
Article
Pan-cancer molecular sub
types of metastasis reveal
distinct and evolving transcriptional programs
Graphical abstract
Highlights
d Four cancer cell-intrinsic, pan-cancermolecular subtypes are

defined using PDX models

d Subtypes are present in patient metastases, primary tumors,

and cancer cell lines

d Subtypes respectively involve MYC, prostaglandins, EZH2,

and immune checkpoints

d Subtype switching is common between metastasis and

paired primary by patient
Zhang et al., 2023, Cell Reports Medicine 4, 100932
February 21, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.xcrm.2023.100932
Authors

Yiqun Zhang, Fengju Chen,

Chad J. Creighton

Correspondence
creighto@bcm.edu

In brief

Analyzing gene expression data from

patient-derived xenografts and patient

metastases, collectively representing 38

studies and more than 3,000 patients and

4,000 tumors, Zhang et al. identify four

pan-cancer expression-based subtypes

of metastasis transcending tumor

lineage. These subtypes have

implications for applying existing

therapies or developing new therapeutic

approaches.
ll

mailto:creighto@bcm.edu
https://doi.org/10.1016/j.xcrm.2023.100932
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.100932&domain=pdf


OPEN ACCESS

ll
Article

Pan-cancer molecular subtypes
of metastasis reveal distinct and evolving
transcriptional programs
Yiqun Zhang,1,4 Fengju Chen,1,4 and Chad J. Creighton1,2,3,5,*
1Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
2Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX 77030, USA
3Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
4These authors contributed equally
5Lead contact

*Correspondence: creighto@bcm.edu

https://doi.org/10.1016/j.xcrm.2023.100932
SUMMARY
Molecular mechanisms underlying cancer metastasis span diverse tissues of origin. Here, we synthesize and
collate the transcriptomes of patient-derived xenografts and patient tumor metastases, and these data
collectively represent 38 studies and over 3,000 patients and 4,000 tumors. We identify four expression-
based subtypes of metastasis transcending tumor lineage. The first subtype has extensive copy alterations,
higher expression of MYC transcriptional targets and DNA repair genes, and bromodomain inhibitor
response association. The second subtype has higher expression of genes involving metabolism and
prostaglandin synthesis and regulation. The third subtype has evidence of neuronal differentiation, higher
expression of DNA and histone methylation genes and EZH2 transcriptional targets, and BCL2 inhibitor
response association. The fourth subtype has higher expression of immune checkpoint and Notch pathway
genes. Themetastasis subtypes reflect expression differences frompaired primaries, with subtype switching
being common. These subtypes facilitate understanding of the molecular underpinnings of metastases
beyond tissue-oriented domains, with therapeutic implications.
INTRODUCTION

Metastasis is the process by which cancer cells leave the pri-

mary tumor site and adapt to a distant tissuemicroenvironment.1

Metastasis causes most cancer deaths.1–3 Invasion and metas-

tasis represent complex processes initiated later in the disease

process, with associated molecular mechanisms broadly com-

mon across multiple cancer types defined by tissue of origin.3,4

There is a clear need to understand better the processes and

pathways underlying metastasis. Global molecular profiling is

one approach that can lead to additional insights. For example,

transcriptional profiling of metastases and primary tumors taken

from the same patient could assess relative changes in gene

expression that occur in the metastases. Previous studies have

transcriptionally profiled patient tumor metastases, with the

associated datasets deposited into the public domain. Most of

these studies have focused on a specific cancer type, but other

studies involved multiple cancer types and tissues of origin.5,6

There is potential in combining molecular profiling data from in-

dividual metastasis studies, with available data to date involving

thousands of patients and spanning multiple cancer types.

Cancer is a heterogeneous disease, and molecular subtyping

of cancers can help identify pathways and processes underlying

specific cancer subsets. With breast cancer being a well-known
Cell Repo
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example, molecular subtypes can point to optimal therapeutic

approaches for an individual tumor.7 Based on transcriptome

data from over 10,000 patient tumors in The Cancer Genome

Atlas (TCGA), representing 32 different cancer types, we previ-

ously found that these tumors could be grouped into 10 major

pan-cancer classes or subtypes.8 By virtue of our analytical ap-

proaches, these TCGA-based pan-cancer subtypes spanned

tissue of origin and tumor histology. The pan-cancer subtypes

reflected the results of previous molecular profiling studies of in-

dividual cancer types, including subtypes related to cancer cell

proliferation, immune cell infiltration, and cancer-associated

stroma.8 Except for TCGA melanoma cases, all but a small

minority of TCGA tumors represent primary tumors and not

metastases.9 Our pan-cancer molecular subtyping approaches

remained to be applied to patient tumor metastases.

Tumors resected from patients represent a mixture of cancer

and non-cancer cells, as reflected in their molecular profiles.

The tumor microenvironment would include immune cells, fibro-

blasts, and endothelial cells, all of which may be conscripted by

the cancer cells to play a role in tumor biology.3 In addition, hu-

man metastasis samples would include non-cancer tissues from

the biopsy site, representing a major confounder in distinguish-

ing true biology from technical artifact. Effective deconvolution

of the contribution of cancer versus normal expression in the
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tumor expression profile can be challenging.10 One approach to

address this issue is to profile tumors from patient-derived xeno-

grafts (PDXs), whereby a fragment of a patient’s tumor is im-

planted into a mouse. In PDXs, the stromal components of the

original tumor are substituted by their murine counterparts as a

result of xenotransplantation.11 A gene expression profile of a

PDX tumor reflects human gene transcripts from the cancer

cells, where the contribution of mouse transcripts from the tumor

stromawould beminimal.11–14 PDXmodels would also represent

a type of metastasis, as cancer cells taken from their primary site

are made to adapt to a foreign tissue microenvironment.

This study aimed to define pan-cancer molecular-based sub-

types of metastasis that would transcend tumor lineage. To this

end, we assembled two compendium expression datasets from

the public domain, one of PDXs and one of patient tumor metas-

tases, these data collectively representing over 3,000 patients

and 38 studies. We removed cancer type- and laboratory-spe-

cific differences from each individual published dataset,8,15 al-

lowing for the identification of pan-cancer phenomena that

would span data frommultiple studies. We followed a previously

demonstrated approach,11 but applied here to metastasis and

greatly expanded to incorporate multiple cancer types and

studies. We used the PDX compendium expression dataset to

define four expression-based molecular subtypes to minimize

the contribution of non-cancer cells. We then applied these mo-

lecular subtypes to profiles of patient tumor metastases. We

examined the subtype-associated differential expression pat-

terns in the context of metastases versus paired primary differ-

ences within the same patient. We could also characterize the

metastasis subtypes in terms of associated pathways, copy

number alterations, and integration with results of external

studies.

RESULTS

Compendium expression datasets of PDXs and patient
tumor metastases
For our study, we assembled three separate compendium

mRNA expression datasets representing metastases, with the

data involved being publicly available from 38 individual studies

(Tables S1). Our compendium dataset of PDXs represented

2,371 tumors, 973 patients, 14 studies, and over 17 cancer types

by tissue of origin (including colorectal, n = 894 tumors; skin, n =

218; sarcoma, n = 214; breast, n = 213; head/neck, n = 165;

bladder, n = 150; pancreatic, n = 135; gastric, n = 117; lung,

n = 86; kidney, n = 58; uterine, n = 29; medulloblastoma, n =

20; prostate, n = 17; glioblastoma, n = 12; cervical, n = 10;

ovarian, n = 9; other, n = 24). Our compendium dataset of patient

tumor metastases resected from patients represented 2,405 tu-

mors, 2,158 patients, 24 studies, and over 26 cancer types

(including colorectal, n = 695 tumors; breast, n = 413; prostate,

n = 349; skin, n = 146; sarcoma, n = 99; ovarian, n = 90; pancre-

atic, n = 79; lung, n = 75; kidney, n = 65; liver-biliary, n = 52; head/

neck, n = 51; thyroid, n = 48; bladder, n = 28; secretory, n = 27;

lymphoma, n = 25; esophagus, n = 24; CNS, n = 23; gastric, n =

33; other, n = 83). Of the 2,405 tumors in the patient tumormetas-

tasis compendium dataset, 307 patient tumor metastases (rep-

resenting 291 patients and 8 cancer types) had a corresponding
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primary tumor pair from the same patient also profiled, allowing

for paired analyses for differences in metastases versus pri-

maries. To the individual datasets involved in the compendiums,

we applied previously demonstrated analytical approaches (see

STARMethods)8,15–17 to effectively erase expression differences

according to laboratory, analytical platform, or cancer type.

These approaches allowed us to identify global patterns that

would cut across multiple datasets and cancer types.

Our study approach was first to define expression subtypes

and associated differential genes using our PDX compendium

dataset and then to classify each patient tumor metastasis

expression profile according to these PDX-based subtypes.

We characterized the salient features of each subtype, as

described below. For our study, PDX tumors would represent

metastases, with cancer cells taken from their original site and

made to grow at a different site. The advantage of defining mo-

lecular subtypes using PDX models is that the contribution of

non-cancer cells to the PDX tumor profile is minimized. RNA

from mouse cells either hybridized to a human expression array

chip or sequenced and aligned to the human genome yields a

much lower signal than RNA from the human cancer cells.11–14

In contrast, the profiles in our patient tumor metastasis compen-

dium dataset would represent mixtures of cancer and stroma

cells.10 For each molecular subtype, we could determine which

of the associated subtype-specific genes, based on analysis of

the PDX dataset, were also differentially expressed in metastasis

versus primaries by paired analysis, using our compendium of

307 metastases with primary pairs. Within most tissue-based

cancer types represented in the compendium dataset, wide-

spread differences between metastasis and primary by paired

analysis were identifiable (Figures S1A and S1B and Table S2).

