Cell Reports Medicine, Volume 4

## **Supplemental information**

# Accelerated SARS-CoV-2 intrahost evolution

#### leading to distinct genotypes

### during chronic infection

Chrispin Chaguza, Anne M. Hahn, Mary E. Petrone, Shuntai Zhou, David Ferguson, Mallery I. Breban, Kien Pham, Mario A. Peña-Hernández, Christopher Castaldi, Verity Hill, Yale SARS-CoV-2 Genomic Surveillance Initiative, Wade Schulz, Ronald I. Swanstrom, Scott C. Roberts, and Nathan D. Grubaugh Supplemental information

# Accelerated SARS-CoV-2 intrahost evolution leading to distinct genotypes during chronic infection

Chrispin Chaguza, Anne M. Hahn, Mary E. Petrone, Shuntai Zhou, David Ferguson, Mallery I. Breban, Kien Pham, Mario A. Peña-Hernández, Christopher Castaldi, Verity Hill, Yale SARS-CoV-2 Genomic Surveillance Initiative,

 Table S1. Summary of chronic SARS-CoV-2 lineage B.1.517 infection samples included in this study. Related to Figure 2.

| Sequence ID                     | GISAID accession | Days since<br>first positive<br>RT-PCR test | RT-PCR<br>Ct value | Virus<br>copies per<br>mL | Infectious<br>virus | Primer ID<br>sequencing | Dominant<br>intrahost<br>genotype | Primers     |
|---------------------------------|------------------|---------------------------------------------|--------------------|---------------------------|---------------------|-------------------------|-----------------------------------|-------------|
| hCoV-19/USA/CT-Yale-12056/2021  | EPI_ISL_10548915 | 79                                          | 20.5               | 3.01×10 <sup>08</sup>     | Yes                 | Yes                     | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-12057/2021  | EPI_ISL_10548916 | 89                                          | 22.1               | $1.13 \times 10^{08}$     | Not tested          | Not done                | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-12058/2021  | EPI_ISL_10548917 | 97                                          | 15.6               | 6.04×10 <sup>09</sup>     | Yes                 | Yes                     | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-12059/2021  | EPI_ISL_10548918 | 104                                         | 25.2               | $1.69 \times 10^{07}$     | No tested           | Not done                | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-12060/2021  | EPI_ISL_10548919 | 135                                         | 24.4               | 2.76×10 <sup>07</sup>     | Not tested          | Yes                     | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-4087/2021   | EPI_ISL_2035047  | 149                                         | 23.2               | 5.76×10 <sup>07</sup>     | Yes                 | Yes                     | 1                                 | Illumina V3 |
| hCoV-19/USA/CT-Yale-12061/2021  | EPI_ISL_10548920 | 162                                         | 25.9               | $1.10 \times 10^{07}$     | Not tested          | Not done                | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-12062/2021  | EPI_ISL_10548921 | 184                                         | 28.5               | $2.25 \times 10^{06}$     | Not tested          | Not done                | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-5581/2021   | EPI_ISL_2716246  | 192                                         | 23.5               | 4.80×10 <sup>07</sup>     | Not tested          | Yes                     | 1                                 | Illumina V3 |
| hCoV-19/USA/CT-Yale-5673/2021   | EPI_ISL_2776212  | 205                                         | 21.5               | 1.63×10 <sup>08</sup>     | Yes                 | Yes                     | 1                                 | Illumina V3 |
| hCoV-19/USA/CT-Yale-5792/2021   | EPI_ISL_2860316  | 212                                         | 29                 | 1.66×10 <sup>06</sup>     | Not tested          | Yes                     | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-12063/2021  | EPI_ISL_10548922 | 219                                         | 27.2               | 4.98×10 <sup>06</sup>     | Not tested          | Not done                | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-6136/2021   | EPI_ISL_3133023  | 233                                         | 22.3               | $1.00 \times 10^{08}$     | Not tested          | Yes                     | 1                                 | NEB V3      |
| hCoV-19/USA/CT-Yale-6819/2021   | EPI_ISL_3370176  | 247                                         | 20.9               | $2.35 \times 10^{08}$     | Not tested          | Yes                     | 1                                 | Illumina V3 |
| hCoV-19/USA/CT-Yale-9391/2021   | EPI_ISL_4198270  | 281                                         | 17.6               | $1.77 \times 10^{09}$     | Yes                 | Yes                     | 2                                 | Illumina V3 |
| hCoV-19/USA/CT-Yale-9977/2021   | EPI_ISL_4576991  | 291                                         | 23.53              | 4.71×10 <sup>07</sup>     | Not tested          | Yes                     | 2                                 | Illumina V3 |
| hCoV-19/USA/CT-Yale-10101R/2021 | EPI_ISL_10548912 | 296                                         | 22.11              | $1.12 \times 10^{08}$     | Not tested          | Not done                | 1                                 | NEB V3      |

