   

   1  11 (30.6) 10 (18.5) 21 (23.3)   

   2  0 (0.0) 15 (27.8) 15 (16.7)   

   3a  6 (16.7) 9 (16.7) 15 (16.7)   

   3b  0 (0.0) 12 (22.2) 12 (13.3)   

ypM = 1 (%)  13 (36.1) 13 (24.1) 26 (28.9)  0.319 
ypTNM (%)      0.021 
   I  9 (25.0) 5 (9.3) 14 (15.6)   

   II  7 (19.4) 11 (20.4) 18 (20.0)   

   III  6 (16.7) 25 (46.3) 31 (34.4)   

   IV  13 (36.1) 13 (24.1) 26 (28.9)   

   Other  1 (2.8) 0 (0.0) 1 (1.1)   

LVI = Positive (%)  10 (27.8) 31 (57.4) 41 (45.6)  0.011 



PNI = Positive (%)  18 (50.0) 35 (64.8) 53 (58.9)   0.238 
 



Table S2. Multivariate survival analysis of serum post-treatment IL10RB level based on OS, related to 
Figure 7. 

   univariable cox regression   multivariable cox regression   

Characteristics  Hazard ratio (95% CI) P value   Hazard ratio (95% CI) P value   

gender = M    0.7146 (0.3791, 1.347) 0.299   1.407 (0.5225, 3.769) 0.497   

age = >=60    0.704 (0.3885, 1.276) 0.247   0.5613 (0.2468, 1.277) 0.168   

location= non-AEJ  1.671 (0.7454, 3.745) 0.213      

Lauren          

   diffuse  reference   Reference   

   Intestinal  0.3014 (0.1458, 0.6232) 0.001  ** 0.4279 (0.1498, 1.222) 0.113   

   mixed  0.5435 (0.2708, 1.0909) 0.086  .  0.6309 (0.2337, 1.703) 0.363   

differentiation        

   G2  reference   Reference   

   G3  4.438 (1.3675, 14.4) 0.013  * 1.54 (0.3791, 6.259) 0.546   

   Gx  6.936 (0.7154, 67.24) 0.095  . 1.385 (0.1084, 17.697) 0.802   

regimens (%)        

   Other  reference      

   Two-drug  1.232 (0.3591, 4.227) 0.740      

  Three-drug  1.536 (0.4475, 5.272) 0.495      

ypTNM          

   I  reference   Reference   

   II  2.522 (0.5074, 12.54) 0.258   3.053 (0.3335, 27.95) 0.323   

   III  6.08 (1.4182, 26.07) 0.015  * 5.332 (0.6065, 46.873) 0.131   

   IV  6.259 (1.4427, 27.15) 0.014  * 10.08 (1.2552, 80.883) 0.030  *  

   Other  0 (0, Inf) 0.997   0 (0, Inf) 0.998   

LVI = Positive    2.867 (1.524, 5.391) 0.001  ** 1.996 (0.9191, 4.334) 0.081   .  

PNI = Positive    2.033 (1.062, 3.892) 0.032  * 1.431 (0.6281, 3.262) 0.393   

IL10RB level  3.086 (1.055, 9.031) 0.040  * 5.622 (1.7884, 17.676) 0.003  ** 

 



Table S3. Multivariable cox regression of post-treatment serum IL10RB level based on PFS, related to 
Figure 7. 

  univariable cox regression  multivariable cox regression   

Characteristics  Hazard ratio (95% CI) P value  Hazard ratio (95% CI) P value   

gender = M    0.8883 (0.4025, 1.961) 0.769  1.109 (0.3878,3.173) 0.846  

age = >=60    0.7027 (0.3619,1.364) 0.297  0.491 (0.2101,1.147) 0.100  

location= 
non-AEJ 

 1.507 (0.5844,3.884) 0.396     

Lauren          

   diffuse  reference   reference   

   Intestinal  0.3920 (0.1725,0.8907) 0.0253 * 0.8374 (0.2711,2.587) 0.758  

   mixed  0.8524 (0.3821,1.9015) 0.6964  1.484 (0.4185,5.261) 0.541  

differentiation        

   G2  reference      

   G3  2.2569 (0.8714,5.846) 0.0937 .    