However, a likely confounder here would involve differences in

non-cancer cells between the primary site and the metastasis

biopsy site (Figure S1C).

Expression-based subtypes of tumor metastases
We set out to identify molecular subtypes in our patient tumor

metastasis compendium dataset. As a starting point, we classi-

fied PDX and patient tumor metastases expression profiles ac-

cording to a set of pan-cancer subtypes—labeled c1 through

c10—previously defined using TCGA datasets of predominantly

primary tumors8 (Figure S2A). The TCGA-based subtypes were

represented in both PDX and patient tumor metastases, but

notably with relatively fewer PDX tumors and weaker patterns

for the TCGA ‘‘c3’’ and ‘‘c7’’ subtypes involving immune cells

and tumor stroma, respectively. We then used the PDX compen-

dium expression dataset to define molecular subtypes, to mini-

mize the contribution of non-cancer cells. In contrast, subtypes

defined using the patient tumor metastasis compendium could

be confounded, for example, by the tissue biopsy site, which

usually differs from the primary site (Figures S2B andS2C). Using

a randomly selected set of 2,000 genes, the 2,371 PDX tumors in

our compendium dataset separated into four distinct expres-

sion-based pan-cancer subtypes based on unsupervised clus-

tering, labeled s1 through s4 (Figures S2D–S2F). In PDX tumors,

the differential expression patterns associated with the subtypes

were associated with human cancer cells over mouse

stroma cells, as evidenced, for example, by analysis of PDX
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Figure 1. Pan-cancer molecular subtyping of tumor metastases

(A) The PDX compendium expression dataset defined four pan-cancer subtypes, s1 through s4 (see STAR Methods and Figure S2). Transcriptomic patterns for

the top set of 800mRNAs distinguishing between the four PDX-based subtypes are shown for PDX, TCGA, and patient tumormetastases datasets, with subtype-

specific expression patterns highlighted. SD, standard deviation from the median within a given dataset and within cancer type.

(B) For PDX compendium, TCGA, and patient tumor metastases compendium datasets, the significance of overlap between the PDX-based subtype assign-

ments and TCGA-based subtype assignments is indicated.

(C) For GSE76402 colorectal (CRC) PDXs in the PDX compendium 11, significance of overlap between our PDX-based subtype assignments and the CRC intrinsic

subtypes (CRISs) based on the GSE76402 study.

(D) For the top overexpressed genes associated with each PDX-based subtype (from A), represented GO categories were assessed, with selected enriched

categories represented here. For (B), (C), and (D), p values are by one-sided Fisher’s exact test.
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RNA-sequencing (RNA-seq) data aligned to both human and

mouse genomes (Figure S3).

We classified profiles in the patient tumor metastasis compen-

dium and TCGA datasets by PDX-based molecular subtype, us-
ing a gene classifier consisting of the top set of 800 differential

mRNAs (Figure 1A, genes defined by comparing each subtype

to the rest of the tumors). The PDX-based subtypes were well

represented in both these datasets at similar proportions. For
Cell Reports Medicine 4, 100932, February 21, 2023 3
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Figure 2. Molecular subtype assignments involving multiple tumors from the same patient

(A) By patient, molecular subtype assignments for 1,955 PDX tumors involving 557 patients with multiple PDX tumors represented in the PDX compendium

expression dataset. Patients are sorted according to those for whom a plurality of tumors were of the same subtype (left) and those for whom no single subtype

was represented in a plurality of tumors (right).

(B) By patient, molecular subtype assignments for 382 patient tumor metastases involving 131 patients with multiple tumor metastases represented in the patient

metastasis compendium dataset. Patients are sorted according to those for whom a plurality of tumors were of the same subtype (left) and those for whom no

single subtype was represented in a plurality of tumors (right).

(legend continued on next page)
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TCGA tumors, of which a substantial number have proteomic

data by mass spectrometry or by reverse-phase protein array,

the PDX-based subtypes, as defined above at the mRNA level,

were also reflected at the protein level (Figures S4A–S4D).

Among the three datasets (PDX, patient metastasis, TCGA),

there were significant patterns of overlap between the s1–s4

PDX-based subtype assignments and the previous TCGA c1–

c10 subtype assignments (Figure 1B). Specifically, the current

and previous subtyping correspondence included s1 to c2/c5/

c6, s2 to c3/c9, s3 to c4, and s4 to c7. The c4 subtype was pre-

viously associated with neuroendocrine-like tumors. In addition,

GSE76402 colorectal (CRC) PDX sample profiles in our compen-

dium showed significant overlaps between our PDX-based

subtype assignments and previously identified CRC intrinsic

subtypes (CRISs),11 with three of our four subtypes overlapping

with four of the five CRIS subtypes (Figure 1C). Within the top

differentially expressed genes underscoring each PDX-based

subtype, specific gene categories (by GeneOntology [GO] anno-

tation) were overrepresented (Figure 1D and Table S3). Subtype

s1 involved ‘‘DNA repair’’ and ‘‘cell-cycle process’’ genes;

subtype s2 involved ‘‘extracellular exosome’’ genes; subtype

s3 involved ‘‘DNA repair,’’ ‘‘chromatin organization,’’ and ‘‘his-

tone binding’’ genes; and subtype s4 involved ‘‘cell junction,’’

‘‘Ras GTPase binding,’’ and ‘‘immune system process’’ genes.

Overall, the PDX-based subtypes did not strongly associate

with patient metastasis biopsy site or tissue of origin. However,

the s1 and s4 subtypes were enriched and antienriched, respec-

tively, for CRC cases (Figures S2E and S2F).

Metastasis subtypes reflect expression differences
from paired primaries
Multiple tumors from the same patient tended to share the same

molecular subtype assignments. However, the subtype assign-

ments would differ in a substantial fraction of cases, represent-

ing molecular subtype switching.18 Of the 2,371 tumors in our

PDX compendium expression dataset, 1,955—representing

557 patients—involved multiple tumors (two or more) originating

from the same patient. Of the 557 patients, 530 (95%) had a plu-

rality of tumors with the same subtype (Figure 2A). In our patient

metastasis compendium expression dataset, 381 tumors—rep-

resenting 131 patients—involved multiple tumors from the same

patient, with 92 patients (70%) having a plurality of tumors with

the same subtype (Figure 2B). For the 307 patient tumor metas-

tases in our compendium for which paired primary data were

available, we classified both primary and metastasis by PDX-

based subtype. In most cases, the assigned subtype and asso-

ciated expression patterns differed between the metastasis and

the paired primary (Figure 2C). However, for 125 of the 307 tumor

metastases (41%), the metastasis-based and primary-based

subtype assignments were the same, these overlapping

assignments being statistically significant (Figure 2D). In many
(C) For the 307 patient tumor metastasis expression profiles for which express

metastasis were classified for the PDX-based subtypes. The expression heatm

tastases in relation to the patterns for the corresponding paired primary tumors.

(D) For the 307 tumor metastases represented in (C), the overlaps between theme

The p values were found by one-sided Fisher’s exact test. For 125 of the 307 tu

signments were the same.
instances, subtype switching events in patient metastases could

be associated with expression changes in immune cell markers

involving the s4 subtype (Figures S5A and S5B).

We wanted to explore expression differences between our

molecular subtypes of metastasis in the context of metastasis

versus paired primary comparisons involving metastasis-related

changes within the patient. Our PDX compendium dataset

defined differential expression patterns among the subtypes,

while our paired metastasis and primary dataset could evaluate

expression changes in metastasis using the primary as a base-

line. Different gene sets from the respective datasets would

represent orthogonal results, with significant correspondence

between gene sets for the same molecular subtype of particular

interest (Figure 3A). We identified highly significant gene set

overlaps between PDX and paired patient metastasis compari-

sons for the same subtype, involving all four subtypes and

1,133 genes (Figure 3B and Tables S2 and S3). Differential

subtype-specific expression patterns for these 1,133 genes

appeared consistent across our PDX compendium dataset and

patient tumor metastases compendium dataset, where we

assessed differential expression for the latter relative to other

metastases and relative to available primary pairs (Figure 3C).

We also observed similar correspondence patterns between

PDX and paired metastasis comparisons for genes with lower

expression by subtype, involving 1,459 genes (Figures S5C–

S5E). Subtype-specific genes involving the above included

DNA repair-related genes for s1 subtype (BRCA2, FANCD2,

FANCF), metabolism-related genes for s2 subtype (ALDOB,

COX5B,COX6A1,COX7A2, IDH1, SUCLG1, LDHD), neuroendo-

crine marker genes for s2 subtype (CDH2, NCAM1), and Notch

pathway genes for s4 subtype (NOTCH1, NOTCH2, NOTCH3;

Figure 3C). Given that some 60% of metastases may have a

different subtype from their corresponding primary tumor (Fig-

ure 3D), many observed differences between paired metastases

and primaries may also involve subtype switching.

Central nervous system (CNS) and transcription factor
(TF) associations by subtype
Our s3 metastasis subtype was strongly associated with the

previously identified ‘‘c4’’ pan-cancer molecular subtype, which

expressed markers of neuroendocrine tumors.8 Neuronal differ-

entiation occurring in epithelial cancer cells has been observed

elsewhere.19 To explore this association further, we examined

the expression dataset from the Fantom consortium of 889

profiles representing various normal human cell and tissue

specimens,20 including 59 CNS-related cell types and tissues.

