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SUMMARY
The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investi-
gate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection last-
ing for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies.
During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions
per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution
results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the
establishment of spatially structured viral populations continually reseeding different genotypes into the
nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous muta-
tions and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic
infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically
divergent variants.
INTRODUCTION

Since the initial introduction of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) in late 2019, subsequent

coronavirus disease 2019 (COVID-19) waves have been pre-

dominantly driven by the emergence of variants with either

enhanced transmissibility or the ability to evade human immune

responses.1–7 The SARS-CoV-2 lineage B.1.1.7, designated as

Alpha by the World Health Organization (WHO), was the first

named variant. Alpha was initially associated with a large cluster

of cases in the United Kingdom before spreading globally.3 Anal-

ysis of the phylogenetic branch leading up to the B.1.1.7 clade

revealed a faster evolutionary rate compared with the back-

ground evolutionary rate,8 and the clade’s defining constellation
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of substitutions was associated with higher transmissibility

compared with other lineages circulating at the time.9 Similar

patterns of an unexpectedly long phylogenetic branch preceding

a clade with increased transmissibility, disease severity, or im-

mune evasion have been observed multiple times with other var-

iants, like Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and

Omicron (B.1.529), causing extensive morbidity and mortality

on national and international levels.1,2,10,11

Three mechanisms have been proposed for the emergence of

genetically divergent SARS-CoV-2 variants: (1) prolonged hu-

man-human transmission in an unsampled population, (2) circula-

tion in anunsampled zoonotic reservoir, and (3) chronic infection in

an immunocompromised individual. Of these, chronic infection is

the most plausible. Cryptic human-human transmission is unlikely
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to result in the increased evolutionary rate that is a hallmark of var-

iants. Retrospective sequencing of cases may shorten the length

of clade-defining branches, as was the case for Gamma (P.1),

which likely emerged through stepwise diversification via multiple

interhost transmissions.12 However, human-animal, followed by

animal-human, transmission has been documented repeatedly,

particularly in farmedmink populations,13 but there is no evidence

to suggest that these events would produce monophyletic clades

observed in most variants. Documented spillovers have not been

associated with increased evolutionary rates, nor have they led

to community transmission. In contrast, a chronic SARS-CoV-2

infection inan immunocompromised individual is thebestexplana-

tion for the emergence of Alpha based on evolutionary theory,

when gaps in surveillance can be discounted.8 Compared with

between-host transmission, within-host dynamics can lead to

increased evolutionary rates because the larger viral population

is subject to fewer genetic bottlenecks.14–16 This increases the

selective impact imposed by a semi-functioning immune system

relative to drift17 and, in the case of SARS-CoV-2, increases the

opportunity for recombination.18 While extended community

transmission associated with spillovers from animal reservoirs

has not been observed, viruses from chronic infections have

beendetected in thebroader community.19,20Despite this theoret-

ical and epidemiological evidence that chronic infections could

drive the emergence of variants, there is still a need for genomic

analyses investigating the prolonged within-host evolutionary

dynamics of the virus population in a chronically infected

individual.

Previous studies of chronic infections have shown that

individuals who are immunocompromised are at an elevated

risk of developing a persistent SARS-CoV-2 infection (Ta-

ble 1).21–26 However, the majority of these studies have

primarily focused on the clinical characteristics of the

patients rather than detailed intrahost evolution of the viral

genomes during chronic infection. An improved understand-

ing of SARS-CoV-2 evolution during chronic infections could

reveal targets for therapeutics to treat these infections and,

as discussed above, curb the evolution and emergence of

novel genetically divergent variants. In this study, we investi-

gate the intrahost genetic diversity and evolution of the

SARS-CoV-2 B.1.517 lineage during 471 days of chronic

infection of an immunocompromised individual suffering

from advanced lymphocytic leukemia and B cell lymphoma.

Here, we characterize the longitudinal dynamics of viral RNA

titers and infectious copies, intrahost genetic diversity, muta-

tional spectrum and frequency, and recombination. We

observe the accelerated evolution of SARS-CoV-2 during

infection, marked by the emergence of distinct coexisting

genotypes that could be designated as new lineages if trans-

mitted to the community. We further demonstrate that the

mutation accrual patterns of these genotypes resemble

those seen in SARS-CoV-2 variants, including Omicron, and

describe intrahost evolution dynamics to identify potential

hallmark mutations associated with chronic infection.

Together, our findings support the hypothesis that chronic in-

fections could lead to the emergence of genetically divergent

novel lineages with potentially high transmissibility and

immune escape.
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RESULTS

Chronic infection driving continued detection of B.1.517
in the United States
We identified the recurrent SARS-CoV-2 lineage B.1.517 in

Connecticut (USA), extinct elsewhere in the US and globally,

through our SARS-CoV-2 genomic surveillance initiative dataset

(started in January 2021 with the emergence of Alpha)

(Figures 1A and 1B). The B.1.517 lineage emerged in North

America (likely in the US) in approximately early January 2020

(95% confidence interval [CI]: November 2019 to March 2020)

(Figure 1C). Following its emergence, B.1.517 spread to several

US states and internationally, predominantly causing sporadic

cases, except in Australia, where an outbreak occurred (Fig-

ure 1D). Sequenced cases of B.1.517 in other countries re-

mained sporadic and relatively low in frequency (Figures 1A

and 1B). Lineage B.1.517 circulated until April 2021 in the US

and other countries; however, we continued to detect B.1.517

in our genomic surveillance in Connecticut (USA) until March

2022 (Figures 1A and 1B). We traced the recurrent B.1.517

sequences to an immunocompromised individual experiencing

a chronic SARS-CoV-2 infection lasting 471 days at the time of

writing (Figure 1E; Table 1). Our surveillance system captured

30 nasal swabs from this individual, and we sequenced SARS-

CoV-2 genomes from days 79 to 471 (February 2021 to

March 2022).

The patient found to be chronically infected with B.1.517 is in

their 60s with a history of diffuse large B cell lymphoma and un-

derwent an allogeneic haploidentical stem cell transplantation in

2019. In early 2020, the disease relapsed, and the patient started

a new chemotherapy regimen, ultimately requiring chimeric anti-

gen receptor T cell therapy inmid-2020. The patient was noted to

have persistent but improving disease until November 2020,

when it started to relapse again. This is when the patient first

tested positive for SARS-CoV-2 (November 2020, day 0), likely

from a household contact that first tested positive for SARS-

CoV-2 2 days prior (Figure 2A). The patient was started on palli-

ative radiation therapy on day 278 and was admitted three times

fromdays 279 to 452 formalignancy-related complications. Clin-

ical courses related to the infection are provided in Figure 2A,

and longitudinal immune parameters such as immunoglobulin

G (IgG) serum levels as well as lymphocyte and T cell counts

are provided in Figure S1. The patient’s IgG levels were within

or near the reference range when receiving regular intravenous

Ig therapy (IVIG) infusions until day 205, then the IgG levels drop-

ped after IVIG treatment was suspended. The patient also had

low lymphocyte, T cell, and IgA (non-detectable, data not shown

in Figure S1) levels before and during the infection, consistent

with their immunocompromised state.

Aside from the initial presentation of several days with mild

upper respiratory tract symptoms not requiring oxygenation or

hospitalization, the patient has remained asymptomatic for

the duration of their SARS-CoV-2 infection. The only COVID-19

treatment the patient received was a bamlanivimab (LY-

CoV555) monoclonal antibody infusion on day 90, after which

the patient did not wish to obtain any additional COVID-19 ther-

apies or vaccines. The patient continues to test positive for

SARS-CoV-2 471 days and counting after the initial diagnosis.



Table 1. Summary of persistent SARS-CoV-2 infections in immunocompromised individuals reported to date

Lineage Age (years) Total days Country Patient condition Infection outcome Reference

B.1.517 60s 471; ongoing USA multiple sclerosis, chronic

lymphocytic leukemia

ongoing present study

20B 70–79 101 UK diagnosed with B cell

lymphoma

died Kemp et al.26

B.1.1.27 30s 216 South Africa advanced HIV disease cleared Cele et al.21

B.1.1 or 20B 58 145 Germany autosomal dominant

polycystic

kidney disease

(kidney transplant)

cleared Weigang et al.24

Unknown 45 154 USA severe antiphospholipid

syndrome (APS)

died Choi et al.27

A.1 71 70 USA chronic lymphocytic

leukemia and acquired

hypogammaglobulinemia

cleared Avanzato et al.25

Unknown 71 60 China history of intermittent fever cleared Li et al.28

Unknown 75 >333 Denmark chronic lymphocytic leukemia cleared Monrad et al.29

B.1.351 22 >270 South Africa poorly controlled HIV infection cleared Maponga et al.22