| hCoV-19/USA/CT-Yale-10960/2021 | EPI_ISL_10548913 | 310 | 29.9  | 9.54×10 <sup>05</sup> | Yes        | Not done | 2 | NEB V3   |
|--------------------------------|------------------|-----|-------|-----------------------|------------|----------|---|----------|
| hCoV-19/USA/CT-Yale-11558/2021 | EPI_ISL_5395558  | 317 | 24.6  | $2.45 \times 10^{07}$ | Not tested | Yes      | 2 | NEB V3   |
| hCoV-19/USA/CT-Yale-11887/2021 | EPI_ISL_5639913  | 325 | 29.1  | $1.56 \times 10^{06}$ | Yes        | Not done | 2 | NEB V3   |
| hCoV-19/USA/CT-Yale-12124/2021 | EPI_ISL_5865553  | 332 | 25.4  | $1.50 \times 10^{07}$ | Not tested | Yes      | 2 | NEB V3   |
| hCoV-19/USA/CT-Yale-13443/2021 | EPI_ISL_7361483  | 347 | 28.3  | 2.54×10 <sup>06</sup> | Yes        | Yes      | 1 | IDT V4   |
| hCoV-19/USA/CT-Yale-13444/2021 | EPI_ISL_7361527  | 353 | 32.5  | 1.94×10 <sup>05</sup> | Not tested | Not done | 1 | IDT V4   |
| hCoV-19/USA/CT-Yale-14026/2021 | EPI_ISL_7980711  | 360 | 26.3  | 8.64×10 <sup>06</sup> | Not tested | Yes      | 2 | IDT V4.1 |
| hCoV-19/USA/CT-Yale-15439/2021 | EPI_ISL_8563219  | 381 | 21.2  | 1.96×10 <sup>08</sup> | Yes        | Yes      | 1 | IDT V4   |
| hCoV-19/USA/CT-Yale-15438/2021 | EPI_ISL_8563218  | 394 | 33.6  | 9.91×10 <sup>04</sup> | No         | Not done | 3 | IDT V4   |
| hCoV-19/USA/CT-Yale-15437/2021 | EPI_ISL_8563217  | 401 | 26.1  | 9.77×10 <sup>06</sup> | Yes        | Yes      | 3 | IDT V4   |
| hCoV-19/USA/CT-Yale-17291/2022 | EPI_ISL_10815044 | 446 | 34.1  | 7.30×10 <sup>04</sup> | Not tested | Not done | 2 | IDT V4.1 |
| hCoV-19/USA/CT-Yale-17881/2022 | EPI_ISL_11025821 | 459 | 30.03 | 8.81×10 <sup>05</sup> | Not tested | Not done | 2 | IDT V4.1 |
| hCoV-19/USA/CT-Yale-18086/2022 | EPI_ISL_11503909 | 471 | 30.9  | 5.18×10 <sup>05</sup> | No         | Not done | 2 | IDT V4.1 |

Table S2. Summary of sequenced SARS-CoV-2 genomes analyzed in this study collected from the infected immunocompromised patient. Related to Figures 2-6.