Gene signatures of several CNS profiles—including those from

neurons, astrocytes, whole brain, and spinal cord—were

strongly manifested in s3, relative to the other subtypes, across

PDX and patient tumor metastasis compendium datasets (Fig-

ure 4A). Furthermore, genes encoding canonical markers of
ion profiles for the paired primary were available, both the primary and the

ap represents the subtype-associated expression patterns of the tumor me-

tastasis-based and the paired primary-based subtype assignments are shown.

mor metastases (41%), the metastasis-based and primary-based subtype as-

Cell Reports Medicine 4, 100932, February 21, 2023 5



A B

C

Figure 3. Subtype-specific gene expression differences overlap highly with patient metastasis versus paired primary differences

(A) Schematic of gene set comparisons. For each PDX-based subtype, the set of genes high within that subtype versus the rest of the PDX tumors was

overlapped with the set of genes high in patient metastases of the same PDX-based subtype versus the corresponding paired primaries. A top set of

1,133 genes involves significant gene set overlaps between PDX comparisons and paired patient metastasis comparisons for the same subtype, involving

each of the four subtypes.

(B) Significance of overlap between the genes high within each of the PDX-based subtypes (using t test, p < 0.01, based on analysis of PDX compendium) and the

genes high within paired patient metastasis versus primary within each subtype (p < 0.01, paired t test, based on analysis of the patient tumor metastasis

compendium). Overlap p values were found by one-sided Fisher’s exact test or chi-square test. From these results, a set of 1,133 genes involves significant gene

set overlap (p < 1E�6) for the same subtypes (e.g., 535 overlapping s1–s1 genes, 161 s2–s2 genes, etc.).

(legend continued on next page)
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neuroendocrine tumors—including CHGA (chromogranin A),

SYP (synaptophysin), NCAM1 (CD56), and ENO2 (neuron-

specific enolase)—were all differentially higher in s3 tumors (Fig-

ures 4A and S6 and Tables S3 and S4).

We surveyed TF binding upstream of each gene for the genes

associated with higher subtype-specific expression (Table S5).

Of 158 TFs with available data,21 87 were significantly enriched

(p < 1E�6, one-sided Fisher’s exact or chi-square test) with

one or more of the subtype-specific gene sets, for both PDX

and patient tumor metastases compendium datasets. Of the

87 TFs, 35 involved differential expression of the TF gene in

the same subtype in both compendium datasets (Figure 4B).

Most of these significant TF associations involved the s1 sub-

type, although notably, the s3 subtype showed both higher

expression of the EZH2 gene and a strong enrichment for

EZH2 transcriptional targets within genes higher in s3 versus

other tumors. When integrating the above results with a limited

set of gene expression signatures of TF knockdown by siRNA,22

three TFs—E2F1, HDAC2, and MYC— had siRNA knockdown

signature scoring significantly negative for the s1 subtype, along

with the corresponding higher TF gene expression and TF gene

target enrichment patterns (Figure 4C). The above MYC associ-

ation is consistent with previous observations in primary tumors

for the s1 subtype analogs.8,16,17 As the compendium expres-

sion datasets involved our first removing cancer type-specific

differences to arrive at our pan-cancer subtypes, this removed

lineage-specific TF expression patterns, although such patterns

could be observed in the original datasets before normalization

(Figure S7). In addition to trans-acting TFs, cis-regulatory alter-

ations, e.g., involving enhancer hijacking, would also be at

work within metastatic tumors.23

Somatic mutation and copy gain events underlie
metastasis subtypes
We explored subtype-specific expression differences involving

gene copy number alteration (CNA) patterns. Of the 2,405 tu-

mors in our patient metastasis compendium expression dataset,

934 had corresponding gene copy and somatic mutation infor-

mation, as did 1,238 of the 2,371 tumors in the PDX expression

compendium dataset. Consistent with previous observations

involving s1 subtype analogs,16 s1 tumors showed higher levels

of CNA burden relative to s2 and s4 subtypes, as observed

across the PDX compendium, the patient tumor metastasis

compendium, and TCGA pan-cancer datasets (Figure 5A). In

PDX compendium and TCGA datasets, s3 tumors also showed

higher overall CNA burden.We also examined small somaticmu-

tation events (single-nucleotide variants and insertions/dele-

tions) for 102 cancer-associated genes in core oncogenic and

tumor-suppressive pathways (Table S6).8,16 For all three data-

sets surveyed (PDX compendium, patient tumor metastasis

compendium, TCGA), one gene,APC, was consistently enriched

for mutation events (p < 0.01, one-sided Fisher’s exact test) in

the s1 subtype, due in part to the relative enrichment of s1 for
(C) Differential expression patterns for the top set of 1,133 genes involving significa

the PDX compendium dataset (differential expression relative to other tumors),

tastases), and patient tumor metastasis versus paired primary compendium dat

lighted. Selected genes of interest from the 1,133 genes are also represented in
colorectal cancers (Figure S2F). TP53 was also enriched for mu-

tation events in the s1 subtype (p < 0.01) but for only the patient

tumor metastasis and TCGA datasets. For the s2 subtype, six

genes—MTOR, PIK3CA, PTEN, BRAF, HRAS, KRAS—were en-

riched for mutation events (p < 0.01) for exactly two of the three

datasets surveyed.

For each gene represented in our compendium datasets, we

assessed the significance of the enrichment of copy gain events

within each molecular subtype. For the s1 and s3 subtypes, we

identified significant gene set overlaps between genes with

enriched copy gain events within a given subtype and genes

highly expressed within the same subtype (based on the PDX

compendium dataset). This pattern was consistent for all three

datasets surveyed (PDX compendium, patient tumor metastasis

compendium, TCGA; Figure 5B and Table S6). A set of 1,670

genes involved significant gene overlap between expression

differences and copy gain enrichment patterns for either s1 or

s3 subtypes for at least two of the three copy number datasets

examined (Figure 5C). These 1,670 genes involved well-estab-

lished cancer-related genes,24 including MYC, MYB, BRCA2,

ERCC4, and MET for s1 subtype and TERT, BCL2, and SUZ12

for s3 subtype. As observed elsewhere,7 copy alteration patterns

may involve single-copy gains for known oncogenes and single-

copy losses for tumor suppressor genes. Here, the above enrich-

ment patternsmostly involve gene copy gain as opposed to gene

amplification, and none of the genes in the patterns of gene set

overlap exhibited high-level amplification akin to the HER2

gene in breast cancer.

Pathways represented by metastasis subtypes
Some of the above findings suggested the involvement of key

pathways of interest underlying each metastasis subtype (Fig-

ures 6 and S6). The enrichment for DNA repair genes within

genes higher in s1 tumors (Figure 1D and Table S3) and the

higher CNA burden in s1 tumors (Figure 5A) suggested associa-

tions involving the DNA double-strand-break repair pathway and

Fanconi anemia. These associations were evident when exam-

ining key individual genes, including BRCA1, BRCA2, FANCD2,

FANCI, and RAD51 (Figure 6A). Many of the genes in this

pathway were also higher in s3 tumors, which subtype similarly

involved enrichment patterns for DNA repair genes (Figures 1D

and S6). The observed association of EZH2 transcription targets

with s3 tumors (Figure 4B) and of SUZ12 copy gain events in s3

tumors (Figure 5C) suggested processes of histone methylation

and DNA methylation, with genes higher in s3 also including

DNMT1, DNMT3B, and DNMT3A (Figure 6B).

Regarding s2 tumors, when taking the set of genes higher

(p < 0.01, t test) in s2 versus other tumors for both PDX and patient

metastasescompendiumexpressiondatasets, enrichedwikiPath-

ways26 (p < 0.00005, one-sided Fisher’s exact test) included the

prostaglandin synthesis and regulation pathway (Figure 6C). This

association included annexin genes,S100A10,S100A6,PTGER1,

PTGER2, PTGS2, TBXA2R, AKR1C3, and HPGD. Prostaglandin
nt gene set overlaps for any of the four PDX-based subtypes are shown across

patient tumor metastases compendium dataset (relative to other tumor me-

aset (relative to primary pair). Subtype-specific expression patterns are high-

dividually by differential patterns.

Cell Reports Medicine 4, 100932, February 21, 2023 7
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Figure 4. Central nervous system (CNS) and transcription factor (TF) associations by subtype

(A) CNS associations by subtype. Heatmaps showing intersample correlations (purple, positive; cyan, negative) between mRNA profiles of tumors in PDX and

patient metastasis compendium datasets (columns) and mRNA profiles of Fantom20 cell types or tissues related to the CNS (rows).

(B) Top TF associations by subtype. Encode21 data on TF binding was extracted for 158 TFs, with gene associations defined by binding within 2 kb upstream of

the gene start. For the set of 35 TFs represented, there was both significant overlap (p < 1E�6, one-sided Fisher’s exact test or chi-square test) between the TF-

bound genes and the genes overexpressed in the expression subtype and significantly higher or lower levels of the TF gene in that same subtype (p < 0.05 by t

test), for both PDX and patient metastasis compendium datasets.

(legend continued on next page)
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E2 (PGE2) can promote tumor growth by binding to its receptors

and activating signaling pathways that control cell proliferation,

migration, apoptosis, or angiogenesis.27Regarding s4 tumors, im-

mune system-related genes were enriched in genes higher in s4

versus other tumors (Figure 1D). Along these lines, the s4 subtype

had higher expression of several genes in the immune checkpoint

pathway, representing potential targets for immunotherapy,15,28

including PDCD1 (PD1), CD274 (PDL1), and PDCD1LG2 (PDL2)

(Figure 6D). Consistent with our understanding of the PDX model,

genes in the immune checkpoint pathwaywith specific roles in the

T cells interacting with the antigen-presenting cells were signifi-

cantly higher in s4 tumors from patient metastases but not from

PDXs (Figures 6D and S6). Several genes—including CD247

(CD3), CTLA4 (CD152), TNFRSF4 (CD134), LAG3, and T cell

marker LCK—were significantly higher (p < 0.001, t test) in s4 tu-

mors from patient metastases but not significantly (p > 0.05) in

s4 PDX tumors. These differential expression patterns would be

consistent with the scenario of tumor cells with antigen presenta-

tion interacting with T cells in human tumors, where PDX tumors

would not represent the T cell component.