B.1 or 20C 70s 292 USA stage IV non-Hodgkin’s

lymphoma, acquired B

cell deficiency

cleared Gandhi et al.23

Multiple unknown 218 UK immunocompromised,

condition not specified

unknown Wilkinson et al.30

B.1.332 48 335 USA type 2 diabetes mellitus,

B cell depletion, remission

from large B cell lymphoma

cleared Nussenblatt et al.31

B.52 80s 311 UK chronic lymphocytic leukemia

and hypogammaglobulinemia

unknown Williamson et al.32

BA.1 unknown 81 USA immunocompromised,

condition not specified

cleared Gonzalez-Reiche

et al.20

20A, 20C 3, 21, 2 27, 144, 162 USA B cell acute lymphoblastic

leukemia

cleared Truong et al.33

B.1.1 47 132 Russia non-Hodgkin’s diffuse B

cell lymphoma IV stage B

cleared a

B.1.617.2 53, 67 94, 97 Singapore acute myeloid leukemia;

splenic marginal zone

lymphoma and status

post splenectomy

cleared Ko et al.34

B.1.1.401 61 171 Portugal non-Hodgkin’s lymphoma cleared Borges et al.35

Unknown 73 74 USA treatment-refractory

multiple myeloma

cleared Hensley et al.36

McCarthy et al.37

B.1.1 70s, 154 Germany follicular lymphoma died Khatamzas et al.38

B.1.2 50s �480;

ongoing

USA immunocompromised,

condition not specified

ongoing Halfmann et al.39

B.1.1.50 unknown 56, 65, 88,

36, 75, 37

Israel chronic lymphocytic leukemia;

follicular lymphoma; Hodgkinʼs
lymphoma; autoimmune skin

disease; acute lymphoblastic

leukemia

cleared Harari et al.40

Unknown unknown 218 UK Wiskott-Aldrich syndrome cleared Bradley et al.41

AY.43 60s >240 Israel malignant melanoma, diffuse

large B cell lymphoma and

squamous cell carcinoma

ongoing Shapira et al.42

ahttps://virological.org/t/emergence-of-y453f-and-69-70hv-mutations-in-a-lymphoma-patient-with-long-term-covid-19/580.
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Figure 1. Genomic surveillance and phylogeny showing continued detection and genetic divergence of B.1.517 from chronic infection

(A) Monthly detection of B.1.517 (B.1.517 and B.1.517.1) variants in Connecticut (USA), other US states, and elsewhere.

(B) The total number of sequence genomes for the B.1.517 (B.1.517 and B.1.517.1) variants in Connecticut (USA), the rest of the US, and elsewhere. The y axis is

transformed by square root transformation to show time points with non-zero number of genomes, especially those from countries with a low prevalence of

B.1.517.

(C) A maximum likelihood phylogeny of B.1.517 in the context of selected genomes from other variants.

(D) A maximum likelihood phylogeny of all sequenced B.1.517 genomes showing country of origin.

(E) A maximum likelihood phylogeny of all sequenced B.1.517 samples highlighting the genomes associated with the chronic infection and other contextual

genomes from acute infection (although some could have been sampled from unknown chronic infections).
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Persistently high viral RNA copies and infectious virus
detected throughout the course of the chronic infection
To track the dynamics of the patient’s chronic infection, we

quantified the viral RNA titers and investigated the virus infec-

tivity from days 79 to 471 post-diagnosis (February 2020 to

March 2022; Figure 2; Tables S1 and S2). The median number

of days between successive samples was �14 days, 95% CI:

8–20). We could not obtain samples from the patient prior to

day 79 as they were collected before the establishment of our

SARS-CoV-2 biorepository and genomic surveillance initiative.

Though the infection has not yet cleared at the time of writing,

sample collection was halted in March 2022 due to complica-
4 Cell Reports Medicine 4, 100943, February 21, 2023
tions relating to the B cell lymphoma disease, precluding further

nasopharyngeal sampling.

We measured SARS-CoV-2 viral genome copies using RT-

PCR and performed whole-genome sequencing on 30 samples.

We tested a subset of twelve for infectious virus and found that

the individual was infectious with high virus copies for almost

the entire duration of their infection (Figure 2B). Nasal swab sam-

ples collected from days 79 to 471 post-diagnosis had a mean

RT-PCR cycle threshold (Ct) of 25.50 (range: 15.6–34.1), equiva-

lent to 3.10 3 108 virus genome copies per mL (range: 7.30 3

104–6.04 3 109), though the genome copies numbers tended

to decrease over time (Figure 2B; Table S1). Of the 12 swab
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Figure 2. Molecular and virological assays showing isolation of infectious viruses with high copy numbers and the emergence and coex-

istence of distinct genotypes during the chronic infection

(A) Timeline showing clinical history of the patient from the earliest time they tested negative for SARS-CoV-2, the first positive test following household exposure

by a symptomatic household contact who tested positive 2 days prior, until the last sampling point. Note that collection of samples was stopped due to the

deteriorating condition of the patient, but the infection had not yet cleared.

(B) Nasal swab RT-PCR cycle threshold (Ct) values for the samples available for whole-genome sequencing showing high viral RNA copy numbers. Additionally,

virus infectivity assays performed for selected samples revealed infectious virus atmost sampling points. Additional information for the samples, including plaque

assay results, are provided in Table S1.

(C) Time-resolved phylogeny of the chronic infection samples with branch lengths scaled by the number of days since the first positive RT-PCR SARS-CoV-2 test.

The phylogeny was generated based on near full whole genomes after trimming the 30 and 50 ends to remove poor quality nucleotides (see STAR Methods).

(D)Maximum likelihood phylogeny of the chronic B.1.517 samples showing branch lengths scaled by the genetic divergence expressed as the number of accrued

substitutions over time. The phylogeny shows the intrahost emergence and persistence of multiple divergent genotypes.
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samples that we tested for the presence of the viable virus, the

infectious virus could be detected in vitro from ten sampling

points (between days 79 and 401) but not on days 394 and

471, corresponding to samples with higher Ct values (33.6 and

30.9, respectively; Figure 2B; Table S1). However, the patient

has been presumed to be asymptomatic for COVID-19 after

the resolution of the initial acute infection in November 2020,

and all the patient’s admissions were secondary to malignancy.

Given the sustained high viral load and infectiousness of viral
particles in the nasopharynx, we concluded that the patient’s im-

mune system was unable to suppress active SARS-CoV-2 repli-

cation throughout the infection (Figure S1).

Three distinct virus genotypes emerged during chronic
infection
We hypothesized that SARS-CoV-2 from prolonged chronic

infection would diversify into distinct populations, reflecting

infection of spatially structured human cells and tissues.
Cell Reports Medicine 4, 100943, February 21, 2023 5



A B Figure 3. Nucleotide substitution rates are

faster during chronic infection than acute

infection and the global evolutionary rate

(A) Scatterplots showing the relationship between

phylogenetic root to tip distances, expressed as

the number of nucleotide substitutions per site,

and time as the number of days from the first

sampled genome for the B.1.517 from chronic

infection versus all SARS-CoV-2 lineages and

other B.1.517 from acute infections. The data

points associated with the chronic infection are

colored in red, while those representing other

variants are colored in sky blue. The lines and

shaded bands surrounding them represent the

linear regression models fitted to the data points

for the chronic infection data and other variants.

(B) Bar graph showing the average mutation

rates, expressed as the number of nucleotide

substitutions per year for the chronic infection samples and other variants based on the regression coefficients (b) generated from the plots in (A). Specific values

for the evolutionary rates for all lineages combined, the parental and chronic infection B.1.517 strains, and other lineages are shown in Table S3 and Figure S3.
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SARS-CoV-2 can infect diverse human cell populations and tis-

sues,43 similar to other pathogens including influenza virus44,45

and bacterial pathogens.46,47 To test this hypothesis, we

constructed a phylogeny of the 30 longitudinally sequenced

SARS-CoV-2 genomes from days 79 to 471 since the first posi-

tive SARS-CoV-2 test.

We identified three genetically divergent genotypes based on

the phylogenetic clustering (numbered 1–3), which emerged and

coexisted during the infection (Figures 2C and 2D). While we first

sequenced genotype 1 on day 79, we cannot confirm that it was

the founding genotype due tomissing earlier samples. Genotype

1 accumulated up to 24 nucleotide substitutions (13 amino acid

substitutions) through day 379 in a ladder-like evolutionary

pattern. Genotype 2 diverged from genotype 1, with a maximum

of 40 nucleotide substitutions (28 amino acid substitutions) from

days 281 to 471. Genotype 3 also diverged from genotype 1 into

two sister subgenotypes sampled on days 394–401. The first

subgenotype accumulated 37 nucleotide substitutions (30

amino acid substitutions), while the second subgenotype con-

tained 29 nucleotide substitutions (27 amino acid substitutions)

and diverged from each other on day �316 (95% CI: �288–

336). These findings support our hypothesis that the founding

B.1.517 virus independently diverged into coexisting genetically

distinct populations.

Though the identified genotypes coexisted for the duration of

the infection, the relative composition of the viral population

changed over time (Figures 2C and 2D). We found that genotype

1 was dominant in nasal swabs from days 79 to 247; however,

from days 281 to 471, the dominant genotype frequently

switched between the three. From day 281 to 381, the sampled

dominant genotype alternated between genotypes 1 and 2 five

times. Genotype 3 became dominant on days 394 and 401

before being replaced again by genotype 2 from days 446 to

471. The rapid and sometimes temporary replacement of geno-

types during this infection suggested continual reseeding of the

nasopharynx with distinct virus populations that likely indepen-

dently evolved elsewhere in the body.48

We then compared the B.1.517 sequences from the patient

with the chronic SARS-CoV-2 infection against other B.1.517
6 Cell Reports Medicine 4, 100943, February 21, 2023
sequences from Connecticut (USA) to identify potential onward

transmission into the wider population. Our phylogenetic

analysis showed separate clustering of the chronic infection

sequences from the rest of the sequence cases from the popu-

lation, demonstrating that there was no detectable onward

transmission (Figure S2). These findings were consistent with

the clinical observations that the patient had become reclusive,

which would minimize the potential transmission of the evolved

intrahost genotypes into the community.