| Sequence ID                     | Sequence data repository | Accession number |
|---------------------------------|--------------------------|------------------|
| hCoV-19/USA/CT-Yale-12056/2021  | GISAID                   | EPI_ISL_10548915 |
| hCoV-19/USA/CT-Yale-12057/2021  | GISAID                   | EPI_ISL_10548916 |
| hCoV-19/USA/CT-Yale-12058/2021  | GISAID                   | EPI_ISL_10548917 |
| hCoV-19/USA/CT-Yale-12059/2021  | GISAID                   | EPI_ISL_10548918 |
| hCoV-19/USA/CT-Yale-12060/2021  | GISAID                   | EPI_ISL_10548919 |
| hCoV-19/USA/CT-Yale-4087/2021   | GISAID                   | EPI_ISL_2035047  |
| hCoV-19/USA/CT-Yale-12061/2021  | GISAID                   | EPI_ISL_10548920 |
| hCoV-19/USA/CT-Yale-12062/2021  | GISAID                   | EPI_ISL_10548921 |
| hCoV-19/USA/CT-Yale-5581/2021   | GISAID                   | EPI_ISL_2716246  |
| hCoV-19/USA/CT-Yale-5673/2021   | GISAID                   | EPI_ISL_2776212  |
| hCoV-19/USA/CT-Yale-5792/2021   | GISAID                   | EPI_ISL_2860316  |
| hCoV-19/USA/CT-Yale-12063/2021  | GISAID                   | EPI_ISL_10548922 |
| hCoV-19/USA/CT-Yale-6136/2021   | GISAID                   | EPI_ISL_3133023  |
| hCoV-19/USA/CT-Yale-6819/2021   | GISAID                   | EPI_ISL_3370176  |
| hCoV-19/USA/CT-Yale-9391/2021   | GISAID                   | EPI_ISL_4198270  |
| hCoV-19/USA/CT-Yale-9977/2021   | GISAID                   | EPI_ISL_4576991  |
| hCoV-19/USA/CT-Yale-10101R/2021 | GISAID                   | EPI_ISL_10548912 |
| hCoV-19/USA/CT-Yale-10960/2021  | GISAID                   | EPI_ISL_10548913 |

| hCoV-19/USA/CT-Yale-11558/2021 | GISAID                | EPI_ISL_5395558  |
|--------------------------------|-----------------------|------------------|
| hCoV-19/USA/CT-Yale-11887/2021 | GISAID                | EPI_ISL_5639913  |
| hCoV-19/USA/CT-Yale-12124/2021 | GISAID                | EPI_ISL_5865553  |
| hCoV-19/USA/CT-Yale-13443/2021 | GISAID                | EPI_ISL_7361483  |
| hCoV-19/USA/CT-Yale-13444/2021 | GISAID                | EPI_ISL_7361527  |
| hCoV-19/USA/CT-Yale-14026/2021 | GISAID                | EPI_ISL_7980711  |
| hCoV-19/USA/CT-Yale-15439/2021 | GISAID                | EPI_ISL_8563219  |
| hCoV-19/USA/CT-Yale-15438/2021 | GISAID                | EPI_ISL_8563218  |
| hCoV-19/USA/CT-Yale-15437/2021 | GISAID                | EPI_ISL_8563217  |
| hCoV-19/USA/CT-Yale-17291/2022 | GISAID                | EPI_ISL_10815044 |
| hCoV-19/USA/CT-Yale-17881/2022 | GISAID                | EPI_ISL_11025821 |
| hCoV-19/USA/CT-Yale-18086/2022 | GISAID                | EPI_ISL_11503909 |
| hCoV-19/USA/CT-Yale-12056/2021 | Sequence Read Archive | SRR23085675      |
| hCoV-19/USA/CT-Yale-12057/2021 | Sequence Read Archive | SRR23085674      |
| hCoV-19/USA/CT-Yale-12058/2021 | Sequence Read Archive | SRR23085663      |
| hCoV-19/USA/CT-Yale-12059/2021 | Sequence Read Archive | SRR23085652      |
| hCoV-19/USA/CT-Yale-12060/2021 | Sequence Read Archive | SRR23085651      |
| hCoV-19/USA/CT-Yale-4087/2021  | Sequence Read Archive | SRR23085650      |
| hCoV-19/USA/CT-Yale-12061/2021 | Sequence Read Archive | SRR23085649      |
| hCoV-19/USA/CT-Yale-12062/2021 | Sequence Read Archive | SRR23085648      |