Associations of metastasis subtypes with drug
responses in cancer cell lines
Integrating molecular data on cancer cell lines with their re-

sponses to anticancer drugs can identify therapeutic options

for cancer subsets.29 Similar to the above external expression

datasets, we assigned transcriptomic profiles for each of 958

cell lines in the Genomics of Drug Sensitivity in Cancer (GDSC)

dataset to a metastasis subtype (Figure 7A). PDX-based sub-

types were reflected in cancer cell lines at both the mRNA and

the protein levels (Figures S4E and S4F). For each of 544 drug

compound treatments with half-maximal inhibitory concentra-

tion (IC50) measurements, we compared IC50 values for cell lines

of a given subtype with the rest of the cell lines. Widespread as-

sociations of molecular subtype with drug response, well

exceeding chance expected, were found for s1, s3, and s4 sub-

types (Figure 7B and Table S7). At p < 0.001 significance level (t

test on natural log values), 45, 199, and 9 drug treatments

showed greater sensitivity levels in s1, s3, and s4 cell lines,

respectively. These drug response associations aligned with

the above molecular observations involving the subtypes. For

example, s1 subtype associated with response to several bro-

modomain inhibitors (Figures 7B and 7C), conceivably related

to this subtype’s association with MYC.30 Several drugs target-

ing chromatin histone acetylation or methylation associated

with response in s3 cell lines (Figure 7B). The one drug in

GDSC targeting EZH2 showed sensitivity in s3 as well as s1

cell lines (Figure 7C). With s3 involving both BCL2 overexpres-

sion and copy gain (Figure 5C), s3 also associated with greater

sensitivity (p < 0.01) to all six BCL2 inhibitors represented in

GDSC (Figure 7C and Table S7). With s3 also involving both
(C) Of the 35 TFs represented in (B), 10 were represented in an expression pro

HDAC2, and MYC—the genes were highly expressed in the associated s1 subt

negative (p < 1E�6, t test) for both PDX and patient tumor metastases datasets.

patient tumor metastasis compendium datasets: average differential expression

genes (yellow-blue heat maps), and differential levels of the TF gene siRNA signat

that knocking down the TF gene would result in a global pattern opposite TF gen
TERT overexpression and copy gain (Figure 5C), s3 associated

here with greater sensitivity to TERT inhibition (Figure 5C). Previ-

ous studies involving tumor xenografts demonstrate how GDSC

IC50 values would translate into substantial anticancer effects

in vivo. For example, BRD4 inhibitors impact tumor growth of

s1 cell lines MDA-MB-231 and MDA-MB-468,31 BCL2 inhibitors

impact tumor growth of s3 cell line OVCAR8,32 and telomerase

inhibitor impacts tumor growth of s3 cell line HeLa.33

DISCUSSION

By transcriptomics, our study uncovered four major pan-cancer

molecular subtypes of metastases. The s1 subtype had exten-

sive copy alterations, higher expression of genes involved in

DNA double-strand-break repair, higher expression of TF genes

such asMYCwith corresponding higher expression of their tran-

scriptional target genes, and associations with bromodomain in-

hibitor response. The s2 subtype had higher expression of genes

involved in metabolism and prostaglandin synthesis and regula-

tion. The s3 subtype had higher expression of DNA and histone

methylation genes, higher expression of EZH2 and associated

transcriptional targets, higher expression of neuroendocrine

marker genes and evidence of a type of neuronal differentiation,

and higher expression and copy gain of BCL2 coupled with

BCL2 inhibitor response associations. The s4 subtype had

higher expression of immune checkpoint and Notch pathway

genes. These subtypesweremanifested in primary andmetasta-

tic tumors, consistent with the notion that metastasis-associated

transcriptional programs may be encoded within primary tu-

mors.34 By our analytical approach, the molecular subtypes

spanned tumors of diverse lineages and tissues of origin and

multiple datasets from independent laboratories. The idea that

cancer metastases can be categorized into a handful of distinct

groups would have important implications for understanding the

biology of metastasis. For example, different processes and

pathways that appear coordinately manifested in a cancer sub-

type might suggest a degree of cooperation between these that

could be explored further.

The metastasis subtypes reflected expression differences from

pairedprimaries,with subtype switchingbeingcommon.Metasta-

tic cells that escape from the primary tumor may develop into

tumors of a different molecular subtype from that of the primary,

while still falling within one of a discrete set of subtypes. When

considering the subset of patient tumor metastasis according to

a particular subtype, we could observe widespread paired differ-

ences between metastases and paired primary, these differences

spanningmultiplecancer types.Manypreviousstudies (e.g., those

from which we incorporated data into the present study) have

sought to define global expression differences between metasta-

ses and paired primaries for a given cancer type. These previous

studies may not have considered the site of metastasis biopsy
filing dataset of siRNA knockdown of specific genes.22 For three TFs—E2F1,

ype, with the corresponding siRNA knockdown signature scoring significantly

For these three TFs, the associated patterns are represented across PDX and

of the TF-bound genes (red-blue heat maps), differential expression of the TF

ure (purple-cyan heat maps). A negative siRNA signature association indicates

e overexpression.
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Figure 5. Copy number alteration (CNA) events underlying the molecular subtypes of metastasis

(A) For PDX compendium, patient metastasis compendium, and TCGA datasets, overall CNA burden index (standard deviation of CNA values across all genes,

centered within each dataset to standard deviations from themedian across samples) by PDX-basedmolecular subtype. Boxplots represent 5% (lower whisker),

25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker).

(B) For PDX compendium, patient metastasis compendium, and TCGA datasets, significance of overlap between the genes high within each of the PDX-based

subtypes (using t test, p < 0.01, based on analysis of PDX compendium) and the genes with copy gain events more frequent within each subtype (p < 0.01, one-

sided Fisher’s exact test, PDX and patient metastasis datasets; p < 0.001, chi-square test, TCGA dataset). Overlap p values were found by chi-square test. A set

of 1,670 genes involves significant gene set overlaps between expression differences and copy gain enrichment patterns for the same subtype, for at least two of

the three copy number datasets examined, these significant overlaps involving s1 and s3 subtypes.

(legend continued on next page)
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as a confounding variable, with expression differences largely re-

flecting differences between tissues of the primary site versus

other tissues.Our PDX-based approaches tomolecular subtyping

circumvented this issue. In addition to global expression differ-

ences observed across all metastases versus primary tumors,

consistent differences involving only a subset of patients may be

considered, as done in our study. For molecular subtypes associ-

ated with higher overall levels of CNA, gene copy gain events that

increase expression of genes underlying the subtype may be

evolutionarily favored. These events might involve a gain of just

one or two copies versus the high-level amplification events favor-

ing strong cancer driver genes.

Our molecular subtypes could have important implications for

applying existing therapies or developing alternate therapeutic

approaches. Therapies potentially targeting subtypes would be

represented in our results utilizing cell-line drug responses.

MYC oncogene represents a candidate driver of the s1 subtype.

While MYC had been traditionally regarded as undruggable, in

recent years compounds directly or indirectly inhibiting MYC

have shown anticancer activity preclinically, with some of these

being developed for clinical trial evaluation.35 Consistent with

our study’s drug response associations, therapeutic approaches

for bromodomain inhibition in cancers characterized by MYC

activation are being explored.30 Our s2 subtype showed coordi-

nate expression of several genes in the prostaglandin synthesis

pathway.COX-2-derivedPGE2supports epithelial tumor aggres-

siveness by several mechanisms,36 and COX-2 selective inhibi-

tors have been explored as a drug for cancer prevention and

treatment and found to decrease the incidence of certain malig-

nancies.27 Regarding the s3 subtype, there is high interest in tar-

getingEZH2 for cancer therapy.Different typesof EZH2 inhibitors

are under evaluation in ongoing clinical trials involving different

cancer types.37 Based on our results, BCL2 inhibitors may also

target the s3 subtype. Regarding the s4 subtype, the recent clin-

ical success of immune checkpoint inhibitors created a class of

anticancer drugs to treat various malignancies.38 One of the

current challenges in cancer immunotherapy is developing

biomarker panels that distinguish likely responders from non-re-

sponders, asmarkers such asPD-L1 represent continuous rather

thandiscrete variables.39Our findingssuggest that no single ther-

apeutic approach would be effective for all cancers but that the

gene expression profile and associated molecular subtype of

the tumor could help maximize precision medicine approaches.

Limitations of the study
The number of discoverable pan-cancer subtypes would

depend in part on the datasets examined and the analytical ap-

proaches used. Future studies examining additional datasets

and cancer types might uncover additional subtypes. Subtypes

of metastases within a given tissue-based cancer type could

also be explored, where subtypes uniquely applicable to a given

tissue of origin might be found. This study does not establish our

pan-cancer subtypes as directly related to the actual processes
(C) Taking the set of 1,670 genes noted in (B), involving significant gene set overl

and s3 subtypes, copy gain patterns and differential expression patterns are re

datasets. CNA, copy number alteration; gain, estimated gene copy number betw

listed (red, s1 genes; blue, s3 genes) are well-established cancer-associated ge
of metastasis. The metastatic cascade represents a multistep

process, with each step being explored in other studies using

suitably tailored experimental model systems. In isolation, our

PDX-based pan-cancer subtypes would not fully capture the in-

fluence of the tumor microenvironment on cancer metastases.