SARS-CoV-2 evolution was accelerated during the
chronic infection
The within-host evolutionary rate of microbes tends to exceed

rates observed at the population level because of the absence of

stringent bottlenecks imposed by transmission.27,49 We thus hy-

pothesized that the SARS-CoV-2 evolutionary rate during this

chronic infection would be higher than the estimated global evolu-

tionary rate. To test this hypothesis, we randomly sampled an

equal number of genomes from the global dataset, �1 to 3

genomes per continent per month (n = 2,539), for theWHO-desig-

nated SARS-CoV-2 variants and performed a regression of dis-

tance from the root of the phylogeny against the time of sampling

for theglobaldataset and the sequences fromthechronic infection

(Figures 3 and S3). We found that the evolutionary rate during the

chronic infection was 35.55 (95% CI: 31.56–39.54) substitutions

per yearor�1.21310�3 (95%CI:1.07310�3–1.34310�3) nucle-

otide substitutions per site per year (s/s/y). This was �2 times

higher than our estimated average global (all lineages) SARS-

CoV-2 evolutionary rate (5.83 3 10�4 [95% CI: 5.56 3 10�4–

6.11310�4] s/s/y; Figures 3A, 3B, andS3; TableS3).Our estimate

for the global evolutionary rate, based on a careful random sam-

pling of representative genomes from GISAID per month per

variant, is within the expected range of what is reported in other

studies that use the same regressionmethod.8,50 It is worth noting

that estimates of the background rate of evolution vary due to

different methodologies and downsampling used: 8 3 10�4 s/s/y

is commonly used in phylodynamic analyses,51–53 and the current

(June 2022) Nextstrain estimate is approximately 9.93 10�4 s/s/y.

However, even at these upper ends of the rate estimates, the rate
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Figure 4. Increasing intrahost genetic diversity during chronic infection

(A) The number of intrahost single-nucleotide variants (iSNVs) >3% frequency across all the samples and genotypes detected during the infection (see Figures 2C

and 2D).

(B) The number of iSNVs accumulated over time during the chronic infection. The black solid line represents a fitted linear regression.

(C) Proportion of iSNVs binned at different frequencies and stratified by variant or mutation type (intergenic, synonymous, and non-synonymous).

(D) The proportion of the overall number of unique iSNVs coding for synonymous and non-synonymous amino acid changes at different codon positions.

(E) The proportion of unique iSNVs grouped by variant type to highlight potential selection across different SARS-CoV-2 genes.

(F) The number of unique iSNVs per gene normalized by the gene length to highlight variability in selection independent of gene size.

(G) The mutation spectra showing the relative mutation rate across the SARS-CoV-2 genome-stratified variant type. Additional information for all the identified

mutations (intergenic, synonymous, and non-synonymous) are provided in Data S1.
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of evolution in the chronic infection documented here is still faster.

Our estimated evolutionary rate of this chronic B.1.517 infection is

also �2 times higher than the evolutionary rate for the parental

B.1.517 lineage (5.76 3 10�4 [95% CI: 4.583 10�4–6.94 3 10�4]

s/s/y). These findings show that this chronic infection resulted in

acceleratedSARS-CoV-2 evolution anddivergence, amechanism

potentially contributing to the emergence of genetically diverse

SARS-CoV-2 variants, including Omicron, Delta, and Alpha.

Increasing intrahost genetic diversity and variable
gene-specific evolutionary rates during the chronic
infection
Having detected three genotypes and observed the overall

increased SARS-CoV-2 evolutionary rate during chronic infec-

tion, we hypothesized that intrahost virus genetic diversity would
also increase over the course of infection. To test this hypothe-

sis, we used deep sequencing to quantify the number of unique

intrahost single-nucleotide variants (iSNVs; i.e., ‘‘mutations’’)

present at >3% within sample frequency in each sample

(Figures 4A–4D). To validate the iSNV frequencies that we gener-

ated from whole-genome amplicon-based sequencing, we

sequenced the spike gene of a subset of the samples using

unique molecular index (UMI)-tagged primers that improve the

accuracy of iSNV detection.54,55 We found a high concordance

between the iSNV frequencies measured from our whole-

genome amplicon-based and UMI sequencing (median [b]:

0.999) (Figure S4; Table S4).

The number of iSNVs increased over time across all three ge-

notypes, and the viral effective population size (Ne) fluctuated

similarly. We observed a variable number of iSNVs per sample
Cell Reports Medicine 4, 100943, February 21, 2023 7



Article
ll

OPEN ACCESS
(mean: 32.07, range: 2–65). Genotype 2 comprised more iSNVs

than genotype 1, which emerged earlier in the infection (Fig-

ure 4A). We used regression to assess the accrual rate of iSNVs

and found a strong positive association between the number of

iSNVs and sampling time (regression slope [b]: 0.013, 95% CI:

0.058–0.148 iSNVs per day) (Figure 4B). Next, we assessed the

dynamics of the Ne from the sequenced consensus genomes

during the chronic infection using a coalescent Bayesian skyline

model.56 The dynamics of the Ne estimates mirrored those of

the number of unique iSNVs, especially in the early stages of

the chronic infection, and peaked at �370 days post-diagnosis

(Figure 4C). Finally, we characterized the iSNVs with frequencies

between 3% and 50% and found that �40%–45% of the

iSNVs found in intergenic regions, and those associated with

synonymous and non-synonymous amino acid changes in genic

regions, rose to frequencies of 40%–50% during the infection

(Figure 4D). These patterns were consistent for intergenic,

synonymous, and non-synonymous iSNVs. Such high iSNV fre-

quencies combined with the increasing number of iSNVs

(Figures 4B and S5) are in line with the coexistence of multiple

genotypes within a sequenced sample and help to explain the

consensus genotype switching that we described after day

281 of the infection (Figures 2C and 2D). Collectively, these

data support our hypothesis that intrahost SARS-CoV-2 genetic

diversity increasedwith time during the chronic infection to levels

not typically reported during acute infections.15,57

We investigated the potential impact of this diversity on virus

evolution by analyzing the types of mutations and the gene-spe-

cific evolutionary rates during the chronic infection (Figures 4E–

4G). Stratifying the >3% iSNVs by codon position, we found

that most occurred at the second and third codon positions

(Figure 4D).Most of the substitutions at the first and secondcodon

positions resulted in�22%and�35%non-synonymouschanges,

respectively, compared with 0.07% at the third codon. Because

these changes could correspond to selection in different genes,

we compared the proportion of synonymous and non-synony-

mous iSNVs. We hypothesized that the spike and other surface

and membrane-associated proteins would have a higher abun-

dance of non-synonymous amino acid changes than other genes

as the principal targets of the host antibody-mediated immune

response. Consistent with our hypothesis, we found a statistically

higherabundanceof non-synonymouschanges thansynonymous

changes only in the spike glycoprotein (abundance: �85%,

p = 4.96 3 10�11) but not in the envelope (abundance: �100%,

p = 0.248), membrane (abundance:�55%, p = 0.70), and nucleo-

capsid (abundance: 48%,p=1)genes (Figure4E).Wealso founda

higher abundance of non-synonymous amino acid changes in a

non-structural gene, namely ORF1ab polyprotein (abundance:

�61%, p = 0.001). We normalized the estimates to account for

the gene length to compare the abundance of synonymous and

non-synonymous changes in different genes. Contrary to our

hypothesis that the genes encoding the surface and membrane-

associated proteins (spike, envelope, and membrane) would

have the highest normalized frequency of non-synonymous

changes, the highest frequencies occurred in the ORF10 gene,

followedbyORF6andenvelope,while lower frequencies occurred

in the other genes, including spike andmembrane (Figures 4F and

S6). These differences suggested that other genes evolved faster
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than the spike gene during this chronic infection. Finally, the

mutation spectra showed relatively higher C/T substitution

rates, consistent with findings elsewhere,57–59 but we found

that the C/T substitution equally resulted in synonymous and

non-synonymous changes. In contrast, some substitutions,

including A/G, G/A, G/T, and T/C, appeared to cause

slightly more non-synonymous than synonymous changes

(Figures 4G and S7). Our findings suggest that the accelerated

evolution during this infection resulted in a variable accumulation

of potentially advantageous substitutions across the SARS-CoV-

2 genome.

Persistently detected mutations associated with major
variants
We hypothesized that specific iSNVs, particularly in the

spike glycoprotein gene, were selectively advantageous and

therefore were more prevalent than iSNVs in other genes. We

tested this hypothesis by comparing the number of unique iSNVs

across different samples between the spike and other genes

(Figures 5A, 5B, and S8). Overall, we found no differences

between the prevalence of unique spike and non-spike

iSNVs across different samples (p = 0.935). We then investigated

if the frequency of the non-synonymous iSNVs across the

samples was higher than intergenic and synonymous mutations.

Again, we found a similar prevalence of non-synonymous

compared with intergenic (p = 0.912) and synonymous iSNVs

(p = 0.680) and between intergenic and synonymous iSNVs

(p = 0.499). These findings demonstrated that the average

persistence of iSNVs from different genes, regardless of their

frequency of occurrence, was similar during the course of the

infection.

