
 - 1 -

Supporting Information for

ZINC-22 - A Free Multi-Billion-Scale Database of Tangible

Compounds for Ligand Discovery

Benjamin I. Tingle+, Khanh G. Tang+, Mar Castanon+, John J Gutierrez, Munkhzul Khurelbaatar,

Chinzorig Dandarchuluun, Yurii S. Moroz&, John J. Irwin*

Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St,

Mailcode 2550, San Francisco CA 94158-2330

& Taras Shevchenko National University of Kyїv, 60 Volodymyrska Street, Kyїv 01601,

UkraineNational Taras Shevchenko University of Kyiv, Kyiv 01601, Ukraine and Chemspace LLC

(www.chem-space.com), 85 Chervonotkatska Street, Kyїv 02094, Ukraine.

+ these authors contributed equally

*Corresponding author jji@cgl.ucsf.edu

 - 2 -

Supporting Information Table of Contents

S0. Access to databases to prevent molecules becoming unpatentable

S1. Source catalog contributions to ZINC-22

S2. Sharding script

S3. ZINC-22 numbering

S4. Software and Hardware overview

S5. Sn system overview

S6. Sb system overview

S7. Common Database Schema Overview

S8. Important management scripts for ZINC-22

S9. Files sizes in ZINC-22

 - 3 -

S0. Access to databases to prevent molecules becoming unpatentable

To access the private databases, in addition to a login, a user id and password are required.
The user id is the acronym for G protein coupled receptors, all small case, four letter.
The password is a widely used four letter abbreviation of crystal, all small case, four letters.
We hope this helps prevent never-been-made molecules in these from losing their may-be-
patented-for-composition-of-matter status.

 - 4 -

S1. Source catalog contributions to ZINC-22. Number of SMILES in each, not accounting for
duplication, and before stereochemical expansion.

 S-Enamine M-Enamine WuXi Mcule

H04 0 3 0 3

H05 0 16 1 13

H06 4 97 3 57

H07 37 423 19 211

H08 281 1,771 47 647

H09 1,408 6,711 241 1,593

H10 5,479 23,284 1,134 3,786

H11 20,046 75,242 5,063 8,357

H12 69,500 222,832 19,356 17,359

H13 226,068 589,879 59,441 33,757

H14 668,339 1,397,669 150,566 61,906

H15 1,757,298 2,949,191 328,930 108,996

H16 4,088,958 5,602,072 630,503 182,597

H17 8,434,321 9,728,563 1,071,982 291,599

H18 15,495,328 15,882,147 1,640,345 443,659

H19 25,659,376 25,337,835 2,309,365 644,836

H20 38,702,762 41,432,156 3,106,513 896,127

H21 53,623,614 72,302,131 4,187,920 1,189,032

H22 68,807,514 135,143,541 5,844,203 1,527,539

H23 82,206,044 262,229,709 8,603,347 1,903,392

H24 92,550,418 507,018,263 13,132,882 2,323,072

H25 99,416,168 948,387,644 20,170,920 2,795,200

H26 99,496,808 1,667,424,311 30,309,662 3,343,654

H27 97,103,418 2,645,491,632 43,768,982 3,981,546

H28 89,499,857 3,890,805,978 60,180,044 4,720,688

H29 78,854,473 5,572,210,412 78,484,029 5,558,469

H30 62,398,096 6,931,706,953 96,891,592 6,463,251

Sum  H25 491,732,963 2,028,331,179 61,262,781 12,433,738

Sum  H30 919,085,615 22,735,970,465 370,897,090 36,501,346

 - 5 -

S2. Sharding script

https://github.com/docking-org/ZINC21-Tools/blob/master/rdkit_hlogp_batch_mp_2.py

import multiprocessing as mp

import sys

import os

import shutil

from rdkit.Chem import MolFromSmiles

from rdkit.Chem.Descriptors import MolLogP

from rdkit.Chem.SaltRemover import SaltRemover

from tqdm import tqdm

remover = SaltRemover()

def scale_logp_value(logp):

 if logp < -9.0:

 logp = -9.0

 elif logp > 9.0:

 logp = 9.0

 if logp < 0.0 or logp >= 5.0:

 logp = 100*int(logp)

 else:

 logp = 10*int(10*logp)

 return logp

def worker(line):

 smiles, cid = line.decode().strip().split()[:2]

 mol = MolFromSmiles(smiles)

 if mol:

 if '.' in smiles:

 mol = remover.StripMol(mol)

 logp = MolLogP(mol)