| hCoV-19/USA/CT-Yale-5581/2021   | Sequence Read Archive | SRR23085647 |
|---------------------------------|-----------------------|-------------|
| hCoV-19/USA/CT-Yale-5673/2021   | Sequence Read Archive | SRR23085646 |
| hCoV-19/USA/CT-Yale-5792/2021   | Sequence Read Archive | SRR23085673 |
| hCoV-19/USA/CT-Yale-12063/2021  | Sequence Read Archive | SRR23085672 |
| hCoV-19/USA/CT-Yale-6136/2021   | Sequence Read Archive | SRR23085671 |
| hCoV-19/USA/CT-Yale-6819/2021   | Sequence Read Archive | SRR23085670 |
| hCoV-19/USA/CT-Yale-9391/2021   | Sequence Read Archive | SRR23085669 |
| hCoV-19/USA/CT-Yale-9977/2021   | Sequence Read Archive | SRR23085668 |
| hCoV-19/USA/CT-Yale-10101R/2021 | Sequence Read Archive | SRR23085667 |
| hCoV-19/USA/CT-Yale-10960/2021  | Sequence Read Archive | SRR23085666 |
| hCoV-19/USA/CT-Yale-11558/2021  | Sequence Read Archive | SRR23085665 |
| hCoV-19/USA/CT-Yale-11887/2021  | Sequence Read Archive | SRR23085664 |
| hCoV-19/USA/CT-Yale-12124/2021  | Sequence Read Archive | SRR23085662 |
| hCoV-19/USA/CT-Yale-13443/2021  | Sequence Read Archive | SRR23085661 |
| hCoV-19/USA/CT-Yale-13444/2021  | Sequence Read Archive | SRR23085660 |
| hCoV-19/USA/CT-Yale-14026/2021  | Sequence Read Archive | SRR23085659 |
| hCoV-19/USA/CT-Yale-15439/2021  | Sequence Read Archive | SRR23085658 |
| hCoV-19/USA/CT-Yale-15438/2021  | Sequence Read Archive | SRR23085657 |
| hCoV-19/USA/CT-Yale-15437/2021  | Sequence Read Archive | SRR23085656 |
| hCoV-19/USA/CT-Yale-17291/2022  | Sequence Read Archive | SRR23085655 |

| hCoV-19/USA/CT-Yale-17881/2022 | Sequence Read Archive | SRR23085654 |
|--------------------------------|-----------------------|-------------|
| hCoV-19/USA/CT-Yale-18086/2022 | Sequence Read Archive | SRR23085653 |

| a                 | Mutations or substitutions per year (s/y) |              |              | Mutations or substitutions per site year (s/s/y) |                        |                        | D                         |  |
|-------------------|-------------------------------------------|--------------|--------------|--------------------------------------------------|------------------------|------------------------|---------------------------|--|
| Strain            | Estimate                                  | Lower 95% CI | Upper 95% CI | Estimate                                         | Lower 95% CI           | Upper 95% CI           | Regression K <sup>2</sup> |  |
| Chronic infection | 35.55                                     | 31.56        | 39.54        | 1.21×10 <sup>-03</sup>                           | 1.07×10 <sup>-03</sup> | 1.34×10 <sup>-03</sup> | 0.92                      |  |
| Theta             | 24.74                                     | 22.23        | 27.26        | 8.41×10 <sup>-04</sup>                           | 7.56×10 <sup>-04</sup> | 9.27×10 <sup>-04</sup> | 0.67                      |  |
| All lineages      | 17.16                                     | 16.36        | 17.96        | 5.83×10 <sup>-04</sup>                           | 5.56×10 <sup>-04</sup> | 6.11×10 <sup>-04</sup> | 0.41                      |  |
| B.1.517 (other)   | 16.93                                     | 13.46        | 20.41        | 5.76×10 <sup>-04</sup>                           | 4.58×10 <sup>-04</sup> | 6.94×10 <sup>-04</sup> | 0.51                      |  |
| Lambda            | 15.30                                     | 13.96        | 16.64        | 5.20×10 <sup>-04</sup>                           | 4.75×10 <sup>-04</sup> | 5.66×10 <sup>-04</sup> | 0.59                      |  |
| Omicron           | 12.26                                     | 9.68         | 14.84        | 4.17×10 <sup>-04</sup>                           | 3.29×10 <sup>-04</sup> | 5.05×10 <sup>-04</sup> | 0.24                      |  |
| Mu                | 11.05                                     | 9.62         | 12.49        | 3.76×10 <sup>-04</sup>                           | 3.27×10 <sup>-04</sup> | 4.25×10 <sup>-04</sup> | 0.35                      |  |
| Gamma             | 10.62                                     | 9.27         | 11.97        | 3.61×10 <sup>-04</sup>                           | 3.15×10 <sup>-04</sup> | 4.07×10 <sup>-04</sup> | 0.34                      |  |
| Zeta              | 10.26                                     | 8.56         | 11.96        | 3.49×10 <sup>-04</sup>                           | 2.91×10 <sup>-04</sup> | 4.07×10 <sup>-04</sup> | 0.27                      |  |
| Iota              | 9.31                                      | 7.45         | 11.17        | 3.17×10 <sup>-04</sup>                           | 2.53×10 <sup>-04</sup> | 3.80×10 <sup>-04</sup> | 0.20                      |  |
| Epsilon           | 8.98                                      | 7.56         | 10.41        | 3.05×10 <sup>-04</sup>                           | 2.57×10 <sup>-04</sup> | 3.54×10 <sup>-04</sup> | 0.30                      |  |
| Delta             | 8.96                                      | 7.64         | 10.27        | 3.05×10 <sup>-04</sup>                           | 2.60×10 <sup>-04</sup> | 3.49×10 <sup>-04</sup> | 0.24                      |  |
| Beta              | 8.93                                      | 7.46         | 10.39        | 3.04×10 <sup>-04</sup>                           | 2.54×10 <sup>-04</sup> | 3.53×10 <sup>-04</sup> | 0.27                      |  |
| Alpha             | 8.91                                      | 7.83         | 9.99         | 3.03×10 <sup>-04</sup>                           | 2.66×10 <sup>-04</sup> | 3.40×10 <sup>-04</sup> | 0.29                      |  |

