

Supplementary Figure 1. Multiple sequence alignment of DcrB proteins from enterobacterial pathogens. The secondary structure that was observed in the structure of DcrB Δ 37 is indicated over the multiple sequence alignment. The multiple sequence alignment includes DcrB sequences from *Salmonella enterica* serovar Typhimurium (*Se*), *Shigella dysenteriae* (*Sd*), *Escherichia coli* (*Ec*), *Klebsiella pneumoniae* (*Kp*), and *Yersinia pestis* (*Yp*). The lipoprotein signal sequence is underlined. The dashed gray line indicates the portion of purified SeMet DcrB Δ 20 protein that was not observed in electron density maps. Solid black lines correspond to regions of DcrB Δ 37 that were observed in electron density maps but were not part of α -helices or β -strands. Symbols underneath each aligned position indicate residues that are completely conserved (*), residues that are strongly conserved (:), and residues that are weakly conserved (.) (Chenna et al., 2003)

Supplementary Figure 2. Analysis of 20 μ g of purified DcrB Δ 20 (18.6 kD) or 20 μ g of DcrB Δ 37 (16.9 kD) by SDS-polyacrylamide gel electrophoresis followed by Coomassie staining.

Supplementary Figure 3. DcrB consists primarily of β -sheet in solution. Molar ellipticity values from a circular dichroism wavelength scan of DcrB Δ 37 are plotted as the mean of 3 independent experiments, and error bars represent standard deviations.

Supplementary Figure 4. Salt bridge interactions in the domain-swapped dimer of DcrB \triangle 37. A) The two salt bridges are depicted between the β -hairpin of one DcrB \triangle 37 monomer (wheat) and the other DcrB \triangle 37 monomer (light gray). The side chains of residues involved in these salt bridges are depicted as sticks, with oxygen atoms in red, nitrogen atoms in blue, and carbon atoms in either wheat (one monomer) or gray (second monomer). B) Zoomed views of the Asp57–Lys82 salt bridge (B) and Lys49–Asp153 salt bridge (C), colored the same as described in panel A. The black dashed line indicates the electrostatic interaction between the side chains.

cytoplasm

Supplementary Figure 5. Predicted electrostatic charge of DcrB relative to the cytoplasmic membrane. The DcrB monomer is colored based on the calculated surface electrostatic charge, where red represents regions of negative charge and blue represents regions of positive charge. The dotted lines represent the unstructured region, corresponding to amino acids 21–37, that connect the lipid-modified Cys20 to the structured domain of DcrB.

Primer name	Sequence (5' to 3')
JM012	TATACATATGCATCATCATCATCATGCAGATAACAACGATACAAAA
	GC
JM013	CCCAAGCTTACTTAATAACCAACGTATTGATGATGTTTTCAGCCGTGG
	TTT
T7-promoter	TAATACGACTCACTATAGGG
-	
T7-terminator	GCTAGTTATTGCTCAGCGG

Supplementary Table 1. Oligonucleotide primers used in this study

Supplementary T	Table 2.	Bacterial	strains and	l plasmids	used in this	study
-----------------	----------	-----------	-------------	------------	--------------	-------

Strain or plasmid	Description	Reference or Source
Salmonella enterica		
14028s	wild-type	(Fields et al., 1986)
Escherichia coli		
DH5a	F–supE44 ΔlacU169 (<i>φ</i> 80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1	(Hanahan, 1983)
C41(DE3)	F^- ompT hsdSB (r B^- m B^-) gal dcm (λ DE3) λ DE3 = λ sBamHlo ΔEcoRI-B int::(lacl::PlacUV5::T7 gene1) i21 Δnin5	Lucigen
JW0374–1	F [−] , ∆ (araD-araB)567, ∆lacZ4787(::rrnB-3), ∆phoA748::kan, λ [−] , rph-1, ∆(rhaD-rhaB)568, hsdR514	Yale Coli Genetic Stock Center
JM273	C41(DE3) ∆phoA748::kan	This work
JM280	C41(DE3) <i>∆phoA748::kan</i> / pET-22b-His ₆ dcrB⊿20	This work
JM296	C41(DE3) <i>∆phoA748::kan</i> / pET-22b-His ₆ <i>dcrB∆</i> 37	
Plasmids		
pBR322	rep _{pMB1} Amp ^R Tet ^R	New England Biolabs
pBR322-dcrB	rep _{pMB1} Amp ^R Tet ^S	This work
pET-22b(+)	rep _{pMB1} Amp ^R <i>lacl</i> Р _{т7}	Novagen
pET-22b-His₀ <i>dcrB∆</i> 20	rep _{pMB1} Amp ^R <i>lacl</i> Р _{т7} -His ₆ - <i>dcrB</i> ⊿20	This work
pET-22b-His₀ <i>dcrB∆</i> 37	rep _{pMB1} Amp ^R <i>lacl</i> P _{T7} -His ₆ - <i>dcrB</i> ⊿37	This work, Genscript

	SeMet DcrB∆20	
Data Collection		
Beamline	21-ID-D, LS-CAT, APS	
Wavelength, Å	0.97895	
Resolution range (high resolution bin), Å	95.71–2.30 (2.33–2.30)	
Space Group	P 21 21 2	
Unit Cell (a, b, c (Å))	82.44, 191.41, 41.06	
(α, β, γ (°))	90, 90, 90	
Completeness, %	98.6 (92.0)	
Total Reflections	263,245 (11,921)	
Unique Reflections	29,643 (1,350)	
Redundancy	8.9 (8.8)	
<i <b="">σI></i>	11.5 (4.5)	
R _{merge} [†] , %	16.4 (77.7)	
Phasing		
Figure of Morit	0.4358	

Supplementary Table 3. X-ray diffraction data collection statistics for SeMet DcrBA20

 Figure of Merit
 0.4358

 [†] $R_{merge} = \Sigma \Sigma_j |I_j - <I > |\Sigma I_j$, where I_j is the intensity measurement for reflection j and <I > is the mean intensity for multiply recorded reflections.

Supplementary Table 4. Determination of solution molecular weight (MW) of DcrB Δ 20 by size-exclusion chromatography multi-angle light scattering¹

Protein concentration	SEC-MALS MW (kD)	Range of SEC- MALS MW across eluted peak (kD)	Calculated monomeric MW	Mono- disperse peak
1.3 mg/mL	19 ± 1	18.5-21.0	18.6 kD	Yes

¹This analysis was carried out by the W.M. Keck Foundation Biotechnology Resource Laboratory at Yale University.

Supplementary References

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D., 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–500.

Fields, P.I., Swanson, R. V, Haidaris, C.G., Heffron, F., 1986. Mutants of *Salmonella typhimurium* that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. 83, 5189–5193. https://doi.org/10.1073/pnas.83.14.5189

Hanahan, D., 1983. Studies on transformation of *Escherichia coli* with plasmids. J. Mol. Biol. 166, 557–580. https://doi.org/10.1016/S0022-2836(83)80284-8