While the distribution of mutations was not concentrated in

the spike gene, some specific iSNVs could have been selec-

tively advantageous and/or clinically important. Of the 98 iSNVs

detected in more than one sample at >3% intrahost frequency,

we found 17 changes in the spike gene, of which �88% were

non-synonymous (Figures 5A, 5B, and S9). The two most

common iSNVs, found in 11 of the 30 (36%) whole-genome

deep-sequenced samples, were in the ORF8 gene, namely

F67S and F120F, while spike:Q493K was the most common

spike iSNV and the third most common overall, which may

promote adaptation during persistent SARS-CoV-2 infection

in humans as seen in murine infection models19,60 (Figure 5B).

Other common spike iSNVs included W64C and T1027I, found

in 9 samples.

We also detected several other iSNVs in the spike gene that

have clinical relevance and/or are found in other variants. For

example, the patient was treated with bamlanivimab (LY-

CoV555) on day 90, and we detected two spike gene iSNVs

associated with resistance to this antibody: Q493R and

E484K.61–65 In addition, we detected spike:Q493R (found in Om-

icron) in 5 samples, with the first on day 97, 1 week after bamla-

nivimab treatment (Figure 6), while the spike:E484K mutation

(found in Beta, Gamma, Eta, Iota, and Mu) was detected in five

samples from days 104 to 184. These findings provide further ev-

idence that clinically relevant mutations, such as those that

confer resistance to antibodies and that are found in other vari-

ants, can evolve during the course of chronic infection.
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Figure 5. Several intrahost SNVs repeatedly detected during chronic infection

(A) The number of samples containing each unique iSNV and its position on the ancestral SARS-CoV-2 reference genome (GenBank:MN908937.3 or NC_045512.

2). The y axis labels represent iSNVs corresponding to specific nucleotide substitutions and position in the genome, while the information within the brackets

shows the specific amino acid changes, gene, and position in the gene. The y axis on the right side of the graph, colored in red, shows the average number of

iSNVs per kilobase for each gene in the reference genome.

(B) The y axis shows the number of samples containing iSNVs shown on the x axis. The iSNV labels contain the specific nucleotide substitutions and position in the

genome. Specific amino acid changes and their specific position in the SARS-CoV-2 genomes are shown in the brackets on the x axis. The bars representing

different nucleotide substitutions are colored based on the sequence feature annotations in the ancestral reference genome (GenBank: NC_045512.2). All the

iSNVs are colored by the variant or mutation type based on the ancestral SARS-CoV-2 genome sequence feature annotations (GenBank: MN908937.3).

Additional information for all the identified mutations (intergenic, synonymous, and non-synonymous) are provided in Data S1.
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Temporal mutational dynamics suggest hallmarks of
chronic infection
To further understand spike gene iSNVs of potential signifi-

cance during the chronic infection, we investigated temporal

changes in their frequencies using deep sequencing validated

with highly accurate UMI-based sequencing (Figures 6 and

S10). We hypothesized that the frequency of beneficial non-

synonymous spike gene iSNVs likely increased to reach near

fixation during the infection. We found two iSNVs, spike:R809P
between the fusion peptide and heptapeptide repeat sequence

1 (HR1) regions and spike:T936 A/N in the HR1 region of the

spike gene, that increased to near fixation throughout the infec-

tion, suggesting they were potentially beneficial to all the coex-

isting genotypes or reflected high stochasticity due to a low

effective population size of the virus (Figure 6). Another notable

spike mutation in the receptor-binding domain (RBD), spi-

ke:E484K, initially increased in frequency early in the chronic

infection, as seen elsewhere,27 but was replaced by potentially
Cell Reports Medicine 4, 100943, February 21, 2023 9



Figure 6. Fluctuating dynamics of iSNVs in the spike gene during chronic infection

Temporal frequencies of 29 non-synonymous iSNVs identified in the spike gene. Additional information for all the identified mutations (intergenic, synonymous,

and non-synonymous) are provided in Data S1.
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fitter mutations and genotypes. Other spike iSNVs appeared

to reach fixation, correlating with the detection of specific ge-

notypes. These included spike:1027I (genotype 1); spike:F490S

(RBD; genotype 3); spike:Q52H (genotype 3); spike:P384L

(RBD; genotype 2); and spike:493K (RBD; genotype 1). Outside

of the spike gene, we detected other iSNVs that appeared to

reach fixation: ORF1ab:T1543I (nsp3; genotype 2); ORF1ab:

T2154I (nsp3; genotype 1 and 2); ORF1ab:S3384L (nsp5; geno-

type 3); ORF1ab:G4106S (nsp8; genotype 2); and ORF1ab:

A3143V (nsp4; genotype 2; Figure S10), We conclude that

most iSNVs fluctuate in frequency and rarely reach fixation. In

contrast, a few spike iSNVs, which are novel and previously

identified in variants and chronic infections elsewhere, attain

fixation. We interpreted this as evidence of a selective advan-

tage, possibly reflecting the escape of the host antibody-medi-

ated immune response, but we could not rule out other neutral

evolutionary processes.
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No evidence for intrahost recombination during chronic
infection
The long duration of this infection, which spanned the emer-

gence of multiple variants (e.g., Alpha, Delta, Omicron), provided

favorable conditions for recombination. The occurrence of

recombination in the SARS-CoV-2 genome has been demon-

strated.18,66 Therefore, we hypothesized that recombination

may have occurred during the chronic infection between coex-

isting B.1.517 genotypes and between B.1.517 genotypes and

other circulating variants transiently causing undetected coin-

fections. To test this hypothesis, we conducted a recombination

analysis of the consensus genomes generated from the persis-

tent infection samples. Since multiple genotypes emerged

during the chronic B.1.517 infection, we first investigated the

occurrence of intrahost recombination among these genotypes

during the infection. We then tested whether recombination

occurred between the B.1.517 chronic infection strains and



Article
ll

OPEN ACCESS
other non-B.1.517 variants detected in Connecticut (USA), espe-

cially Delta and Omicron lineages. We found no evidence of

recombination between the chronic B.1.517 genotypes or

other variants. These findings suggested that the emergence

of multiple genotypes during the B.1.517 infection evolved

independently from the ancestral B.1.517 following infection

due to random mutational processes rather than intrahost

recombination.

DISCUSSION

In our comprehensive genomic investigation, we characterized

the intrahost genetic diversity and evolution of SARS-CoV-2 dur-

ing a chronic infection that has persisted for over a year. Our

phylogenetic analysis, based on sequencing 30 nasal swab sam-

ples from days 79 to 471 post-diagnosis, revealed accelerated

SARS-CoV-2 evolution and the emergence and coexistence of

multiple genetically distinct genotypes—a finding not reported

in other studies reflecting the duration of the infection and longi-

tudinal sampling. These distinct genotypes appeared to emerge

as early as within the first 3months of the infection, although new

genotypes were detected after nearly 10 months, suggesting

that multiple novel variants may simultaneously emerge and

potentially spread from the same immunocompromised individ-

ual over a longer sampling period. Supporting this point, we de-

tected high viral RNA copies and infectious viruses throughout

the duration of infection even though the patient remained

asymptomatic for COVID-19. A strength of this study was our

ability to collect samples for a substantial portion of the infection

because it enabled us to document the patient’s prolonged

infectiousness. This critical finding could potentially be missed

if data from chronic infections collected over shorter timescales

were used. Our study provides evidence that chronic SARS-

CoV-2 infections could be a source for the emergence of genet-

ically diverse variants capable of causing future COVID-19

outbreaks.

During this infection, the viral population accrued twice as

many nucleotide substitutions per year as those driving acute in-

fections. Our findings support the prevailing hypotheses that

chronic infections in immunocompromised individuals could be

the most likely mechanism driving the unpredictable emergence

of genetically diverse SARS-CoV-2 variants.27,67–71 We have

shown that the accelerated evolution observed in other SARS-

CoV-2 variants such as Omicron and Alpha, which are consid-

ered to have emerged during unknown chronic infection, is

consistent with the accrual of nucleotide substitutions demon-

strated in our study.8,10,21 Although previous studies have re-

ported that most SARS-CoV-2 populations associated with

chronic infections are homogeneous, we found multiple geno-

types coexisting throughout a single infection. The prolonged

infectiousness of this patient demonstrated that a single chronic

infection could cause onward transmission of multiple geneti-

cally distinct SARS-CoV-2 variants into the broader population.

This could be especially problematic as many people with

chronic infections, as was the case with this patient, remain

mostly asymptomatic for COVID-19 and may feel well enough

to resume regular interactions with other people. The direct,

onward transmission of B.1.616 and BA.1 lineage from chronic
infections has already been documented.19,20 Therefore, it is

possible that the simultaneous emergence of divergent Omicron

sublineages (e.g., BA.1 and BA.2) could have been from a single

long chronic infection.10,21 Altogether, our findings suggest that

a novel variant could evolve into genetically divergent forms dur-

ing a single chronic infection.