 num_heavy_atoms = mol.GetNumHeavyAtoms()

 if num_heavy_atoms > 99:

 num_heavy_atoms = 99

 sign = 'M' if logp < 0.0 else 'P'

 return f'{smiles} {cid}\n', len(line), True,

f'H{num_heavy_atoms:02}{sign}{abs(scale_logp_value(logp)):03}.txt'

 else:

 return f'{smiles} {cid}\n', len(line), False

if __name__ == '__main__':

 if len(sys.argv) != 2:

 print('Usage: python rdkit_hlogp_batch_mp_2.py <smiles>')

 exit()

 folder = os.path.dirname(sys.argv[1])

 name, ext = os.path.splitext(os.path.basename(sys.argv[1]))

https://github.com/docking-org/ZINC21-Tools/blob/master/rdkit_hlogp_batch_mp_2.py

 - 6 -

 file_failed = os.path.join(folder, f'{name}_failed{ext}')

 tranches_folder = f'./{name}_tranches/'

 if os.path.exists(tranches_folder):

 shutil.rmtree(tranches_folder)

 os.makedirs(tranches_folder)

 cache = dict()

 cache_size_in_lines = 1024

 with open(sys.argv[1], 'rb') as f, open(file_failed, 'w',

newline='\n') as f_f, mp.Pool() as pool, \

 tqdm(total=os.path.getsize(sys.argv[1]), unit_scale=True,

unit_divisor=1024,

 unit='B', mininterval=1.0) as _tqdm:

 for res in pool.imap(worker, f, chunksize=256):

 _tqdm.update(res[1])

 if res[2]:

 cache.setdefault(res[3], list()).append(res[0])

 if len(cache[res[3]]) >= cache_size_in_lines:

 with open(os.path.join(tranches_folder, res[3]),

'a', newline='\n') as fout:

 fout.writelines(cache[res[3]])

 cache[res[3]].clear()

 else:

 f_f.write(res[0])

 for file_name, cached_lines in cache.items():

 if cached_lines:

 with open(os.path.join(tranches_folder, file_name), 'a',

newline='\n') as fout:

 fout.writelines(cached_lines)

 print('Done')

 - 7 -

S3. ZINC 3D numbering

https://wiki.docking.org/index.php/ZINC22:Numbering

https://wiki.docking.org/index.php/ZINC22:Numbering

 - 8 -

S4. ZINC-22 Database Software and Hardware Overview

Software Used: Python 3.6 (vanilla), Postgres 12.2, Bash

Hardware Overview

Hostname CPUS Memory (B) Subsystem Database Instances

n-1-16 80 394652788 Tin 11

n-1-17 80 394652836 Tin 10

n-1-18 80 394652788 Tin 11

n-1-19 80 196484320 Tin 10

n-1-20 80 196484272 Tin 13

n-1-21 80 790989768 Tin 13

n-5-34 80 196484368 Tin 11

n-5-35 80 394652832 Tin 10

n-9-19 80 196499152 Tin 11

n-9-20 80 196499152 Tin 10

n-9-38 80 97415208 Antimony 16

n-5-13 80 196499440 Antimony 16

n-5-15 80 196499440 Antimony 16

n-5-14 80 196499440 Antimony 16

Subsystem Notes

The Tin subsystem contains the actual chemical data for zinc22, broadly partitioned by chemical
properties. The antimony subsystem performs the auxiliary function of accelerating vendor
code lookup on zinc22, as vendor codes do not typically contain any usable information about
the chemicals they reference, so we must build up an additional system to map codes to the
broad chemical partition(s) they are within.

 - 9 -

S5. Tin Database Schema Overview

Table Name Partitioned Partition Type Description

substance Yes Hash (smiles) Contains molecule SMILES
data + substance ID
information

catalog_content Yes Hash
(supplier_code)

Contains vendor supplier
code data + maps codes to
vendors

catalog_substance Yes Hash (sub_id_fk) Forms the relation between
substance and
catalog_content

catalog_substance_cat Yes Hash
(cat_content_fk)

Same as above, but hashed
by vendor ID for flexible
lookup

substance_id Yes Hash (sub_id) Maps substance ID to the
substance partition smiles
resides in. More info
below.

catalog_id Yes Hash
(cat_content_id)

Maps vendor ID to the
catalog_content partition
code resides in.

catalog No N/A Contains more detailed
information about vendors

meta No N/A Contains details about TIN
instance, e.g patch/upload
history, # of partitions, etc.

transaction_record_{identifier} No N/A Contains details about a
particular upload
transaction, one table for
each transaction

Note on the substance_id and catalog_id tables

 - 10 -

Partitioning our primary tables by their unique key significantly speeds up bulk upload
operations by allowing us to break up the task into manageable chunks. Unfortunately, this
comes at the cost of slowing down most other query types, due to how Postgres handles
partitions.