   Gx  3.104 (0.3609,26.693) 0.3022     

regimens (%)        

   other  reference      

   Two-drug  1.483 (0.1980,11.1) 0.701     

  Three-drug  1.369 (0.1803,10.39) 0.761     

ypTNM          

   I  reference   reference   

   II  1.290 (0.3634,4.581) 0.693  1.702 (0.3868,7.489) 0.482  

   III  2.402 (0.7942,7.267) 0.121  3.566 (0.7414,17.152) 0.113  

   IV  2.211 (0.6925,7.06) 0.180  4.816 (1.1227,20.654) 0.034 * 

   other  0 (0,Inf) 0.997  0 (0,Inf) 0.997  

LVI = Positive    1.978 (1.008 ,3.884) 0.0474 * 1.529 (0.61,3.832) 0.365  

PNI = Positive    2.782 (1.262,6.135) 0.0112 * 3.464 (1.2484,9.61) 0.017 * 

IL10RB level  4.3918 (1.185,16.27) 0.0268 * 14.35 (3.0624,67.216) 0.001 *** 

 



Table S4. Proteins included in Olink proteomics Target 96 inflammation panel, related to serum 
immune proteomics in STAR Methods. 

UniprotID Protein name abbrevation  

O00300 Osteoprotegerin (OPG) 
TNFRSF1

1B 
O14625 C-X-C motif chemokine 11 (CXCL11) CXCL11 
O14788 TNF-related activation-induced cytokine (TRANCE) TNFSF11 
O15169 Axin-1 (AXIN1) AXIN1 
O15444 C-C motif chemokine 25 (CCL25) CCL25 
O43508 Tumor necrosis factor (Ligand) superfamily, member 12 (TWEAK) TNFSF12 
O43557 Tumor necrosis factor ligand superfamily member 14  (TNFSF14 ) TNFSF14 
O95630 STAM-binding protein (STAMPB) STAMBP 
O95750 Fibroblast growth factor 19 (FGF-19) FGF19 
O95760 Interleukin-33 (IL-33) IL33 
P00749 Urokinase-type plasminogen activator (uPA) uPA 
P00813 Adenosine Deaminase (ADA) ADA 
P01135 Transforming growth factor alpha  (TGF-alpha) TGFA 

P01137 
Latency-associated peptide transforming growth factor beta-1 (LAP 

TGF-beta-1) 
TGFB1 

P01138 Beta-nerve growth factor (Beta-NGF) NGF 
P01374 TNF-beta (TNFB) TNFB 
P01375 Tumor necrosis factor (TNF) TNF 
P01579 Interferon gamma  (IFN-gamma) IFNG 
P01583 Interleukin-1 alpha (IL-1 alpha) IL1A 
P01732 T-cell surface glycoprotein CD8 alpha chain (CD8A) CD8A 
P02778 C-X-C motif chemokine 10  (CXCL10 ) CXCL10 
P03956 Matrix metalloproteinase-1  (MMP-1) MMP1 
P05112 Interleukin-4 (IL-4) IL4 
P05113 Interleukin-5 (IL5) IL5 
P05231 Interleukin-6 (IL6) IL6 
P06127 T-cell surface glycoprotein CD5 (CD5) CD5 
P09238 Matrix metalloproteinase-10 (MMP-10) MMP10 
P09341 C-X-C motif chemokine 1 (CXCL1) CXCL1 
P09603 Macrophage colony-stimulating factor 1 (CSF-1) CSF1 
P10145 Interleukin-8  (IL-8) IL8 
P10147 C-C motif chemokine 3  (CCL3) CCL3 
P12034 Fibroblast growth factor 5 (FGF-5) FGF5 
P13232 Interleukin-7  (IL-7) IL7 
P13236 C-C motif chemokine 4 (CCL4 ) CCL4 
P13500 Monocyte chemotactic protein 1  (MCP-1) CCL2 
P13725 Oncostatin-M (OSM) OSM 
P14210 Hepatocyte growth factor (HGF) HGF 
P14784 Interleukin-2 receptor subunit beta (IL-2RB) IL2RB 



