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Web-Appendix A (Proofs of theoretical results related
to Theorem 2 of the main manuscript)
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Lemma 1. Suppose we have a line segment pq of length l, and a point x which has height h

above the line segment, and which is a horizontal distance of a from p. The larger |α− l

2 | is, the
larger the sum of the arcs from p to x and from q to x is.

Proof. The sum of the lengths of the two arcs is L(α) =
√
α2 + h2 +

√

(l − α)2 + h2 (see Figure
1 for a representation). Differentiating yields:

∂L

∂α
=

α√
α2 + h2

− (l − α)
√

(l − α)2 + h2
. (1)

Finding the zeros:

α√
α2 + h2

− (l − α)
√

(l − α)2 + h2
= 0

⇒ (l − α)2(α2 + h2) = α2
(

(l − α)2 + h2
)

⇒ (l − α)2 = α2

⇒ l2 = 2lα

⇒ l

2
= α.

By computing the second derivative, we see that this is a local minimum. Combining this
with the fact that L(α) = L(l−α), we have that the larger | l2 −α| is, the larger the L(α) is. This
completes the proof.

Figure 1: Configuration considered in Lemma 1.

Proposition 1. Among all convex piecewise linear sets in the triangle ABC for which BC is in-
cluded in their perimeter, the two configurations shown in panels (b) and (c) of Figure 3 maximize
the perimeter of the convex set for a fixed enclosed area R.
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Proof. Denote with γ the piecewise linear curve with B and C as endpoints (see Figure 3).
Suppose that there are more than 3 segments in γ. Then we can find a sequence of two segments
whose endpoints are not B or C. We apply our first lemma to these two segments and three
vertices. All positions are valid for x∗ (γ is still convex, and the area is still R) as long as x∗ does
not leave lines k1 and k2. The lemma implies that the length of the two arcs is attained when x∗

lies on k1 or when x∗ lies on k2.
Moving x∗ to this position, the new γ still bounds an area of R, is still a piecewise linear curve but
with one fewer segment. We can repeat this procedure until there are three segments remaining.
Applying Lemma 1 to the triangle x∗y∗C (see panel (b) of Figure 2), this either reduces the
number of segments to 2, at which point we apply Lemma 1 again to finish the proof, or it
produces the configuration given in panel (c) of Figure 2. We apply Lemma 1 to the triangle
By∗x∗. Since the angle ABy∗ is less than the angle Ay∗B, placing x∗ on the edge of CB maximizes
| l2 −α|, which means that this maximizes the length of Bx∗y∗. Uniqueness follows since each one
of these arrangements strictly increases the length.

Theorem 1. Among all convex sets in the triangle ABC for which BC is included in their
perimeter, the two configurations shown in panels (b) and (c) of Figure 3 maximize the perimeter
of the convex set for a fixed enclosed area. Furthermore, these are the only maximizers.

Proof. Divide BC into n equal segments, and let the endpoints be x∗0 = B, x∗1, . . . , x
∗

n = C. Each
x∗
i
is the x−coordinate of exactly on point on γ (the rope) since the region between BC and the

rope γ is convex. Call these points (x∗
i
, y∗

i
). For every n, we construct a piecewise linear curve γn

which goes from B = (x∗0, y
∗

0) to (x∗1, y
∗

1) and so on until we reach C = (x∗n, y
∗

n). This piecewise
linear curve has n segments.

By Lemma 1, the length of γn is no less than the length of the configurations (b) and (c)
shown in Figure 3 of the main manuscript, that bound the same area as γn bounds. Let the
configuration of that type, which shares a segment with BA be called γ∗n. Then

limn→∞length(γ∗n) ≥ limn→∞length(γn) (2)

and

limn→∞area(γ∗n) = limn→∞length(γn) = area(γ). (3)

Thus, limn→∞γ∗n, which is of the above configuration, bounds the same area as γ, but has no
smaller length.
Regarding uniqueness:

We already know that the two configurations are maximizers. Suppose that γ which bounds
area A′, and which is not one of those configurations. We can then find two distinct points p and q

on γ such that (1): p is not on the first configuration and (2): q is not on the second configuration.
Let p = (p1, p2) and q = (q1, q2). Without loss of generality we assume that p1 ≤ q1. We follow
a procedure similar to the one presented before. Divide the interval from B to p1 into n pieces
of the same length, divide the interval from p1 to q1 up to into n pieces of the same length, and
divide the interval from C up to n pieces of the same length. Let these points, as before, be

x0 = B, x1, . . . , xn = p1, xn+1, . . . , x2n = q, x2n+1, . . . , x3n = C.
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Each point corresponds to a distinct point (xi, yi) on γ, with (xn, yn) = p and

(x2n, y2n) = q.