 Table S3. Nucleotide substitution or mutation rates of the chronic infection samples and other SARS-CoV-2 variants. Related to Figure 3.

Table S4. cDNA and forward primer sequences for Multiplexed Primer ID (MPID) MiSeq library preparation for the SARS-CoV-2 S gene and nsp12. Related to Figure 6.

| Mix A    |                                                                            |                                                                      |
|----------|----------------------------------------------------------------------------|----------------------------------------------------------------------|
| Region   | cDNA primer with Primer ID                                                 | First Round PCR Forward                                              |
| S-N-3    | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN<br>NNNNCAGTAGTACCAAAAATCCAGCCTCT  | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>AAGGGGTACTGCTGTTATGT   |
| S-RBD-1  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN<br>NNNNCAGTAGTTGCTGATTCTCTTCCTGT | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>AATTTAGTGCGTGATCTCCCT  |
| S-RBD-10 | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN<br>NNNNCAGTTGCTGGTGCATGTAGAAGTT  | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>TTCCGCATCATTTTCCACTTT  |
| S2-9     | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN<br>NNNNCAGTGGCAATGATGGATTGACTAGC | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>GGCACAGGTGTTCTTACTGA   |
| NSP12-5  | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN<br>NNNNCAGTGTGCCAACCACCATAGAATTT  | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>CTTCTTCTTTGCTCAGGATGG  |
| Mix B    |                                                                            |                                                                      |
| Region   | cDNA primer with Primer ID                                                 | First Round PCR Forward                                              |
| S1-15    | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN<br>NNNNCAGTGTTCTAAAGCCGAAAAACCCT  | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>TTGATAACCCTGTCCTACCA   |
| S-9      | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNN<br>NNNNCAGTAGCTATAACGCAGCCTGTAA   | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>TGTACGTTGAAATCCTTCACTG |

| S-gap-4 | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN<br>NNNNCAGTCAGGGACTTCTGTGCAGTTA | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>CCGGTAGCACACCTTGTAAT |
|---------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
| S2-3    | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN<br>NNNNCAGTGACCTCTTGCTTGGTTTTGA | GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN<br>TGCAGGTATATGCGCTAGTT |



Figure S1: Key adaptive immune parameters as obtained from longitudinal chart reviews. Related to Figure 2. (A) The red dotted lines show the serum concentration of Immunoglobulin G (IgG) (reference range from 700-1600 mg/dL). (B) Cell counts per  $\mu$ l blood for CD45<sup>+</sup> lymphocytes (reference range from 1170-3110/ $\mu$ l are shown by the red dotted lines) (C), CD3<sup>+</sup> T cells (reference range from 725-2300/ $\mu$ l are indicated by the red dotted lines) and (D) CD8<sup>+</sup> cytotoxic T cells (reference range from 150-980/ $\mu$ l are shown by the red dotted lines).