The results of our study represent subtype-specific associations

made across different datasets, and reported associations could

be considered robust when spanning multiple molecular modal-

ities and datasets. Still, additional directed functional experi-

ments might be needed to establish a particular association of

interest more firmly or to gain more insight.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human data

B Cell line data

B PDX data

d METHOD DETAILS

B Patient tumor metastasis compendium datasets

B PDX expression datasets

B Pan-cancer molecular subtype discovery

B Differential expression analyses

B Gene signature analyses

B Enrichment analyses for TF bound genes

B Comparisons of orthogonal subtype-associated gene

sets

B Drug response associations

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xcrm.2023.100932.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health (NIH) grant

P30CA125123 (C.J.C.). This article was prepared using a limited access data-

set obtained fromBCCancer. We thank Erin Pleasance, LauraWilliamson, and

Emma Titmuss for reviewing and commenting on the manuscript.

AUTHOR CONTRIBUTIONS

Conceptualization, C.J.C.; methodology, C.J.C., Y.Z., and F.C.; formal anal-

ysis, C.J.C., Y.Z., and F.C.; data curation, Y.Z. and C.J.C.; visualization,

C.J.C.; writing, C.J.C.; manuscript review, Y.Z. and F.C.; supervision, C.J.C.
aps between expression differences and copy gain enrichment patterns for s1

presented in PDX compendium, patient metastasis compendium, and TCGA

een 3 and 5; amplification, estimated gene copy number >5. Example genes

nes by COSMIC.24

Cell Reports Medicine 4, 100932, February 21, 2023 11

https://doi.org/10.1016/j.xcrm.2023.100932
https://doi.org/10.1016/j.xcrm.2023.100932


A B

C

D

Figure 6. Pathways associated with the molecular subtypes of metastasis

(A) Diagram of key genes involved in the DNA double-strand-break repair pathway,25 with differential expression patterns represented in both PDX and patient

tumor metastasis compendiums, comparing s1 with the rest of the tumors (red, significantly higher in s1).

(B) Diagram of key genes involved in methylation of DNA and histones,25 with differential expression patterns represented in both PDX and patient tumor

metastasis compendiums, comparing s3 with the rest of the tumors (red, significantly higher in s3).

(legend continued on next page)
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Figure 7. Molecular subtype associations with drug response in cancer cell lines

(A) Transcriptional profiles of 958 cancer cell lines represented in the Genomics of Drug Sensitivity in Cancer (GDSC)29 dataset (profiles being normalized within

their respective cancer type) were classified according to PDX-based molecular subtype. Expression patterns in cell lines for the top set of 800 mRNAs dis-

tinguishing between the four PDX-based subtypes (from Figure 1A) are shown (759 of the 800 genes being represented in GDSC).

(B) From the GDSC cell lines classified according to metastasis subtype, drug compound treatments with decreases in half-maximal inhibitory concentration

(IC50) associatedwith s1, s3, or s4 subtypes (p < 0.001, comparing cell lines of the given subtypewith the rest of the cell lines, t test on natural log-transformed IC50

values). Selected drug compounds are listed by name.

(C) For selected drug compounds, natural log IC50s by molecular subtype. Boxplots represent 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper

box), and 95% (upper whisker). Data points are colored according to cancer type, according to color coding in (A).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

POG570 mutation and expression datasets Canada’s Michael Smith Genome

Sciences Center (GSC) at BC Cancer

http://bcgsc.ca/downloads/POG570/

MET500 mutation and expression datasets University of Michigan https://met500.med.umich.edu/datasets

Count Me In (CMI): The Metastatic Breast

Cancer (MBC) Project expression datasets

Genome Data Commons (GDC) https://portal.gdc.cancer.gov/projects/

CMI-MBC

GEO patient metastases expression datasets Gene Expression Omnibus (GEO) GEO: GSE12630, GEO: GSE14378,

GEO: GSE18549, GEO: GSE23629,

GEO: GSE29650, GEO: GSE50493,

GEO: GSE50760, GEO: GSE60464,

GEO: GSE60542, GEO: GSE63668,

GEO: GSE74685, GEO: GSE125989,

GEO: GSE126078, GEO: GSE131418,

GEO: GSE133296, GEO: GSE136037,

GEO: GSE137237, GEO: GSE147322,

GEO: GSE151580, GEO: GSE159216,

GEO: GSE184869

NIH-NCI PDX Development and Trial

Centers Research Network (PDXNet)/

NCI Patient-Derived Models Repository

(PDMR) mutation and expression datasets

National Cancer Institute (NCI) https://doi.org/10.6084/m9.figshare.

14390408

GEO patient-derived xenograft

(PDX) expression datasets

Gene Expression Omnibus (GEO) GEO: GSE76402, GEO: GSE98708,

GEO: GSE103340, GEO: GSE118942,

GEO: GSE128459, GEO: GSE129127,

GEO: GSE130160, GEO: GSE146661,

GEO: GSE151343, GEO: GSE157494,

GEO: GSE159702, GEO: GSE180790,

GEO: GSE181374, GEO: GSE193500

The Cancer Genome Atlas (TCGA)

mutation and expression datasets

Broad Institute https://gdac.broadinstitute.org/

FANTOM5 cell and tissue expression dataset RIKEN http://fantom.gsc.riken.jp/5/data/

ENCODE Transcription Factor (TF) binding Ensembl Biomart (GRCh37/hg19 build) https://grch37.ensembl.org/info/data/

biomart/index.html

Gene expression profiles of 400

siRNA knocked down on HUVEC

Gene Expression Omnibus (GEO) GEO: GSE27869

Genomics of Drug Sensitivity in

Cancer (GDSC) cell line datasets

Wellcome Sanger Institute https://www.cancerrxgene.org/

Software and algorithms

ConsensusClusterPlus (v3.16) Bioconductor https://www.bioconductor.org/

packages/release/bioc/html/

ConsensusClusterPlus.html

SigTerms (v1.0) Baylor College of Medicine https://sigterms.sourceforge.net/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chad J.

Creighton (creighto@bcm.edu).

Materials availability
This study did not generate new, unique reagents.
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Data and code availability
d This paper analyzes existing, publicly available data. Details on accessing the datasets are listed in the key resources table.

The compendium datasets of gene expression profiles for PDX, patient metastases, and paired patient metastasis with

primary—compiled as part of our study—are available through GitHub [https://github.com/chadcreighton/metastasis-

expression-compendium]. Each expression dataset is uploaded on GitHub as a series of separate files by individual study, us-

ing a common gene feature set with the same ordering across files. One can concatenate the individual matrices together to

assemble the compendium datasets using in this study.

d This paper does not report original code. No custom computer code was used for data collection, which was performed using

open-source software. Additional processing involved in-house scripts that are available upon request. All analyses used pre-

viously published software or methods.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human data
Regarding human subjects, cancermolecular profiling datawere generated through informed consent as part of previously published

studies and analyzed in accordance with each original study’s data use guidelines and restrictions.

Cell line data
Molecular and phenotypic data on cell lines was accessed from public repositories, as described below. Details on cell maintenance

and care are described in the original studies generating these data.

PDX data
Molecular data on PDX models was accessed from previously published studies, as described below. Details on PDX tumor gener-

ation and molecular characterization are described in the original studies generating these data.

METHOD DETAILS

Patient tumor metastasis compendium datasets
We assembled a compendium dataset of gene expression profiling data of metastatic tumors from 26 major cancer types (based on

tissue of origin) and 24 individual studies (Table S1).5,6,40–59 The 2405 tumors in the compendium represented 2158 patients. The

above studies analyzed the tumors using global mRNA profiling by RNA-sequencing (RNA-seq) or array platform. We obtained pro-

cessed expression data tables from the Gene Expression Omnibus (GEO, accession numbers included in Table S1), from websites

associated with the study publication (for MET500 and POG570 datasets), or from the Genome Data Commons (in the case of the

Count Me In, or CMI dataset). Where multiple studies and associated datasets came from the same research team,49,51 we ensured

that tumors were not represented more than once in the compendium, removing duplicate profiles. For RNA-seq data with raw

counts data provided, we converted these to Transcripts per million (TPM) expression values. Where we observed considerable vari-

ability in the total expression values across genes among profiles, we applied quantile normalization to the individual dataset.60 For a

given dataset, in instances where genes were represented by more than one feature, the feature with the highest variability across

profiles (by standard deviation applied to log2-transformed expression values) was selected to represent the gene in the compen-

dium dataset. Without correction, widespread differences in relative gene levels observed between any two datasets would repre-

sent a combination of technical batch effects (e.g., stemming from different mRNA profiling platforms and different laboratories) and

of biological differences involving tumor tissue of origin or metastasis biopsy site. To correct for both of the above, we normalized the

genes within each dataset and within each cancer type (for those datasets with more than one cancer type represented) to standard

deviations from the median, using log2-transformed values, similar to what we have done in previous studies.8,15–17 This data trans-

formation to unitless standard deviations from the median allowed for the values for a given gene to be comparable among the

various datasets. As the set of genes represented in the patient tumor metastasis compendium datasets, we took the 18319 genes

represented by Entrez identifier in both the MET500 and POG570 datasets (representing 934 of the 2405 tumor metastases).