We speculate that the emergence and disappearance of mul-

tiple genotypes reflect virus competition in the nasopharyngeal

niche and/or isolated evolution in different compartments of

the respiratory tract or other tissues. These compartments may

act as reservoirs for the genotypes and reseed them into the

nasopharynx, leading to their fluctuating dynamics that can be

observed in the swab material. A similar phenomenon has

been reported in studies of acute SARS-CoV-2 infection48 and

chronic bacterial infections.46,47,72 Infection of multiple tissues

leads to spatial isolation and niche partitioning, which ultimately

reduces intrahost competition between distinct genotypes and

promotes the coexistence of numerous genotypes over longer

timescales.46,47 Niche partitioning is plausible because different

SARS-CoV-2 variants preferentially infect different cell types.73

Recent studies have demonstrated that Omicron has evolved a

shift in the cellular tropism toward cells expressing transmem-

brane protease serine 2 (TMPRSS2), allowing it to more effec-

tively infect upper airway cells compared with endothelial cells

of the lung, unlike other lineages.73 This process may similarly

occur during accelerated SARS-CoV-2 evolution in chronically

infected persons. While intrahost recombination may accelerate

intrahost divergence,18,66 we did not find evidence for recombi-

nation leading to the distinct genotypes found during this chronic

infection. This might be an indication of the separated spatial

distribution of the viral populations, as recombination events

would be expected if different genotypes were to be found in

the same tissues and cells. The differences in transmission

fitness and cellular tropism among these genotypes require

further investigation.

The SARS-CoV-2 spike is a homotrimeric transmembrane

glycoprotein critical for receptor recognition and cell attachment

and entry and an immunodominant target for host immune re-

sponses.74 We found a higher abundance of non-synonymous

than synonymous changes in five of the eleven SARS-CoV-2

genes, including the spike. This suggests positive selection

during the course of the infection. Interestingly, although we

detected the spike:E484K substitution, it did not reach fixation

and lasted for approximately 3 months following bamlanivimab

(LY-CoV555) treatment. This suggests that despite E484K being

associated with antibody evasion,65,75,76 it is not necessarily a

hallmark of chronic infection involving an immunocompromised

person, consistent with previous reports19 since we propose

that iSNVs that reached near fixation (spike R809P and T936

A/N) could be selectively advantageous during chronic infection.

However, the trajectories of the majority of the mutations

showed random fluctuation over time, suggesting weak

selection overall and a predominance of neutral evolution.

Furthermore, we hypothesize that spike Q493 K/R mutation

could be important for chronic SARS-CoV-2 infections,19,27,77

even though neither became fixed in our study because they

were on different genotypes. By validating the iSNV frequencies

using a UMI-based sequencing approach (Primer ID), which
Cell Reports Medicine 4, 100943, February 21, 2023 11
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helps to remove PCR artifacts,54,55 our findings provide a robust

assessment of intrahost evolutionary dynamics during chronic

infection.

Chronic SARS-CoV-2 infections have been reported in individ-

uals with compromised immunity due to a myriad of factors,

including advanced HIV, cancer, organ transplant recipients,

kidney disease, and autoimmune disorders.21–27,31 These infec-

tions may drive the rapid evolution of SARS-CoV-2 variants,

including from lineages considered to be less virulent, which

may spread into the broader population after acquiring muta-

tions promoting increased intrinsic transmissibility and immune

escape. As seen with Alpha, which cryptically evolved for >1

year before causing a global epidemic,10 variants that are likely

to cause major future outbreaks could be ‘‘lying in wait’’ in

unknown chronic infections. Therefore, control measures for

COVID-19 should not only include decreasing cases associated

with prevailing variants but also identifying and treating

chronic infections to disrupt the potential emergence of novel

variants. Moreover, since immunocompromised individuals

typically exhibit greater healthcare-seeking behavior, implemen-

tation of proactive surveillance of chronic SARS-CoV-2

infections could substantially limit the rate of SARS-CoV-2

evolution.78,79 Considering that novel variants can emerge

and transmit globally from anywhere, as seen with

Omicron,10 these measures need global adoption to maximize

their benefits.

In this study, we have shown accelerated intrahost evolution

and genetic diversity of SARS-CoV-2 during a chronic infection

lastingmore than 1 year. Our findings show evolutionary patterns

resembling those seen leading up to the Alpha and Omicron

variants, highlighting the critical role of chronic SARS-CoV-2

infections in the emergence of novel variants. Therefore, we

recommend proactive genomic surveillance of immunocompro-

mised individuals to identify and treat potential chronic infections

early, increased global equitable access and uptake of primary

and booster COVID-19 vaccine regimens, and continued

investment in the development of pan-b-coronavirus vac-

cines,80,81 to reduce the likelihood of chronic infections.78 These

strategies could halt the accelerated evolution of SARS-CoV-2

seen in chronically infected individuals, disrupting the emer-

gence of genetically divergent and more transmissible variants,

ultimately averting mortality, morbidity, and the tremendous

economic impacts of strict COVID-19 prevention and control

measures.

Limitations of the study
Although we have performed a detailed genomic investigation of

the intrahost evolution and genetic diversity during chronic infec-

tion, a potential limitation of our study is that we have character-

ized a single case. However, we have utilized other published

case studies of chronic SARS-CoV-2 infection to contextualize

our findings and understand commonalities and differences

between infections. In this study, it was not feasible to disen-

tangle the increasing iSNV frequency within lineages from

changing frequency of the lineages in the sample, which could

likely conflate the increasing diversity within the lineage and

possibly make it less clear whether certain sites in the genome,

such as those reaching fixation, possibly provide a selective
12 Cell Reports Medicine 4, 100943, February 21, 2023
advantage to the virus. Future studies should disentangle these

effects using long-read sequencing to resolve haplotypes within

the sample to accurately assign iSNVs to distinct lineages coex-

isting within the sample and perform additional tests to deter-

mine whether any mutations or phylogenetic branches are under

significant selection pressure. Additionally, we did not compare

the antibody neutralization susceptibility of different intrahost

genotypes emerging during the chronic infection. Therefore,

future studies of chronic infections, especially those utilizing pro-

spectively collected samples, should include longitudinal and

parallel samples to monitor several immune parameters such

as antibody levels and immune cell composition as well as serum

samples for neutralization assays to generate additional insights

on the persistence and evolution of multiple genetically distinct

genotypes in the same host. For this study, we did not have ac-

cess to this additional information including human leukocyte

antigen (HLA) haplotype data, which would have been valuable

in evaluating the contribution of the host’s immune system to

the emergence of the observed genetic diversity of the viral

population.
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than D. Grubaugh (nathan.grubaugh@yale.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The accession numbers for individual isolates are provided in the supplementary material Table S1.

d A summary of the SARS-CoV-2 samples is available in Data S1. All other data and code are available at https://github.com/

grubaughlab/2022_paper_chronic_infection.

d All other data supporting the findings of this study are available within the paper and its supplemental information files. Any

additional information required is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
This study was approved by the Yale University Human Research Protection Program Institutional Review Board (IRB Protocol ID:

2000031415). Informed consent was obtained from the participant to take part in the study and to have the results of this work pub-

lished. The coded numbers presented in the tables and figures are not identifiable to the patient.

METHOD DETAILS

PCR testing and whole-genome sequencing
Nasal swabs collected from the anterior nares or nasopharynx of confirmed SARS-CoV-2 positive individuals were routinely tested

by the Yale New Haven Hospital COVID-19 and Clinical Virology Laboratories. We received remnant samples that were used for

diagnostic testing. We used the MagMAX viral/pathogen nucleic acid isolation kit to extract nucleic acid from 300 mL of the collected

sample by eluting in 75 mL of the elution buffer. We then extracted nucleic acid and tested it for SARS-CoV-2 RNA using a "research

use only" (RUO) RT-qPCR assay using the CDC nucleocapsid gene target (N1) primer and probe set.82We converted the resulting N1

RT-PCR Ct values into SARS-CoV-2 RNA copies using a standard curve.83

We used the Illumina COVIDSeq Test RUO version to sequence samples with N1 PCT Ct values% 35. We used ARTIC V3, V4, and

V4.1 primer schemes for amplicon generation (https://github.com/artic-network/artic-ncov2019/tree/master/primer_schemes/

nCoV-2019). We used a slightly modified sequencing protocol involving lowering the annealing temperature to 63�Cwhen generating

the amplicons and shortening the tagmentation step to 3 min. We pooled and cleaned the final libraries before DNA quantification

using the Qubit High Sensitivity dsDNA kit (Life Technologies). The generated libraries were deep-sequenced using 2 3 150 bp

paired-end reads on an Illumina NovaSeq at the Yale Center for Genome Analysis. At least one million paired-end reads were gener-

ated for each sample. We ensured that contamination would be flagged by including three negative controls (water added at RNA

extraction, PCR, and library preparation) with every sequencing batch. We ensure that no or <100 SARS-CoV-2 reads are generated

in each control to proceed with using the results. In general, we see high-quality, high-coverage sequences generated from samples

up to Ct 35 which is above the Ct values for the samples used in this study. Furthermore, the samples presented here were

sequenced over several batches following the time of swab collection, rendering a systematic error or batch effect unlikely.