We construct γn as before and repeatedly apply Lemma 1. However, we do not choose any
triangle which contains p or q on its interior. By doing this we obtain a piecewise linear curve of
length no smaller than that of γn, and which has at most 6 segments. Let this curve be γ∗n. Let
β be the piecewise linear curve of at most 6 segments, which contains p and q, and which bounds
the same area that γ bounds, and which maximizes the length. Note that β exists and is not
unique.

Since
lim

n→+∞

area(γ∗n) = area(γ)

and since

lim
n→+∞

length(γ∗n) ≤ lim
n→+∞

length(β)

with

lim
n→+∞

length(γ∗n) ≥ lim
n→+∞

length(γn) = limn→+∞length(γ)

we have

length(β) ≥ length(γ)

and both enclose the same area. However, since p, q,∈ β, β is not one of the two original
configurations, and so by Lemma 1, the two configurations have larger length than the length of
β. This means that γ cannot be a maximizer. This completes the proof.

Figure 2: Configurations discussed in Proposition 1.
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Web Appendix B (Inference under the Box-Cox)
It is often the case that the normality assumption is too restrictive and not justified by the data at
hand. In many cases, a transformation to normality might be sufficient to transform the scores of
the healthy and the diseased to be approximately normal. The Box-Cox transformation (Box and
Cox (1964)) has been used before under the ROC setting (see Faraggi and Reiser (2002), Bantis,
et al. (2014), Fluss, et al. (2005), and Molodianovitch, et al. (2006), among others). The Box-Cox

transformation implies that a given random variable X, may be transformed by X(λ) = X
(λ)

−1
λ

when λ 6= 0, and X(λ) = log(X) when λ = 0 to approximately follow a normal distribution.
The Box-Cox transformation is based on the flexibility of the power normal distribution, and it
has been shown that it is fairly robust, even for models that are not included in the Box-Cox
family such as the gamma distribution (see Bantis, et al. (2014) and Bantis, et al. (2017)). The
transformation parameter λ is not known, and in a given application it needs to be estimated by
the data at hand. Hence, there is variability induced due to that estimation. Many authors have
been ignoring that variability by considering the transformed version ofX, X(λ), as approximately
normally distributed and proceed to inferences as if the value of the estimated λ is fixed and
known. This issue was initially discussed under an ROC framework in Bantis et al. 2014 where
the underlying profile likelihood for estimating λ is provided. After its maximization, we derive

estimates of the means and variances of X(λ) and Y (λ), denoted as µ
(λ)
0 , σ

(λ)
0 , µ

(λ)
1 , and σ

(λ)
1 , by

simply taking the maximum likelihood estimates based on normality of X(λ) and Y (λ).
The formulas for the obtained sensitivity, specificity, extended Youden index, as well as the

corresponding cutoffs remain the same as in the previous section. Let Σ̂ be an estimate of the

asymptotic full variance-covariance matrix of the all 5 parameters (µ
(λ)
0 , σ

(λ)
0 , µ

(λ)
1 , σ

(λ)
1 ). Denote

with Σ̂∗ its 4×4 upper left part. In order to take into account the variability of λ̂, we use Σ̂∗. For
the full likelihood, as well as the derivation of Σ(λ) in closed form, see Bantis, et al. (2014). Matrix

Σ
(λ)
0 and Σ

(λ)
1 that refer to the means and variances of X(λ) and Y (λ) can be readily extracted

by the full 5× 5 covariance matrix that refers to all 5 parameters, which includes the variance of
λ̂, and thus the variability of latter is taken into account. Inference regarding confidence regions
and marginal CIs for the sensitivity and specificity at a given pair of cutoffs, or in the case where
the cutoffs are estimated, can then be directly derived, as discussed in the section that discusses
the normality assumption in our main manuscript.
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Web-Appendix C (Simulations)