Of the 2405 tumors in the above metastasis compendium expression dataset, 307 patient tumor metastases had a corresponding

primary tumor pair from the same patient also being profiled. These 307 tumor metastases represented 291 patients, eight major

cancer types (based on tissue of origin), and 13 studies. To carry out paired metastasis versus primary tumor comparisons, we

compiled a separate metastasis compendium of the above 307 tumor metastases. To normalize the metastases profiles relative

to the paired primary, we first centered log2-transformed expression values for each metastasis expression profile on its primary

pair, setting the values for the primary pair to zero. Then, within each study dataset, the centered expression values were divided

by the standard deviation across the centered metastasis and primary profiles. This normalization step rendered the differential

expression values unitless, thereby correcting for inter-dataset differences.
e2 Cell Reports Medicine 4, 100932, February 21, 2023
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Of the 2405 tumors in our patient tumor metastasis compendium dataset, 934—involving the MET5005 and POG5706 datasets—

had DNA sequencing data yielding gene copy and small somatic mutation information. For the POG570 dataset, gene-level copy

values were generated as integers representing the predicted copy number state,23 from 0 to 5, 3–5 representing gene copy gain

or amplification, correcting for tumor ploidy. For the MET500 dataset, gene-level copy values were generated as integers from

0 to 20, not correcting for tumor ploidy.We first applied a correction for ploidy to eachmetastatic tumor profile in theMET500 dataset,

whereby each gene copy value was divided by the median gene copy value across genes (2 for most tumors) and multiplied by 2.

Gene copy values greater than or equal to three for each tumor profile in the MET500 and POG570 datasets were called copy

gain, while gene copy values less than two were called as copy loss.

PDX expression datasets
Analogous to the above involving the patient metastasis expression compendium dataset, we assembled a compendium dataset of

PDX tumors representing over 18 major cancer types (based on tissue of origin) and 14 individual studies (Table S1).11,12,61–71 We

identified the above studies and associated expression datasets by searching the GEO database. In addition, we incorporated

an expression profiling dataset from Sun et al.72 representing 1551 PDX tumors and 536 patients and over 16 major cancer types

by tissue of origin, involving the NIH-NCI PDX Development and Trial Centers Research Network (PDXNet) and the NIH-NCI Pa-

tient-Derived Models Repository (PDMR) repositories. The above studies analyzed the tumors using global mRNA profiling by

RNA-sequencing (RNA-seq) or array platform. For RNA-seq data with raw counts data provided, we converted these to Transcripts

per million (TPM) expression values. Where we observed considerable variability in the total expression values across genes among

profiles, we applied quantile normalization to the individual dataset.60 For a given dataset, in instances where genes were repre-

sented by more than one feature, the feature with the highest variability across profiles (by standard deviation applied to log2-trans-

formed expression values) was selected to represent the gene in the compendium dataset. As carried out above for the 2405-patient

tumor metastases compendium, we normalized the genes within each dataset and within each cancer type (for those datasets with

more than one cancer type represented) to standard deviations from the median, using log2-transformed values. We obtained the

PDXNet/PDMR expression data matrix (TPM values) from the Sun et al. publication. We transformed log2-transformed expression

values within each cancer type to standard deviations from the median to remove tissue-dominant differences. The set of 18319

genes represented in the patient tumor compendium dataset was the set represented in the PDX compendium dataset.

PDXsmay be vulnerable to lymphomagenesis.73 Therefore, we took conservativemeasures to remove PDX tumor profiles from our

compendium that manifested strong patterns associated with lymphocytes. In the original study involving the GSE76402 dataset,11

14 samples were found to be contaminated by murine or human lymphomas and were not further considered in the analysis. Based

on our analysis of these 14 sample profiles, we removed sample profiles with either B cell marker CD19 elevated at three standard

deviations from the dataset median or a gene signature of B cells from Bindea et al.74 elevated at three standard deviations from the

dataset median. Our present study does not make any definitive conclusions regarding the samples not included in the study. The

final PDX compendium expression dataset consisted of 2371 tumors representing 1000 patients.

Pan-cancer molecular subtype discovery
Weused the PDX compendium expression dataset to identify molecular subtypes, whichwe then examined in other expression data-

sets. ConsensusClusterPlus R-package75 (using R version 4.1.1) was used to identify the structure and relationship of the samples.

For unsupervised clustering analysis, we randomly selected 2000 genes represented in at least 2300 of the 2371 tumor profiles of the

PDX compendium dataset. Consensus ward linkage hierarchical clustering identified k = 2 to k = 15 subtypes, with the stability of the

clustering increasing with increasing k. We considered multiple subtype solutions, as described in Figure S2. Beyond a 7-subtype

solution, additional subtypes identified involved relatively fewer samples and were not well represented in both GEO and PDXNet/

PDMR compendium subsets. In exploring the 7-subtype solution further, three of these subtypes had samples represented almost

entirely in either GEO datasets or the PDXNet/PDMR subsets but not both, where we sought robust subtype associations involving

multiple datasets. Therefore, we reclassified the profiles in k subtypes 5–7 according to the best fit among subtypes 1–4 to arrive at

the final 4-subtype solution (s1 through s4). For this reclassification, we determined the top 200 gene correlates for each of the four

subtypes. For each subtype, we assigned either "1" if the genewas a top 200 gene for the given subtype and "0" if otherwise.We then

computed the Pearson correlation between each PDX subtype classifier and the sample profiles to be reclassified.We assigned each

reclassified tumor profile to one of the four subtypes, based onwhich subtype classifier showed the highest correlation with the given

external dataset profile.

Based on the set of subtypes derived from our PDX compendium expression dataset, we examined expression profiling datasets

external to the PDX compendium, classifying each external tumor profile by PDX-based subtype. We classified tumors in the patient

tumor metastasis compendium and TCGA pan-cancer datasets by PDX-based subtype. Within each cancer type of TCGA dataset

(by TCGA project), we normalized log-transformed mRNAs to standard deviations from the median. As a classifier, we used the top

set of 800 genes distinguishing between the PDX-based subtypes based on analysis of the PDX compendium (200 genes for each of

the four subtypes, based on all 2371 PDX tumors). To define the top over-expressed genes for each subtype, we first compared PDX

tumors of the given subtype with the rest of the tumors by t-test. For a given subtype, a top gene had the highest differential expres-

sion by t-statistic compared to the other subtypes and a higher t-statistic than the other genes that did not make the top list. As the

classifier for each subtype, we assigned the 800 genes "1" if gene was a top 200 gene for the given subtype and "0" if otherwise. We
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then computed the Pearson correlation between each external profile and each PDX subtype classifier. We assigned each external

tumor profile to a PDX-based subtype, based onwhich subtype classifier showed the highest correlation with the given external data-

set profile. We similarly classified tumor profiles according to our previously identified TCGA-based pan-cancer subtypes8. Taking

the previously defined 854 mRNAs distinguishing between TCGA-based subtypes as the subtype classifier, we assigned to each

gene "1" or "-1" for up versus down, respectively, if the gene was a top 100 gene for the given subtype and "0" if otherwise. Tumor

profiles that did not significantly align with TCGA-based c1 or c3-c10 subtypes with a significance of p < 0.05 (Pearson’s correlation)

were assigned to the nondescript "c2" subtype.

For TCGA and cell line datasets, proteomic data by mass spectrometry-based platform or by reverse-phase protein array (RPPA)

platform were available. To compare with the results of the mRNA-based classification (these mRNA-based classifications being

used for downstream analyses), we classified tumors and cell lines based on available proteomic data, as presented in Figure S4.

Log2-transformed protein expression values (by either mass spectrometry-based or RPPA platform) were centered to standard

deviations from the median within each cancer type. For the mass spectrometry-based datasets, we used as the classifier the

top 800 subtype-specific genes from the PDX dataset (Figure 1A). For the TCGA RPPA dataset, we used as a classifier the set of

represented total protein features from which a significant association with a particular subtype was observable in the PDX

compendium dataset (p < 0.001 by t-test, based on logged and centered protein expression values).

Differential expression analyses
We assessed differential expression between comparison groups using t-tests on expression values log2-transformed and

normalized within each dataset and cancer type as described above. Differential gene sets greatly exceeded the estimated chance

expected by multiple testing of 18319 genes, using the method of Storey and Tibshirani.76 We applied a nominal p-value cutoff to

each gene when comparing subtype-specific patterns based on multiple criteria. We used this rather than a stringent false discovery

rate cutoff to lower false negative results (while the multiple criteria would keep the false positive rate due to multiple gene testing

low). In defining the gene expression signature of metastasis versus paired primary within a given cancer type (Figure S1), we

used the compendium of 307 metastasis samples, representing eight cancer types.

Gene signature analyses
We surveyed global expression patterns associated with cells and tissues of the CNS, using the public fantom datasets.20 We

obtained gene expression profiles from various normal human cells and tissues from the FANTOM5 data repository (http://

fantom.gsc.riken.jp/5/data/). We removed profiles from fetal or embryonic human specimens from the analysis for our study. We

centered log2 expression values for each gene in the fantom dataset on the median of sample profiles. For each fantom differential

expression profile (genes centered within the fantom dataset), we took the inter-profile correlation (Pearson’s) with that of the

differential expression profile for each PDX and patient tumor metastasis (with the genes in each compendium centered and

normalized as described above).

For gene signatures of gene knockdown, we referred to the GSE27869 expression profile dataset of human umbilical vein endo-

thelial cells (HUVECs) transfected with siRNAs for 400 different genes.22 We normalized log2 gene expression values in GSE27869 to

standard deviations from the median across the 400 profiles. Of the 400 genes represented in GSE27869, 44 involved the 158 TFs

surveyed using Encode data (see below). For each siRNA differential expression profile, we took the inter-profile correlation

(Pearson’s) with that of the differential expression profile for each PDX and patient tumor metastasis. We then compared the siRNA

signature scoring levels among the molecular subtypes.