P15018 Leukemia inhibitory factor (LIF) LIF 
P15692 Vascular endothelial growth factor A (VEGF-A) VEGFA 
P20783 Neurotrophin-3 (NT-3) NTF3 
P21583 Stem cell factor  (SCF) KITLG 
P22301 Interleukin-10 (IL10) IL10 
P25942 CD40L receptor (CD40) CD40 
P28325 Cystatin D (CST5) CST5 
P29460 Interleukin-12 subunit beta (IL-12B) IL12B 
P30203 T cell surface glycoprotein CD6 isoform (CD6) CD6 
P35225 Interleukin-13 (IL-13) IL13 
P39905 Glial cell line-derived neurotrophic factor (GDNF) GDNF 
P42702 Leukemia inhibitory factor receptor (LIF-R) LIFR 
P42830 C-X-C motif chemokine 5  (CXCL5 ) CXCL5 
P49771 Fms-related tyrosine kinase 3 ligand  (Flt3L) FLT3LG 
P50225 Sulfotransferase 1A1 (ST1A1) SULT1A1 
P50591 TNF-related apoptosis-inducing ligand (TRAIL) TNFSF10 
P51671 Eotaxin (CCL11) CCL11 
P55773 C-C motif chemokine 23 (CCL23) CCL23 
P60568 Interleukin-2  (IL-2) IL2 
P78423 Fractalkine (CX3CL1 ) CX3CL1 
P78556 C-C motif chemokine 20 (CCL20) CCL20 
P80075 Monocyte chemotactic protein 2 (MCP-2) CCL8 
P80098 Monocyte chemotactic protein 3 (MCP-3) CCL7 
P80162 C-X-C motif chemokine 6 (CXCL6) CXCL6 
P80511 Protein S100-A12 (EN-RAGE ) S100A12 
Q07011 Tumor necrosis factor receptor superfamily member 9 (TNFRSF9) TNFRSF9 
Q07325 C-X-C motif chemokine 9 (CXCL9 ) CXCL9 
Q08334 Interleukin-10 receptor subunit beta (IL-10RB) IL10RB 
Q13007 Interleukin-24 (IL-24) IL24 
Q13261 Interleukin-15 receptor subunit alpha (IL-15RA) IL15RA 
Q13291 Signaling lymphocytic activation molecule (SLAMF1) SLAMF1 
Q13478 Interleukin-18 receptor 1 (IL-18R1) IL18R1 

Q13541 
Eukaryotic translation initiation factor 4E-binding protein 1 (4E-

BP1) 
EIF4EBP1 

Q13651 Interleukin-10 receptor subunit alpha (IL-10RA) IL10RA 
Q14116 Interleukin-18 (IL-18) IL18 
Q14790 Caspase-8 (CASP-8 ) CASP8 
Q16552 Interleukin-17A (IL-17A) IL17A 

Q5T4W7 Artemin (ARTN) ARTN 
Q8IXJ6 SIR2-like protein 2 (SIRT2) SIRT2 
Q8N6P7 Interleukin-22 receptor subunit alpha-1 (IL-22 RA1) IL22RA1 

Q8NFT8  
Delta and Notch-like epidermal growth factor-related receptor 

(DNER) 
DNER 



Q969D9 Thymic stromal lymphopoietin (TSLP) TSLP 
Q99616 Monocyte chemotactic protein 4 (MCP-4) CCL13 
Q99731 C-C motif chemokine 19 (CCL19) CCL19 
Q99748 Neurturin (NRTN) NRTN 

Q9BZW8 Natural killer cell receptor 2B4 (CD244) CD244 
Q9GZV9 Fibroblast growth factor 23 (FGF-23) FGF23 
Q9H5V8 CUB domain-containing protein 1 (CDCP1) CDCP1 
Q9NRJ3 C-C motif chemokine 28 (CCL28) CCL28 
Q9NSA1 Fibroblast growth factor 21 (FGF-21) FGF21 
Q9NYY1 Interleukin-20 (IL-20) IL20 
Q9NZQ7 Programmed cell death 1 ligand 1 (PD-L1) PD-L1 
Q9P0M4 Interleukin-17C (IL-17C) IL17C 
Q9UHF4 Interleukin-20 receptor subunit alpha (IL-20RA) IL20RA 
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