The problem is as follows- if a user is looking up (for example) a singular ZINC ID, Postgres
needs to query each substance partition for that ID, thus potentially loading and checking
hundreds of indexes for a singular lookup. This can be fixed by creating a secondary table that
maps substance IDs to the partition they reside in, substance_id. This improves the
performance of small queries by reducing the number of tables that are required to check in
the worst case to two per lookup (substance_id partition & substance partition).
Similarly, catalog_id accelerates small lookups on the catalog_content table.

 - 11 -

S6. Antimony Database Schema Overview

Table Name Partitioned Partition Type Description

supplier_codes Yes Hash
(supplier_code)

Contains vendor code data
+ hash bucket

supplier_map Yes Hash (sup_id_fk,
machine_id_fk)

Forms the relation
between vendor code ID

and machine ID

meta No N/A Contains details about
Antimony instance, e.g

patch/upload history, # of
partitions, etc.

transaction_record_{identifier} No N/A Contains details about a
particular upload
transaction, one table for
each transaction

 - 12 -

S7. Common Database Schema Overview

Table Name Description

antimony_hash_partitions Maps SHA256 hash digits to logical antimony partition (last digits
of SHA256 hash are used to sort vendor codes into Antimony
database instances)

antimony_machines Contains host/port details of each antimony instance & the
logical partition said instance maps to

holdings_3d Contains a list of all 3D tarballs produced for ZINC22, must be
updated periodically.

tin_machines Contains host/port details of each tin instance & canonical
machine_id for said instance (used by Antimony)

tin_partitions Contains the HAC+LogP start & end for Tin partitions. Tin is
unique in that it is partitioned (on an instance level) by the
chemical properties of substances contained within.

tranche_mappings Maps each HAC+LogP tranche to a Tin instance

Side Note: the common database is located @ zinc22user@n-1-17:5534:zinc22

 - 13 -

S8. Important Management Scripts

These scripts for managing ZINC-22 in 2D are part of github.org/docking-org/zinc-22-2d

preprocessing/pre_process_all.bash

o Initiates preprocessing of vendor chemical data. All data must be preprocessed
before entering the zinc22 system

• utils-2d/tin/2d_export_all.bash
o Exports database contents to disk, can choose one of the following three modes:

▪ Substance export
▪ Exports just SMILES and ZINC IDs to disk

▪ Vendor export
▪ Exports SMILES + Vendor Codes + ZINC IDs to disk

▪ Antimony export
▪ Exports Vendor Codes + machine_id to disk for future upload to

antimony
• utils-2d/tin/2d_upload_all.bash

o Initiates upload of tranched chemical data to Tin database instances. Must
provide a unique identifier for uploaded data.

o Uploads also produce a diff to a specified location in the event that rollbacks are
desired.

• utils-2d/antimony/submit_all_sb_upload.sh
o Initiates upload of exported antimony data to Antimony database instances.

• utils-2d/zinc22_stats/get_zinc22_upload_status.bash
o Gets the latest successful upload for each tin database

• utils-2d/zinc22_stats/get_zinc22_patch_status.bash
o Gets the pass/fail status for each patch on tin databases

• utils-2d/common_files
o Okay, this one isn’t a script, but it is referenced everywhere.
o Contains all sorts of files that encapsulate the static configuration for the zinc22

system
o Trying to move the contents of these files to the common database, but for now

these files are still accurate and their contents are referenced by many scripts
scattered around the zinc22 repository

 - 14 -

S9. Files sizes in ZINC-22

Figure 9A. Average file size per molecule (Bytes), organized by heavy atom count. All files are
gzipped.

Thus DB2 files show a sharp dependency on heavy atom count, due to the conformational
sampling built into these files. The other file types show very slight sensitivity to heavy atom
count.

 - 15 -

Figure S9B. Number of bytes per atom, organized by heavy atom count. Files are gzipped.
DB2 files are in figure S9C. Thus mol2 files are bigger than other file types, but by less than a
factor of 2.

 - 16 -

Figure 9C. File size per atom, organized by heavy atom count. DB2 only. All files gzipped. For
other file types see figure S9B

