Cell Reports Medicine, Volume 4

Supplemental information

An adverse tumor-protective effect

of IDO1 inhibition

Juliana C.N. Kenski, Xinyao Huang, David W. Vredevoogd, Beaunelle de Bruijn, Joleen J.H. Traets, Sofía Ibáñez-Molero, Sebastiaan M. Schieven, Alex van Vliet, Oscar Krijgsman, Thomas Kuilman, Joanna Pozniak, Fabricio Loayza-Puch, Alexandra M. Terry, Judith Müller, Meike E.W. Logtenberg, Marjolein de Bruijn, Pierre Levy, Pierre-René Körner, Colin R. Goding, Ton N. Schumacher, Jean-Christophe Marine, Reuven Agami, and Daniel S. Peeper

Supplemental file.

Figure S1

1

Figure S1 (related to Fig. 1). Tryptophan restoration by IDO1 inhibition protects tumor cells to T cell-mediated killing. a, Mel624 and BLM melanoma cell lines were exposed to 1D3-specific (MART-1) T cells for 24 hrs. Cells were stained with crystal violet after 6 days. Untransduced T cells and T cells containing the CMVspecific TCR (NLV) were used as controls to determine TCR-specific killing. b, Quantification of Fig. 1e. Statistical testing of the IFNy only group was performed against its control, whereas in the epacadostat-treated groups it was compared to the corresponding IFNy dose. c, A375-MelanA cells were co-cultured with MART-1 T cells at indicated effector to target ratios in the presence or absence of epacadostat (2uM). Cells were fixed and stained with crystal violet after 6 days. Graph shows quantification of the remaining viable melanoma cells. Statistical testing was done to compare both the effect of T cells against control (untreated) and T cells versus T cell+Epacadostat in each respective ratio. **d**, Growth curves of in vivo experiment shown in Fig. 1f. e, B16-F10 melanoma cells expressing the model antigen ovalbumin (OVA) were injected into immunocompetent Black6 mice (n=14) and treated daily with either epacadostat (100mg/kg) or vehicle control by oral gavage. Tumors were measured three times a week and individual tumor sizes for the last time point when all the mice were alive. Statistical significance tested by Mann-Whitney. f, CD8-depleting antibody and isotype control were injected into immunocompetent Black6 mice until CD8⁺ T cells were depleted (confirmed in the blood of treated mice by flow cytometry). B16-F10 melanoma cells expressing the model antigen ovalbumin (OVA) were injected after depletion was confirmed and tumors were measured three times a week and average tumor size +/- SEM are plotted in the graph. Graph shows individual tumor sizes for the last time point when all the mice from both groups were alive. Statistical significance tested by Mann-Whitney. In e, f, the experiment was done in parallel, but they have different time points due to distinct endpoints of each experiment. g, Quantification of Fig. 1h. Statistical testing of IFNy and MART-1 T cell only groups was performed against their own controls. h. Quantification of Fig. 1j. Bars represent +/- SD for in vitro and SEM for in vivo. Statistical testing was performed on the three technical replicates by one-way Anova with Tukey's *Post-hoc* test. $*=p \le 0.05$; $**=p \le 0.01$; $***=p \le 0.001$; $****=p \le 0.0001$. One-way Anova with Šidák's Post-Hoc for c, d. In vitro experiments (except 1a) were performed in two biological replicates with three technical replicates each.

Figure S2

Figure S2 (related to Fig. 3). Expression of IFN γ **pathway components by RNA-Sequencing.** *IFN* γ *R1, IFN* γ *R2, JAK1, JAK2* and *STAT1* RNA levels were determined by RNA sequencing, which was performed in 2 independent biological replicates.

Figure S3

Figure S3 (related to Fig. 4). On treatment MITF downregulation predicts clinical outcome of anti-CTLA4-treated patients. Average change in gene expression upon treatment (pre- versus on-treatment) of MITF target genes in responders and non-responders to anti-CTLA-4 [S1].

References

[S1] Ji, R.R., Chasalow, S.D., Wang, L., Hamid, O., Schmidt, H., Cogswell, J., Alaparthy, S., Berman, D., Jure-Kunkel, M., Siemers, N.O., et al. (2012). An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunology, Immunotherapy *61*, 1019–1031. 10.1007/s00262-011-1172-6.