Enrichment analyses for TF bound genes
We obtained TF binding site locations, based on ENCODE consortium data,21 from Ensembl (GRCh37/hg19 build). We used TF sites

as identified in the HeLa-S3, HepG2, and K562 cell lines (accessed April 2022), involving 158 TFs. We defined associations between

TFs and genes as a TF binding site falling within 2kb upstream of the gene start. For each TF and each PDX-based subtype, we iden-

tified patterns of significant gene set overlap (by one-sided Fisher’s exact test or chi-square test) between the TF-bound genes and

the genes with higher relative expression in the PDX-based subtype relative to other tumors. We separately evaluated the top genes

for PDX and patient tumor metastases dataset comparisons (p < 0.01 unpaired t-test, with levels also highest in the given subtype

compared to all other subtypes).

Comparisons of orthogonal subtype-associated gene sets
We compared subtype-associated gene sets obtained from orthogonal comparisons to identify patterns of significant gene overlap

of interest. For each PDX-based subtype, we overlapped the set of genes high within that subtype versus the rest of the PDX tumors

with the set of genes high in patientmetastases of the samePDX-based subtype versus the corresponding paired primaries.We used

a statistic cutoff of p < 0.01 for each gene set (PDX dataset comparisons, unpaired t-test, with levels also being highest in the given

subtype compared to all other subtypes; paired patient comparisons, paired t-test). One-sided Fisher’s exact or chi-square tests

evaluated the significance of the overlap between the orthogonal gene sets. Analogous comparisons were carried out for the sets

of genes low in each PDX-based subtype and the sets of genes lower in patient metastasis of the same subtype versus the corre-

sponding paired primaries.
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We also compared differentially expressed genes associated with a given PDX-based subtype with genes with copy gain more

frequent in that subtype. Of the 2405 tumors in our patient tumor metastasis compendium dataset, 934—involving the MET5005

and POG5706 datasets—had gene copy information. Of the 2371 tumors in the PDX expression compendium dataset, 1238—

involving the PDXNet/PDMRdataset—had gene copy information. In addition, 9853 tumors in TCGA had both gene copy and expres-

sion information. For each dataset, we assessed the frequency of gene copy gain events (i.e., three or more copies) for each gene by

subtype, with significance of enrichment by one-sided Fisher’s exact or chi-square test (the latter in instances where large numbers

were involved). Differentially expressed genes by subtype were based on comparisons of PDX-based subtype versus the rest of the

tumors. For each of the three datasets with gene copy information, chi-square tests evaluated the significance of the overlap between

genes with higher expression within a given PDX-based subtype (with levels also being highest in the given subtype compared to all

other subtypes) and the genes with copy gain events more frequent within each subtype.

Drug response associations
Using the Genomics of Drug Sensitivity in Cancer (GDSC)29 resource, we classified 962 cancer cell lines according to PDX-based

subtype. Of the 962 cell lines, 214were annotated asmetastatic (Table S1). GDSC expression data and drug compound half maximal

inhibitory concentration (IC50) data were downloaded in February 2020 (GDSC1-dataset) and in October 2022 (GDSC2-dataset). We

merged the two GDSC IC50 datasets into one. if a drug treatment and cell line were represented in both datasets, we averaged the

two values; otherwise, we used whichever IC50 dataset had available data. GDSC IC50 data represented 623 drug treatments

involving 544 compounds. Within each cancer type of the GDSC expression array dataset, log base 2-transformed genes were

normalized to standard deviations from themedian. Using the top 200 genes for each subtype as defined using the PDX compendium

expression dataset, we classified the cell lines as described above (based on mRNA data). We further evaluated the cell lines for

differences in IC50 drug responses according tomolecular subtypes, using t-test on natural log-transformed IC50 values, comparing

cell lines of the given subtypes with the rest of the cell lines.

QUANTIFICATION AND STATISTICAL ANALYSIS

All p values were two-sided unless otherwise specified. Enrichment of GO annotation terms77 within sets of differentially expressed

genes was evaluated using SigTerms software78 and one-sided Fisher’s exact tests. Visualization using heat maps was performed

using both JavaTreeview (version 1.1.6r4)79 and matrix2png (version 1.2.1).80 Figures indicate exact value of n (number of tumors or

cell lines), and the statistical tests used are noted in the Figure legends and next to reported p-values in the results section. Boxplots

represent 5%, 25%, 50%, 75%, and 95%. Figures represent biological and not technical replicates.
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Figure S1. Gene expression signatures of metastasis versus paired primary, by cancer type. Related to STAR Methods. (a) 

Across eight cancer types represented in our paired metastasis and primary compendium dataset, heat map of differential t-statistics 

(paired t-test on log-transformed data), by cancer type, comparing metastasis versus paired primary (red, higher expression in 

metastasis; white, not significant with p > 0.05), for 11652 genes significant for any cancer type (p<0.01). (b) Significance of 

enrichment (by one-sided Fisher’s exact test) for selected GO terms with the respective sets of genes higher or lower in metastasis 

versus paired primary (p<0.01, paired t-test) for each cancer type represented. (c) A likely confounder with the above metastasis 

versus primary expression patterns would involve differences in non-cancer cells between the primary site and the metastasis biopsy 

site (e.g., comparing breast versus non-breast tissues within the breast cancer dataset). Here, we used the GTEX dataset1 to compare 

normal tissues of a given type with the rest of the normal tissue profiles, based on analysis of 11688 tissues. We then evaluated the 

overall enrichment pattern of each metastasis-associated gene set (from part a, using p<0.05) within each GTEX-based normal tissue 

differential profile (by rank sum statistic). Entries in the correlation matrix corresponding to the same tissue type between GTEX and 

patient metastasis compendium are highlighted in yellow. For three cancer types (breast, colorectal, and kidney), genes up in 

metastasis are anti-enriched within the corresponding normal tissues and genes down in metastasis are enriched within normal tissues. 

With breast cancer, for example, this can reflect that the metastasis sample biopsy has more non-breast cells and less breast cells as 

compared to the primary sample biopsy. The genes arising from the above metastasis versus primary paired comparisons were not 

used as the basis for defining our PDX-based molecular subtypes. 

  





 

Figure S2. Determining the number of pan-cancer metastasis subtypes. (a) Pan-cancer molecular subtyping of tumor metastases 

based on TCGA-based subtypes. Pan-cancer molecular subtypes were previously defined using The Cancer Genome Atlas (TCGA) 

datasets2. Gene expression profiles of PDX tumors and patient tumor metastases in our compendium datasets were each classified 

according to TCGA-based subtype c1 through c10. Expression patterns for the previously-defined top set of 854 mRNAs 

distinguishing between the ten TCGA-based subtypes2 are shown for TCGA, PDX, and patient tumor metastases datasets. TCGA 

subtype-specific expression patterns across the datasets are highlighted. SD, standard deviations from the median within a given 

dataset and within cancer type. See part b for color coding. (b) Expression-based subtyping of patient tumor metastases resulted in 

subtypes that would be confounded with tissue biopsy site. Consensus ward linkage hierarchical clustering identified k = 10 subtypes 

represented in our patient tumor metastasis compendium of 2405 metastasis samples. Differential expression patterns for the top 2000 

most variable genes used in the clustering are represented. Also represented are genes higher (p<0.05, t-test on log2-transformed 

expression data) in normal liver versus other tissues, based on analysis of the GTex dataset1. As seen here, the k7 subtype was highly 

enriched for metastases sampled from the liver and was strongly associated with liver-specific genes. Also, the k9 subtype was 

enriched (p<1E-6, one-sided Fisher’s exact test) for samples from lung, and the k3 subtype was enriched for samples from the lymph 

node. Problematic results such as the above led us to utilize expression data from PDX models in our final analysis, where the 

contribution of non-cancer cells would be much less of a factor. For expression heat map, SD represents standard deviations from the 

median within a given cancer type and within a given dataset. (c) For the patient tumor metastasis compendium dataset, the 

significance of overlap between the patient tumor metastasis-based subtype assignments (from part a) and the final PDX-based 

subtype assignments used in the final study (from main Figure 1) is indicated. P-values by one-sided Fisher’s exact test. Some overlap 

between the respective assignments is observed, though the final PDX-based subtyping results could be considered the cleaner 

solution that avoided subtypes strongly associated with biopsy site. (d) Determination of pan-cancer subtypes using the PDX 

compendium dataset. Consensus ward linkage hierarchical clustering identified k = 2 to k = 15 subtypes, based on the 2371 tumors in 

our PDX compendium dataset. The significance of overlap of previously identified pan-cancer subtypes based on TCGA cohort 

predominantly representing primary cancer2 (c1-c10, rows) with subtypes obtained from the PDX compendium dataset. Subtype 

solutions from 6 subtypes to 10 subtypes are represented here. P-values by one-sided Fisher’s exact test. We expected perhaps ten or 

fewer subtypes, based on previous studies2-4 (given that subtypes representing immune or stroma infiltration would not be represented 

in the PDX-based subtypes). Beyond a 7-subtype solution, additional subtypes identified did not encapsulate the previous subtypes 

and were not well represented in both GEO and PDXNet/PDMR compendium subsets. The 7-subtype solution was therefore selected 



and explored further below. (e) Across the 2371 PDX tumor expression profiles, differential expression patterns for the set of 2000 

genes used to define the original subtypes (left) and for another set of 800 genes (right) found to best distinguish between the 

respective subtypes in the final 4-subtype solution (top ~200 over-expressed mRNAs for each subtype). Expression values are 

normalized within each given cancer type and each given dataset (SD, standard deviation from the median within a given cancer type 

within a given dataset). On the left, the 7-subtype solution from consensus ward linkage hierarchical clustering (part c) is considered, 

where subtypes 5, 6, and 7 are almost entirely represented in either GEO datasets or the PDXNet/PDMR subsets but not both. In 

contrast, we believed that robust subtype associations should involve multiple datasets. Therefore, we reclassified the profiles in k 

subtypes 5-7 according to the best fit among subtypes 1-4 to arrive at the final 4-subtype solution (s1 through s4), represented on the 

right. (f) Left, association of molecular subtype (s1-s4) with metastasis biopsy site; right, association of molecular subtype with cancer 

type by tissue of origin, based on the patient metastasis compendium dataset. Overall, strong associations are not observed here, 

except for s1 subtype significantly associating with colorectal tumors (though not exclusive to this cancer type). Of the 695 colorectal 

metastasis samples in the patient metastasis compendium, 586 were biopsied from the liver (Data File S1). The enrichment of s1 for 

colorectal tumors would therefore largely explain the more moderate association of s1 with liver biopsy site. Related to Figure 1. 