The sequencing data were demultiplexed and processed, including converting base call (BCL) to FASTQ formats and trimmer

adapter sequences, using Illumina bcl2fastq pipeline (v2.20.0). To generate consensus SARS-CoV-2 whole genomes, we aligned

the reads to the ancestral SARS-CoV-2 reference genome (GenBank accessions: MN908937.3 or NC_045512.2) using BWA-

MEM (version 0.7.15)84 to generate indexed and sorted binary alignment map (BAM) files. We trimmed adaptors, masked primers

and generated consensus base calls for the BAM files based on simple majority >60% base frequency using iVar (version 1.3.1)85

and SAMtools (version 1.7).86We defined ambiguous base calls as nucleotide sites containing <20 uniquemapped reads. To validate

the sequencing runs, we sequenced negative controls, and in all cases consisted of >99% sites with Ns. We selected sequences

containing >70% of non-N base calls for submission to GISAID. We assigned the SARS-CoV-2 lineages using Pangolin (version

3.1.17).87,88

Primer ID sequencing using unique molecular identifiers
UMI-guided deep sequencing was done using the previously published Primer ID next-generation sequencing protocol to sequence

the SARS-CoV-2 viral genomes extracted from the specimens.54,55 We used two sets of multiplexed UMI-tagged primers targeting

SARS-CoV-2 ORF1ab (nsp12) and the spike gene. The cDNA and first-round PCR primers are provided in Table S4. After two rounds
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of PCR amplification, purified and pooled libraries were deep-sequenced usingMiSeq 300 base paired-end sequencing. Sequencing

data were first processed using the Illumina bcl2fastq pipeline to convert BCL to FASTQ and trimmer adapters (v2.20.0), followed by

the TCS pipeline (v2.5.0) (https://www.primer-id.org/tcs) to de-multiplex for sequencing regions, construct template consensus

sequences (TCS). We used BWA-MEM (version 0.7.15)84 to map the TCSs against the reconstructed ancestral B.1.517 sequence

for the chronic infection generated from the phylogeny of the chronic infection genomes and annotated using the ancestral

SARS-CoV-2 reference genome (GenBank: MN908937.3), bcftools (version 1.11–99-g5105724)89,90 to generate variant calls, calcu-

late iSNV frequency andmerge the variant files, and vcf-annotator (version 0.7) (https://github.com/rpetit3/vcf-annotator) to annotate

the merged variants.

Testing for the infectious virus in nasopharyngeal swab samples
To determine if the samples that test positive for viral RNA also contain infectious virus, we tested whether cell lines can be infected

through nasopharyngeal swab material. For this, we chose twelve samples (40%) collected throughout the course of infection and

available from the biorepository. For this, transmembrane protease serine 2 (TMPRSS2)-ACE2-VeroE6 kidney epithelial cells were

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 1% sodium pyruvate (NEAA) and 10% Fetal bovine

serum (FBS) at 37�C and 5%CO2. The cell line was obtained from the American Type Culture Collection (ATCC) and tested negative

for Mycoplasma contamination. Briefly, 250 mL of serial fold dilutions of sample material obtained from nasopharyngeal swabs in a

viral transport medium were used to infect TMPRSS2-ACE2-Vero E6 cells for 1 h at 37�C for adsorption. We overlaid the cells with

Minimum Essential Medium (MEM) supplemented with NaHCO3, 4% Fetal Bovine Serum (FBS) and 0.6% Avicel RC-581. We

resolved the plaques at 72 h post-infection by fixing them in 10% formaldehyde for 30 min, followed by 0.5% crystal violet in

20% ethanol staining. We then rinsed the plates in water and assessed the presence or absence of plaques. All experiments

were carried out in a biosafety level 3 and biocontainment (BSL3) laboratory with approval from the Yale Environmental Health

and Safety (EHS) office.

Clinical data
Information on clinical history and treatment was obtained from Yale New Haven Hospital. Longitudinal measurements of immune

parameters (IgG levels, lymphocyte and T cell counts) were taken from chart review and obtained by standard clinical operation

procedures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic reconstruction and recombination analysis
For the phylogenetic analysis, we masked the sites in the 50 (position 1 to 265) and 30 (position 29,675 to 29,903) genomic regions,

which are typically poorly sequenced and are known to bias the phylogeny. To understand the genetic relationship of the consensus

SARS-CoV-2 genomes from the chronic infection and other WHO-designated SARS-CoV-2 variants (https://www.who.int/activities/

tracking-SARS-CoV-2-variants), we constructed phylogenetic trees with branches resolved by time and genetic divergence, i.e.,

number of mutations, using the Nextstrain pipeline (version 3.0.3).91 We used Nextalign (version 1.10.2) (https://github.com/

neherlab/nextalign) and Augur (version 11.1.2),92 implemented in the Nextstrain pipeline, to filter out the genomes based on sampling

dates, construct maximum likelihood phylogenies with the generalized time-reversible (GTR) model using IQ-TREE (version 2.0.3),93

refine and reconstruct mutations on the phylogeny, and estimate the effective population size (Ne). The last was based on the

Coalescent Bayesian Skyline model using Treetime (version 0.8.1).56 Finally, interactive visualization was undertaken using Auspice

(version 2.23.0) (https://auspice.us/).91

For other variants, we randomly selected up to three contextual SARS-CoV-2 genomes per month per lineage (Pangolin) from the

GISAID database94 using dplyr (https://github.com/tidyverse/dplyr), and phylogenies generated using the same approach. We pro-

cessed and visualized phylogenetic trees, including calculating root-to-tip distances, using ape (version 5.6.2)95 and phytools

(version 0.7.70).96 We generated plots showing the location of mutations in the nucleotide sequence alignment using snipit

(https://github.com/aineniamh/snipit).

To test for potential recombination, we used 3SEQ (version 1.7)97 to check for potential recombination, first amongst the genomes

from the chronic infection and also in comparison with randomly selected genomes belonging to other SARS-CoV-2 variants de-

tected in Connecticut, USA, over the course of the chronic infection.

Intrahost evolution and genetic diversity analysis
To investigate the intrahost evolution and genetic diversity during chronic infection, we first used ’MarkDuplicates’ in Picard (version

2.18.7) to identify duplicate reads in the BAM files of each sample (http://broadinstitute.github.io/picard/). We calculated the per-

base sequencing depth using genomecov option in BedTools (version 2.30.0).98 The bcftools (version 1.11–99-g5105724)89,90

were used to generate variant calls for each sample using the reconstructed ancestral sequences for the chronic infection samples

using the ’ancestral’ option in the Augur pipeline (version 11.1.2),92 which uses Treetime (version 0.8.1).56 We specified a maximum

depth of 1,000,000 with a minimum of 50 mapped reads per nucleotide site to infer variant calls. We used bcftools to calculate

iSNV frequencies per sample and merge variant call files for different samples for annotation with vcf-annotator (version 0.7)
Cell Reports Medicine 4, 100943, February 21, 2023 e3

https://primer-id.org/tcs
https://github.com/rpetit3/vcf-annotator
https://www.who.int/activities/tracking-SARS-CoV-2-variants
https://www.who.int/activities/tracking-SARS-CoV-2-variants
https://github.com/neherlab/nextalign
https://github.com/neherlab/nextalign
https://auspice.us/
https://github.com/tidyverse/dplyr
https://github.com/aineniamh/snipit
http://broadinstitute.github.io/picard/


Article
ll

OPEN ACCESS
(https://github.com/rpetit3/vcf-annotator) using the reconstructed ancestral sequence generated from the phylogeny of the chronic

infection genomes and annotated using the ancestral SARS-CoV-2 reference genome. We compared the commonness of iSNVs

across different samples based on the variant type (intergenic, synonymous, and non-synonymous) and gene using the unpaired

two-sample Wilcoxon test or Wilcoxon rank-sum test. We analyzed and visualized the presence and absence of mutations and their

dynamics using R (version 4.0.3).

Statistical analysis and data visualization
All the statistical analyses and data visualizations were done using R (version 4.0.3) (R Core Team, https://www.R-project.org/).
e4 Cell Reports Medicine 4, 100943, February 21, 2023
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Table S1. Summary of chronic SARS-CoV-2 lineage B.1.517 infection samples included in this study. Related to Figure 2. 

 

Sequence ID GISAID accession Days since 

first positive 

RT-PCR test 

RT-PCR 

Ct value 

Virus 

copies per 

mL 

Infectious 

virus 

Primer ID 

sequencing 

Dominant 

intrahost 

genotype 

Primers 

hCoV-19/USA/CT-Yale-12056/2021 EPI_ISL_10548915 79 20.5 3.01×1008 Yes Yes 1 NEB V3  

hCoV-19/USA/CT-Yale-12057/2021 EPI_ISL_10548916 89 22.1 1.13×1008 Not tested Not done 1 NEB V3 

hCoV-19/USA/CT-Yale-12058/2021 EPI_ISL_10548917 97 15.6 6.04×1009 Yes Yes 1 NEB V3 

hCoV-19/USA/CT-Yale-12059/2021 EPI_ISL_10548918 104 25.2 1.69×1007 No tested Not done 1 NEB V3 

hCoV-19/USA/CT-Yale-12060/2021 EPI_ISL_10548919 135 24.4 2.76×1007 Not tested Yes 1 NEB V3 

hCoV-19/USA/CT-Yale-4087/2021 EPI_ISL_2035047 149 23.2 5.76×1007 Yes Yes 1 Illumina V3 

hCoV-19/USA/CT-Yale-12061/2021 EPI_ISL_10548920 162 25.9 1.10×1007 Not tested Not done 1 NEB V3 

hCoV-19/USA/CT-Yale-12062/2021 EPI_ISL_10548921 184 28.5 2.25×1006 Not tested Not done 1 NEB V3 

hCoV-19/USA/CT-Yale-5581/2021 EPI_ISL_2716246 192 23.5 4.80×1007 Not tested Yes 1 Illumina V3 

hCoV-19/USA/CT-Yale-5673/2021 EPI_ISL_2776212 205 21.5 1.63×1008 Yes Yes 1 Illumina V3 

hCoV-19/USA/CT-Yale-5792/2021 EPI_ISL_2860316 212 29 1.66×1006 Not tested Yes 1 NEB V3 

hCoV-19/USA/CT-Yale-12063/2021 EPI_ISL_10548922 219 27.2 4.98×1006 Not tested Not done 1 NEB V3 

hCoV-19/USA/CT-Yale-6136/2021 EPI_ISL_3133023 233 22.3 1.00×1008 Not tested Yes 1 NEB V3 

hCoV-19/USA/CT-Yale-6819/2021 EPI_ISL_3370176 247 20.9 2.35×1008 Not tested Yes 1 Illumina V3 

hCoV-19/USA/CT-Yale-9391/2021 EPI_ISL_4198270 281 17.6 1.77×1009 Yes Yes 2 Illumina V3 

hCoV-19/USA/CT-Yale-9977/2021 EPI_ISL_4576991 291 23.53 4.71×1007 Not tested Yes 2 Illumina V3 

hCoV-19/USA/CT-Yale-10101R/2021 EPI_ISL_10548912 296 22.11 1.12×1008 Not tested Not done 1 NEB V3 