**Figure S2: Time-resolved phylogenetic tree showing genetic relatedness of the B.1.517 SARS-CoV-2 strains from the chronic infection and contextual genomes from Connecticut, USA. Related to Figures 1 and 2.** The B.1.517 sequences associated with the chronic infection formed a separate monophyletic clade from the rest of the B.1.517 sequences from Connecticut, USA indicating that there were no detectable onward transmission events from the patient with the chronic B.1.517 infection into the wider population in Connecticut, USA.



Figure S3: Genomes from B.1.517 chronic infection samples accelerated genetic divergence or higher mutation rates than other SAR-CoV-2 variants of interest and concern. Related to Figure 3. (A) Scatter plots show the relationship between phylogenetic root-to-tip distances, expressed as the number of mutations or nucleotide substitutions per site, and time as the number of days from the first sampled genome. The data points associated with the chronic infection are colored in red while those representing other variants are colored in sky blue. The lines and shaded bands surrounding them represent the linear regression models fitted to the data points for the chronic infection data and other variants. (B) Bar graph showing the average mutation rates expressed as the number of nucleotide substitutions per site per year (s/s/y) for the chronic infection samples and other variants based on the regression coefficients ( $\beta$ ) generated from the plots in panel A. Specific values for the mutation rate are shown in Table S3.



**Figure S4: High concordance of the frequency of single nucleotide variants of the spike glycoprotein mutations between samples deep sequenced with and without unique molecular identifiers (UMI). Related to Figure 6.** The genomic data without the UMIs were deep-sequenced using routine amplicon-based sequencing protocol using ARTIC V3, V4, and V4.1 primers for amplicon generation using 2×150 bp paired-end reads on an Illumina NovaSeq. Samples selected for deep-sequencing with the UMIs based on the Primer ID next-generation sequencing protocol were sequenced using MiSeq 2×300 bp paired-end reads. The insets show variants, colored in red, with frequencies between 0 to 0.1.



**Figure S5: Nucleotide variation in B.1.517 SARS-CoV-2 genomes longitudinally sampled from a chronically infected patient. Related to Figures 4-5.** Consensus sequences for each genome were compared against a reference genome, a reconstructed ancestral sequence for all the chronic infection genomes.



**Figure S6: Distribution of iSNVs or mutations detected in the deep-sequenced longitudinal chronic infection samples. Related to Figures 4-5.** The y-axis shows the number of iSNVs per kilobase for different SARS-CoV-2 genomic features based on the sequence annotations in the ancestral SARS-CoV-2 reference genome (GenBank accession: NC\_045512.2). The bars in the graph are colored by the variant or mutation type. Additional information is provided in **Data S1**.



Figure S7: Mutation spectra of identified twelve trinucleotides during the B.1.517 chronic infection stratified by codon position. Related to Figures 4-5. Additional information is provided in Data S1.



**Figure S8: Distribution of iSNVs or mutations detected in the deep-sequenced longitudinal chronic infection samples. Related to Figures 4-5.** Graph showing the number of samples containing each unique iSNV and its position in the ancestral SARS-CoV-2 reference genome. The y-axis labels on the right side of the plot show the number of iSNVs per gene and their position in the SARS-CoV-2 genomes stratified based on the sequence feature annotations in the ancestral SARS-CoV-2 reference genome (GenBank accession: NC\_045512.2). Additional information is provided in **Data S1**.



**Figure S9: Distribution of iSNVs or mutations detected in the deep-sequenced longitudinal chronic infection samples. Related to Figures 4-5.** The x-axis labels represent iSNVs corresponding to specific nucleotide substitutions and positions in the genome. The labels above the bars show the specific amino acid changes and their specific position in the SARS-CoV-2 genomes stratified based on the sequence feature annotations in the ancestral reference genome (GenBank accession: NC\_045512.2). All the iSNVs are colored by the variant or mutation type. Additional information is provided in **Data S1**.



Figure S10: Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in **Data S1**.



Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in Data S1.



Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in Data S1.



Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in Data S1.



Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in **Data S1**.



**Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. Related to Figure 6.** The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in **Data S1**.