 

Figure S3. Differential expression patterns associated with PDX-based molecular subtypes are attributable to the cancer cells, 

not the host. (a) Sequencing reads were aligned to both human and mouse genomes for two of the RNA-seq datasets represented in 

our PDX compendium (GSE1189425 and GSE1597026). For these two datasets, expression patterns for the top set of 800 subtype-

specific mRNAs distinguishing between the four PDX-based subtypes (from Figure 1a) are shown for both the expression data from 

human genome alignments (left) and the expression data from mouse genome alignments (right). The subtype-specific differential 

expression patterns are observed here in the version of the dataset based on human genome alignments but not in the version based on 

mouse genome alignments, indicating that the patterns are specific to the human cells of the tumor and not the mouse cells of the host. 



(b) For each of the four subtypes, boxplots of the log2 read counts for the top 100 associated genes (from Figure 1a) based on human 

versus mouse alignments. On average, the log2 read counts are much higher for human than for mouse. (c) For each of the four 

subtypes, boxplots of the differential t-statistics (comparing for each subtype the average expression levels versus the rest of the 

tumors by t-test) for the top 100 associated genes (from Figure 1a) based on human versus mouse alignments. Consistent with the heat 

map representation in part a, the results from the human alignments but not the results from the mouse alignments show statistical 

significance within the GSE118942/GSE159702 combined dataset. Box plots represent 5% (lower whisker), 25% (lower box), 50% 

(median), 75% (upper box), and 95% (upper whisker). The above results based on RNA-seq alignments are consistent with analogous 

experiments previously carried out using expression arrays7,8, which would be relevant for the expression datasets in the PDX 

compendium based on array platform. Related to Figure 1. 

 



 



Figure S4. Observation of PDX-based molecular subtypes at the proteomic level. (a) The 287 TCGA tumors with mass 

spectrometry-based proteomic data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)3 were classified according to 

PDX-based molecular subtype (Figure 1a). Expression patterns for a top set of 754 genes distinguishing between the four molecular 

subtypes based on the PDX transcriptomic compendium dataset (based on available proteomic data from the top 800 mRNAs from 

Figure 1a) are shown for both the TCGA mRNA dataset (left) and the TCGA proteomic dataset (right). Tumor profiles in both 

datasets are ordered by PDX-based subtype as assigned using mRNA data. Subtype-specific signature patterns high in each subtype by 

mRNA data are highlighted. (b) For the TCGA tumors with mass spectrometry-based proteomic data, the significance of overlap of 

the s1-s4 PDX-based subtypes as assigned based on mRNA data (rows) and on mass spectrometry-based proteomic data (columns). 

Enrichment p-values by one-sided Fisher’s exact test. (c) The 7206 TCGA tumors with reverse-phase protein array (RPPA) data were 

classified according to PDX-based molecular subtype (from Figure 1a). Expression patterns for a top set of 129 genes distinguishing 

between the four molecular subtypes based on the PDX transcriptomic compendium dataset (see the section “Methods”, based on 

available data) are shown for both the TCGA mRNA dataset (left) and the TCGA RPPA proteomic dataset (right). Tumor profiles in 

both datasets are ordered by PDX-based subtype as assigned using mRNA data. Subtype-specific signature patterns high in each 

subtype by mRNA data are highlighted. (d) For the TCGA tumors with RPPA data, the significance of overlap of the s1-s4 PDX-

based subtypes as assigned based on mRNA data (rows) and on RPPA data (columns). Enrichment p-values by one-sided Fisher’s 

exact test. The limitations of the proteomics-based analyses would include more limited proteomic data availability on tumors 

compared to mRNA and the fact that mRNA and protein levels do not highly correlate across tumors3. Despite these limitations, 

significant levels of concordance are observed here between the mRNA-based subtyping and the protein-based subtyping (parts b and 

d). (e) Observation of PDX-based molecular subtypes at the proteomic level in cancer cell lines. The 922 cell lines with both mRNA 

data and mass spectrometry-based proteomic data 9 were classified according to PDX-based molecular subtype (from Figure 1a). 

Expression patterns for a top set of 694 mRNA distinguishing between the four molecular subtypes based on the PDX transcriptomic 

compendium dataset (based on available proteomic data from the top 800 mRNAs from Figure 1a) are shown for both the mRNA 

dataset (left) and the proteomic dataset (right). Cell line profiles in both datasets are ordered by PDX-based subtype as assigned using 

mRNA data. Subtype-specific signature patterns high in each subtype by mRNA data are highlighted. (f) For the 922 cell lines, the 

significance of overlap of the s1-s4 PDX-based subtypes as assigned based on mRNA data (rows) and on mass spectrometry-based 

proteomic data (columns). Enrichment p-values by one-sided Fisher’s exact test. Related to Figure 1. 



 

  



Figure S5. Additional information involving paired metastasis-primary comparisons (a) Expression changes in immune cell 

markers involving the s4 subtype. For the patient tumor metastases compendium dataset, the heat map shows differential patterns for 

key genes representing immune cell markers4. On the right are the corresponding gene-level t-statistics (by t-test), comparing tumors 

in the given subtype with the rest of the tumors. Most of these markers tend to be highest in the s4 subtype. (b) For the 307 patient 

tumor metastasis expression profiles for which expression profiles for the paired primary were available, both the primary and the 

metastasis were classified for the PDX-based subtypes (Figure 2c). The expression heat map represents the immune cell marker 

expression patterns of the tumor metastases in relation to the patterns for the corresponding paired primary tumors. In many instances, 

subtype switching events in patient metastases could be associated with expression changes in immune cell markers involving the s4 

subtype. These patterns are highlighted, for example, in the heat maps in part b showing the average differential expression patterns in 

the paired primary versus paired metastasis samples. (c) Subtype-specific gene expression differences overlap highly with metastasis 

versus paired primary differences, focusing on the genes under-expressed by subtype. Schematic of gene set comparisons. For each 

PDX-based subtype, the set of genes low within that subtype versus the rest of the PDX tumors were overlapped with the set of genes 

low in patient metastases of the same PDX-based subtype versus the corresponding paired primaries. A set of 1459 genes involve 

significant gene set overlaps (p<1E-10, one-sided Fisher’s exact test) between PDX comparisons and paired patient metastasis 

comparisons for the same subtype, involving all four subtypes. (d) Significance of overlap between the genes low within each of the 

PDX-based subtypes (using t-test p<0.01, based on analysis of PDX compendium) and the genes low within paired patient metastasis 

versus primary within each subtype (p<0.01, paired t-test, based on analysis of the patient tumor metastasis compendium). P-values by 

one-sided Fisher’s exact test. From these results, a set of 1459 genes involve significant gene set overlap (p<0.0001) for the same 

subtypes (e.g., 319 overlapping s1-s1 genes, 359 s2-s2 genes, etc.). (e) Differential expression patterns for the top set of 1459 genes 

involving significant gene set overlaps for any of the four PDX-based subtypes are shown across the PDX compendium dataset 

(differential expression relative to other tumors), patient tumor metastases compendium dataset (relative to other tumor metastases), 

and patient tumor metastasis versus paired primary compendium dataset (relative to primary pair). Subtype-specific expression 

patterns are highlighted. Related to Figure 3. 

 



 



Figure S6. Differential expression patterns involving key genes in specific pathways. For PDX and patient tumor metastases 

compendium datasets, heat maps show differential patterns for key genes of interest highlighted elsewhere (e.g., genes in pathways 

highlighted in Figure 6). On the right are the corresponding gene-level t-statistics (by t-test), comparing tumors in the given subtype 

with the rest of the tumors. Related to Figure 6. 

  



 

Figure S7. Lineage-specific gene expression patterns involving TFs with associations by subtype. (a) Top TF associations by 

subtype, taken from Figure 4b. The differential expression statistics by PDX-based subtype are represented for the top set of 35 TFs 

with both significant overlap between the TF-bound genes and genes over-expressed in the expression subtype and significantly 

higher or lower levels of the TF gene in that same subtype (both PDX and patient metastasis compendium datasets). (b) For the TF 

genes in part a, the corresponding differential expression patterns in the PDXNet dataset. The PDXNet dataset is normalized in two 



ways: by cross-tissue normalization (top, values normalized to standard deviations from the median across all tumors) and within-

tissue normalization (bottom, values normalized within each cancer type to standard deviations from the median). (c) Similar to part b, 

representing the TCGA pan-cancer dataset as normalized in the two different ways. We used the within-tissue normalization approach 

to compile our compendium expression datasets and the downstream analyses. By design, tissue-specific or lineage-specific 

expression differences are removed by within-tissue normalization, allowing us to identify pan-cancer subtypes that would transcend 

tissue- or cell-of-origin. The PDXNet and TCGA datasets feature cancers of various types profiled uniformly on a common platform, 

allowing us to examine expression patterns by cross-tissue normalization. With cross-tissue normalization, lineage-specific TF gene 

expression patterns can be observed. As intended, within-tissue normalization allows us to identify uniform differential patterns within 

a given pan-cancer subtype. Related to Figure 4. 
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