 

hCoV-19/USA/CT-Yale-10960/2021 EPI_ISL_10548913 310 29.9 9.54×1005 Yes Not done 2 NEB V3 

hCoV-19/USA/CT-Yale-11558/2021 EPI_ISL_5395558 317 24.6 2.45×1007 Not tested Yes 2 NEB V3 

hCoV-19/USA/CT-Yale-11887/2021 EPI_ISL_5639913 325 29.1 1.56×1006 Yes Not done 2 NEB V3 

hCoV-19/USA/CT-Yale-12124/2021 EPI_ISL_5865553 332 25.4 1.50×1007 Not tested Yes 2 NEB V3 

hCoV-19/USA/CT-Yale-13443/2021 EPI_ISL_7361483 347 28.3 2.54×1006 Yes Yes 1 IDT V4 

hCoV-19/USA/CT-Yale-13444/2021 EPI_ISL_7361527 353 32.5 1.94×1005 Not tested Not done 1 IDT V4 

hCoV-19/USA/CT-Yale-14026/2021 EPI_ISL_7980711 360 26.3 8.64×1006 Not tested  Yes 2 IDT V4.1 

hCoV-19/USA/CT-Yale-15439/2021 EPI_ISL_8563219 381 21.2 1.96×1008 Yes Yes 1 IDT V4 

hCoV-19/USA/CT-Yale-15438/2021 EPI_ISL_8563218 394 33.6 9.91×1004 No Not done 3 IDT V4 

hCoV-19/USA/CT-Yale-15437/2021 EPI_ISL_8563217 401 26.1 9.77×1006 Yes Yes 3 IDT V4 

hCoV-19/USA/CT-Yale-17291/2022 EPI_ISL_10815044 446 34.1 7.30×1004 Not tested Not done 2 IDT V4.1 

hCoV-19/USA/CT-Yale-17881/2022 EPI_ISL_11025821 459 30.03 8.81×1005 Not tested Not done 2 IDT V4.1 

hCoV-19/USA/CT-Yale-18086/2022 EPI_ISL_11503909 471 30.9 5.18×1005 No Not done 2 IDT V4.1 

 



 

Table S2. Summary of sequenced SARS-CoV-2 genomes analyzed in this study collected from the infected immunocompromised patient. Related to 

Figures 2-6. 

 

Sequence ID Sequence data repository Accession number 

hCoV-19/USA/CT-Yale-12056/2021 GISAID EPI_ISL_10548915 

hCoV-19/USA/CT-Yale-12057/2021 GISAID EPI_ISL_10548916 

hCoV-19/USA/CT-Yale-12058/2021 GISAID EPI_ISL_10548917 

hCoV-19/USA/CT-Yale-12059/2021 GISAID EPI_ISL_10548918 

hCoV-19/USA/CT-Yale-12060/2021 GISAID EPI_ISL_10548919 

hCoV-19/USA/CT-Yale-4087/2021 GISAID EPI_ISL_2035047 

hCoV-19/USA/CT-Yale-12061/2021 GISAID EPI_ISL_10548920 

hCoV-19/USA/CT-Yale-12062/2021 GISAID EPI_ISL_10548921 

hCoV-19/USA/CT-Yale-5581/2021 GISAID EPI_ISL_2716246 

hCoV-19/USA/CT-Yale-5673/2021 GISAID EPI_ISL_2776212 

hCoV-19/USA/CT-Yale-5792/2021 GISAID EPI_ISL_2860316 

hCoV-19/USA/CT-Yale-12063/2021 GISAID EPI_ISL_10548922 

hCoV-19/USA/CT-Yale-6136/2021 GISAID EPI_ISL_3133023 

hCoV-19/USA/CT-Yale-6819/2021 GISAID EPI_ISL_3370176 

hCoV-19/USA/CT-Yale-9391/2021 GISAID EPI_ISL_4198270 

hCoV-19/USA/CT-Yale-9977/2021 GISAID EPI_ISL_4576991 

hCoV-19/USA/CT-Yale-10101R/2021 GISAID EPI_ISL_10548912 

hCoV-19/USA/CT-Yale-10960/2021 GISAID EPI_ISL_10548913 



 

hCoV-19/USA/CT-Yale-11558/2021 GISAID EPI_ISL_5395558 

hCoV-19/USA/CT-Yale-11887/2021 GISAID EPI_ISL_5639913 

hCoV-19/USA/CT-Yale-12124/2021 GISAID EPI_ISL_5865553 

hCoV-19/USA/CT-Yale-13443/2021 GISAID EPI_ISL_7361483 

hCoV-19/USA/CT-Yale-13444/2021 GISAID EPI_ISL_7361527 

hCoV-19/USA/CT-Yale-14026/2021 GISAID EPI_ISL_7980711 

hCoV-19/USA/CT-Yale-15439/2021 GISAID EPI_ISL_8563219 

hCoV-19/USA/CT-Yale-15438/2021 GISAID EPI_ISL_8563218 

hCoV-19/USA/CT-Yale-15437/2021 GISAID EPI_ISL_8563217 

hCoV-19/USA/CT-Yale-17291/2022 GISAID EPI_ISL_10815044 

hCoV-19/USA/CT-Yale-17881/2022 GISAID EPI_ISL_11025821 

hCoV-19/USA/CT-Yale-18086/2022 GISAID EPI_ISL_11503909 

hCoV-19/USA/CT-Yale-12056/2021 Sequence Read Archive SRR23085675 

hCoV-19/USA/CT-Yale-12057/2021 Sequence Read Archive SRR23085674 

hCoV-19/USA/CT-Yale-12058/2021 Sequence Read Archive SRR23085663 

hCoV-19/USA/CT-Yale-12059/2021 Sequence Read Archive SRR23085652 

hCoV-19/USA/CT-Yale-12060/2021 Sequence Read Archive SRR23085651 

hCoV-19/USA/CT-Yale-4087/2021 Sequence Read Archive SRR23085650 

hCoV-19/USA/CT-Yale-12061/2021 Sequence Read Archive SRR23085649 

hCoV-19/USA/CT-Yale-12062/2021 Sequence Read Archive SRR23085648 



 

hCoV-19/USA/CT-Yale-5581/2021 Sequence Read Archive SRR23085647 

hCoV-19/USA/CT-Yale-5673/2021 Sequence Read Archive SRR23085646 

hCoV-19/USA/CT-Yale-5792/2021 Sequence Read Archive SRR23085673 

hCoV-19/USA/CT-Yale-12063/2021 Sequence Read Archive SRR23085672 

hCoV-19/USA/CT-Yale-6136/2021 Sequence Read Archive SRR23085671 

hCoV-19/USA/CT-Yale-6819/2021 Sequence Read Archive SRR23085670 

hCoV-19/USA/CT-Yale-9391/2021 Sequence Read Archive SRR23085669 

hCoV-19/USA/CT-Yale-9977/2021 Sequence Read Archive SRR23085668 

hCoV-19/USA/CT-Yale-10101R/2021 Sequence Read Archive SRR23085667 

hCoV-19/USA/CT-Yale-10960/2021 Sequence Read Archive SRR23085666 

hCoV-19/USA/CT-Yale-11558/2021 Sequence Read Archive SRR23085665 

hCoV-19/USA/CT-Yale-11887/2021 Sequence Read Archive SRR23085664 

hCoV-19/USA/CT-Yale-12124/2021 Sequence Read Archive SRR23085662 

hCoV-19/USA/CT-Yale-13443/2021 Sequence Read Archive SRR23085661 

hCoV-19/USA/CT-Yale-13444/2021 Sequence Read Archive SRR23085660 

hCoV-19/USA/CT-Yale-14026/2021 Sequence Read Archive SRR23085659 

hCoV-19/USA/CT-Yale-15439/2021 Sequence Read Archive SRR23085658 

hCoV-19/USA/CT-Yale-15438/2021 Sequence Read Archive SRR23085657 

hCoV-19/USA/CT-Yale-15437/2021 Sequence Read Archive SRR23085656 

hCoV-19/USA/CT-Yale-17291/2022 Sequence Read Archive SRR23085655 



 

hCoV-19/USA/CT-Yale-17881/2022 Sequence Read Archive SRR23085654 

hCoV-19/USA/CT-Yale-18086/2022 Sequence Read Archive SRR23085653 



 

Table S3. Nucleotide substitution or mutation rates of the chronic infection samples and other SARS-CoV-2 variants. Related to Figure 3. 

