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Figure S1: Comparison of B+S Net performance when the standard deviation (σ) of the Gaussian blur
kernel of the training image is fixed at 4 px or varied from 0 px to 4 px. Recognition performances of (A)
low-pass images, (B) jumbled/occluded images, and (C) shape-texture-cue-conflict images. We found no
significant changes in the performance on any of the test sets from the original B+S-Net. Fixing the blur
strength is not the reason why blur training is limited in its ability to reproduce human-like global object
recognition.
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Figure S2: 1000 class AlexNet with blur training. S-Net, B-Net, B+S-Net, and B2S-Net were trained
on the ILSVRC2012 ImageNet (1000-class classification task, 1.2 million training images) from scratch.
Otherwise, we used the same training procedure as the main study. The 16-class-ImageNet was used
to test performance. (A) Accuracy for blurred images. The overall results of the 1000-class-AlexNet
exhibited a shared trend with those of the 16-class-AlexNet. B+S-Net showed blur robustness to a broader
range of test blur strengths than S-Net while B-Net showed robustness only around the blur level it was
trained with. B2S-Net did not show any improvement over S-Net, probably due to forgetting in the last
20 epochs during which the model was trained with only sharp images. However, we also found that
the generalization effect of blur training beyond the blur strength used in training was smaller for the
1000-class-AlexNet than that for the 16-class-AlexNet. B-Net was firmly tuned to the blur strength used
in training (σ = 4) and was barely able to recognize clear images. (B) Accuracy of the band-pass-filtered
test images. Again, the results of the 1000-class-AlexNet showed a similar trend to the 16-class-AlexNet
but the effective bandwidth was narrower in the 1000-class version. In addition, as with the 16-class-
AlexNet, the accuracy for high-frequency images was low, indicating that the 1000-class models could not
recognize the information composed only of high-frequency patterns. (C) Effect of global configuration
of local patches on the performances of 1000-class AlexNet. We found that the trend was exactly the same
as observed with the 16-class version: high accuracy (about 40%) for Jumbled images and significantly
worse accuracy for Gray Occluder images. In other words, the CNNs could classify images to some extent
using local information alone, but it was challenging for them to globally integrate the information for
object recognition. (D)Shape bias using the cue conflict images. There was little effect of blur training on
shape bias when the 1000-class dataset was used. However, it should also be noted that the accuracy of
the 1000-class models for the cue conflict images themselves was very low, meaning that the models were
barely able to classify the test images to either the correct shape or texture label in the first place.
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Figure S3: Different network architectures other than AlexNet. Here are the results for VGG16 with blur
training, and the next figure shows the results for ResNet50 with blur training. We set the final output of all
networks to 16 classes. Note that we explicitly indicate the name of each network along with the training
procedure in this caption (e.g. S-AlexNet for S-Net with AlexNet architecture). (A) Blur image test. The
overall trend of results for ResNet50 (Fig. S3A) and VGG16 (Fig. S4A) is similar to that for AlexNet.
However, compared to B-AlexNet, B-VGG16 and B-ResNet50 displayed a tendency to overfit to the
blur strength used during training (i.e., σ = 4). Although B+S-VGG16 and B+S-ResNet50 outperformed
humans on some low-frequency images, the accuracy dropped sharply around σ = 6 and fell below
humans at σ = 8. In this respect, B+S-AlexNet appears to have the most human-like performance and blur
robustness among the three architectures. (B) Band-pass image test. Although variation in tuning patterns
due to training methods was similar across architectures, we found that VGG16 (in particular, S-VGG16)
was better at recognizing objects using high-frequency components than the other architectures. Training
with blurred images decreased the reliance on high-frequency components in VGG16. (C) Local patch
jumbling/occlusion test. We found no significant difference from AlexNet. Regardless of the architecture,
the CNN models tended to rely on local information rather than global configural information for object
recognition. (D) The shape bias was lower (the texture bias was higher) for S-VGG16 and S-ResNet50
than for S-AlexNet. This result may be related to the fact that S-VGG16 and S-ResNet50 had higher
accuracy for high-frequency images than S-AlexNet. Thus, decreasing the reliance on high-frequency
components might have some effect on increasing the shape bias. However, the increase in shape bias due
to blur training was not enough to reach the human level in any of the three architectures.
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Figure S4: ResNet50 with blur training. See Caption of Figure S3.
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Figure S5: Visualization of the receptive fields of the first convolutional layer. (A)-(D) The visualizations
of 16-class S-Net, 1000-class S-Net, 16-class B+S-Net, and 1000-class B+S-Net. (E) Comparison of
histograms of preferred spatial frequencies between 16-class S-Net and 16-class B+S-Net. (F) Comparison
between 1000-class S-Net and 1000-class B+S-Net. The preferred frequency was computed as the peak
frequency of the Fourier transform for each RGB channel of each filter. The peaks of both horizontal and
vertical frequencies were concatenated to obtain the histogram. The frequency is expressed as cycles per
filter size (11 pixels). The broken line indicates the amplitude spectrum of the Gaussian blur kernel used
for training the B+S Net (σ = 4). The units prefer lower spatial frequencies for B+S-Net than for S-Net,
and for 16-class-AlexNet than for 1000-class-AlexNet.
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Figure S6: Representational similarity of sharp (unblurred) and blurred image inputs for S-Net (A) and
B+S Net (B). The result of 1000-Class AlexNet is shown. The pattern of results is similar to that of 16-
class AlexNets in Fig. 5.

Figure S7: Visualization of internal representation of S-Net (16-class AlexNet) for sharp and blurred
images using t-SNE. Each point indicates each of 10 sharp (S) or blurred (B) images of the object class
indicated by the two-digit number. 00:airplane, 01:bear, 02:bicycle, 03:bird, 04:boat, 05:bottle, 06:car,
07:cat, 08:chair, 09:clock, 10:dog, 11:elephant, 12:keyboard, 13:knife, 14:oven and 15:truck.
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Figure S8: Visualization of internal representation of B+S-Net (16-class AlexNet) for sharp and blurred
images by t-SNE. In comparison to S-Net, sharp and blurred images are always close to each other.
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Figure S9: Confusion matrix for zero-shot learning test when (A) one blur label, (B) eight blur labels, (C)
one sharp label, or (D) eight sharp labels is/are excluded from the training set. Test set was blurred images
for (A) and (B), and sharp images for (C) and (D).
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Figure S10: Visualization of internal representation of S-Net (16-class AlexNet) for high-pass and low-
pass images by t-SNE. Each point indicates each of 10 high-pass (H) or low-pass (B) images of the object
class indicated by the two-digit number.

Figure S11: Visualization of the internal representation of B+S-Net (16-class AlexNet) for high-pass and
low-pass images by t-SNE.
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