 

 

  

Strain 

Mutations or substitutions per year (s/y) Mutations or substitutions per site year (s/s/y)   

Regression R2 

Estimate Lower 95% CI Upper 95% CI Estimate Lower 95% CI Upper 95% CI 

Chronic infection 35.55 31.56 39.54 1.21×10-03 1.07×10-03 1.34×10-03 0.92 

Theta 24.74 22.23 27.26 8.41×10-04 7.56×10-04 9.27×10-04 0.67 

All lineages 17.16 16.36 17.96 5.83×10-04 5.56×10-04 6.11×10-04 0.41 

B.1.517 (other) 16.93 13.46 20.41 5.76×10-04 4.58×10-04 6.94×10-04 0.51 

Lambda 15.30 13.96 16.64 5.20×10-04 4.75×10-04 5.66×10-04 0.59 

Omicron 12.26 9.68 14.84 4.17×10-04 3.29×10-04 5.05×10-04 0.24 

Mu 11.05 9.62 12.49 3.76×10-04 3.27×10-04 4.25×10-04 0.35 

Gamma 10.62 9.27 11.97 3.61×10-04 3.15×10-04 4.07×10-04 0.34 

Zeta 10.26 8.56 11.96 3.49×10-04 2.91×10-04 4.07×10-04 0.27 

Iota 9.31 7.45 11.17 3.17×10-04 2.53×10-04 3.80×10-04 0.20 

Epsilon 8.98 7.56 10.41 3.05×10-04 2.57×10-04 3.54×10-04 0.30 

Delta 8.96 7.64 10.27 3.05×10-04 2.60×10-04 3.49×10-04 0.24 

Beta 8.93 7.46 10.39 3.04×10-04 2.54×10-04 3.53×10-04 0.27 

Alpha 8.91 7.83 9.99 3.03×10-04 2.66×10-04 3.40×10-04 0.29 



 

Table S4. cDNA and forward primer sequences for Multiplexed Primer ID (MPID) MiSeq library preparation for the SARS-CoV-2 S gene and nsp12. 

Related to Figure 6. 

 

Mix A 

Region cDNA primer with Primer ID First Round PCR Forward 

S-N-3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTAGTACCAAAAATCCAGCCTCT 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

AAGGGGTACTGCTGTTATGT 

S-RBD-1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTAGTTGCTGATTCTCTTCCTGT 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

AATTTAGTGCGTGATCTCCCT 

S-RBD-10 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTTGCTGGTGCATGTAGAAGTT 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

TTCCGCATCATTTTCCACTTT 

S2-9 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTGGCAATGATGGATTGACTAGC 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

GGCACAGGTGTTCTTACTGA 

NSP12-5 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTGTGCCAACCACCATAGAATTT 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

CTTCTTCTTTGCTCAGGATGG 

Mix B 

Region cDNA primer with Primer ID First Round PCR Forward 

S1-15 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTGTTCTAAAGCCGAAAAACCCT 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

TTGATAACCCTGTCCTACCA 

S-9 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTAGCTATAACGCAGCCTGTAA 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

TGTACGTTGAAATCCTTCACTG 



 

S-gap-4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTCAGGGACTTCTGTGCAGTTA 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

CCGGTAGCACACCTTGTAAT 

S2-3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNN

NNNNCAGTGACCTCTTGCTTGGTTTTGA 

GCCTCCCTCGCGCCATCAGAGATGTGTATAAGAGACAGNNNN

TGCAGGTATATGCGCTAGTT 

 

 



 

 
Figure S1: Key adaptive immune parameters as obtained from longitudinal chart reviews.  Related to Figure 

2.  (A) The red dotted lines show the serum concentration of Immunoglobulin G (IgG) (reference range from 700-

1600 mg/dL). (B) Cell counts per μl blood for CD45+ lymphocytes (reference range from 1170-3110/μl are shown 

by the red dotted lines) (C), CD3+ T cells (reference range from 725-2300/μl are indicated by the red dotted lines) 

and (D) CD8+ cytotoxic T cells (reference range from 150-980/μl are shown by the red dotted lines).



 

 
Figure S2: Time-resolved phylogenetic tree showing genetic relatedness of the B.1.517 SARS-CoV-2 strains 

from the chronic infection and contextual genomes from Connecticut, USA. Related to Figures 1 and 2. The 

B.1.517 sequences associated with the chronic infection formed a separate monophyletic clade from the rest of the 

B.1.517 sequences from Connecticut, USA indicating that there were no detectable onward transmission events from 

the patient with the chronic B.1.517 infection into the wider population in Connecticut, USA.



 

 
Figure S3: Genomes from B.1.517 chronic infection samples accelerated genetic divergence or higher 

mutation rates than other SAR-CoV-2 variants of interest and concern. Related to Figure 3. (A) Scatter plots 

show the relationship between phylogenetic root-to-tip distances, expressed as the number of mutations or 

nucleotide substitutions per site, and time as the number of days from the first sampled genome. The data points 

associated with the chronic infection are colored in red while those representing other variants are colored in sky 

blue. The lines and shaded bands surrounding them represent the linear regression models fitted to the data points 

for the chronic infection data and other variants. (B) Bar graph showing the average mutation rates expressed as the 

number of nucleotide substitutions per site per year (s/s/y) for the chronic infection samples and other variants based 

on the regression coefficients (β) generated from the plots in panel A. Specific values for the mutation rate are 

shown in Table S3. 

 



 

 

Figure S4: High concordance of the frequency of single nucleotide variants of the spike glycoprotein 

mutations between samples deep sequenced with and without unique molecular identifiers (UMI). Related to 

Figure 6. The genomic data without the UMIs were deep-sequenced using routine amplicon-based sequencing 

protocol using ARTIC V3, V4, and V4.1 primers for amplicon generation using 2×150 bp paired-end reads on an 

Illumina NovaSeq. Samples selected for deep-sequencing with the UMIs based on the Primer ID next-generation 

sequencing protocol were sequenced using MiSeq 2×300 bp paired-end reads. The insets show variants, colored in 

red, with frequencies between 0 to 0.1.



 

 

 

 
Figure S5: Nucleotide variation in B.1.517 SARS-CoV-2 genomes longitudinally sampled from a chronically 

infected patient.  Related to Figures 4-5. Consensus sequences for each genome were compared against a 

reference genome, a reconstructed ancestral sequence for all the chronic infection genomes. 



 

 

Figure S6: Distribution of iSNVs or mutations detected in the deep-sequenced longitudinal chronic infection 

samples.  Related to Figures 4-5. The y-axis shows the number of iSNVs per kilobase for different SARS-CoV-2 

genomic features based on the sequence annotations in the ancestral SARS-CoV-2 reference genome (GenBank 

accession: NC_045512.2). The bars in the graph are colored by the variant or mutation type. Additional information 

is provided in Data S1. 

 



 

 

Figure S7: Mutation spectra of identified twelve trinucleotides during the B.1.517 chronic infection stratified 

by codon position. Related to Figures 4-5. Additional information is provided in Data S1. 



 

 

Figure S8: Distribution of iSNVs or mutations detected in the deep-sequenced longitudinal chronic infection 

samples.  Related to Figures 4-5. Graph showing the number of samples containing each unique iSNV and its 

position in the ancestral SARS-CoV-2 reference genome. The y-axis labels on the right side of the plot show the 

number of iSNVs per gene and their position in the SARS-CoV-2 genomes stratified based on the sequence feature 

annotations in the ancestral SARS-CoV-2 reference genome (GenBank accession: NC_045512.2). Additional 

information is provided in Data S1. 



 

 

 
Figure S9: Distribution of iSNVs or mutations detected in the deep-sequenced longitudinal chronic infection 

samples. Related to Figures 4-5. The x-axis labels represent iSNVs corresponding to specific nucleotide 

substitutions and positions in the genome. The labels above the bars show the specific amino acid changes and their 

specific position in the SARS-CoV-2 genomes stratified based on the sequence feature annotations in the ancestral 

reference genome (GenBank accession: NC_045512.2). All the iSNVs are colored by the variant or mutation type. 

Additional information is provided in Data S1.



 

 

Figure S10: Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 infection. 

Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations identified in 

the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and non-

synonymous) are provided in Data S1. 



 

 

Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 

infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations 

identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and 

non-synonymous) are provided in Data S1. 

 



 

 

Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 

infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations 

identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and 

non-synonymous) are provided in Data S1. 

 

 



 

 

Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 

infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations 

identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and 

non-synonymous) are provided in Data S1.  

 

 

 



 

 

Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 

infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations 

identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and 

non-synonymous) are provided in Data S1.  

 



 

 

Figure S10 (continued): Intrahost non-synonymous mutation dynamics during chronic B.1.517 SARS-CoV-2 

infection. Related to Figure 6. The graphs show temporal frequencies of non-synonymous iSNVs or mutations 

identified in the entire genome. Additional information for all the identified mutations (intergenic, synonymous, and 

non-synonymous) are provided in Data S1.  
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