Simulations

Acronyms of methods used:

• length-N: The length test using the normality assumption (in an asymptotic fashion)

• length-BC: The length test using the Box-Cox transformation (in an asymptotic fashion)

• length-K-r: The length test using kernels (randomization based test (1000 permutations))

• length-N-r: The length test using the normality assumption (randomization based test (1000
permutations))

• length-BC-r: The length test using the Box-Cox transformation (randomization based test
(1000 permutations))

• KS-test: the regular Kolmogorov Smirnov test

• Wilcoxon: the regular Wilcoxon test (rank sum)

• t-test: the well known t-test (unequal variances)
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Table 1: Power and size results for normally generated data under proper and improper ROC
curve scenarios. In the first two columns we show the sample size as well as the true values of
the underlying length and AUC. For the randomization based tests we used 1000 permutations.
All simulations results are based on 1000 Monte Carlo iterations.

Generate from Normals: Proper ROC curves (power results)

Power of Power of Power of Power of Power of Power of Power of Power of
nA, nB length AUC length length length length length KS-test Wilcoxon t-test

healthy diseased −(N) −BC −(K)− r −(N)− r −(BC)− r

1.4160 0.5282 0.046 0.043 0.072 0.074 0.078 0.060 0.081 0.084
1.4212 0.5562 0.101 0.104 0.122 0.148 0.141 0.120 0.172 0.184

50, 50 1.4295 0.5840 0.213 0.203 0.212 0.277 0.267 0.240 0.301 0.312
1.4408 0.6114 0.337 0.339 0.365 0.434 0.421 0.371 0.489 0.497
1.4544 0.6380 0.526 0.517 0.543 0.613 0.595 0.539 0.679 0.705
1.5465 0.7602 0.993 0.963 0.991 0.996 0.967 0.987 0.998 0.999

1.4160 0.5282 0.069 0.074 0.072 0.089 0.097 0.089 0.093 0.107
1.4212 0.5562 0.197 0.194 0.198 0.234 0.238 0.244 0.274 0.283

100, 100 1.4295 0.5840 0.419 0.418 0.395 0.477 0.474 0.475 0.543 0.566
1.4408 0.6114 0.695 0.694 0.641 0.731 0.726 0.708 0.797 0.824
1.4544 0.6380 0.894 0.887 0.857 0.916 0.909 0.883 0.944 0.952
1.5465 0.7602 1.000 0.987 1.000 1.000 0.987 1.000 1.000 1.000

1.4160 0.5282 0.125 0.128 0.112 0.140 0.141 0.154 0.176 0.184
1.4212 0.5562 0.392 0.396 0.348 0.413 0.419 0.423 0.497 0.507

200, 200 1.4295 0.5840 0.733 0.733 0.645 0.763 0.770 0.724 0.823 0.837
1.4408 0.6114 0.951 0.949 0.908 0.956 0.952 0.935 0.978 0.985
1.4544 0.6380 0.997 0.996 0.994 0.997 0.996 0.993 0.998 0.999
1.5465 0.7602 1.000 0.999 1.000 1.000 0.999 1.000 1.000 1.000

Generate from Normals: Improper ROC curves (power results)

Power of Power of Power of Power of Power of Power of Power of Power of
nA, nB length AUC length length length length length KS-test Wilcoxon t-test

(true) (true) −(N) −BC −(K)− r −(N)− r −(BC)− r

1.4173 0.500 0.051 0.050 0.073 0.081 0.084 0.041 0.058 0.054
1.4249 0.500 0.136 0.133 0.144 0.168 0.166 0.055 0.056 0.056

50,50 1.4349 0.500 0.238 0.240 0.268 0.313 0.298 0.065 0.058 0.058
1.4462 0.500 0.394 0.380 0.406 0.480 0.456 0.088 0.059 0.056
1.4580 0.500 0.594 0.572 0.578 0.667 0.621 0.117 0.058 0.056
1.4700 0.500 0.755 0.733 0.705 0.805 0.776 0.147 0.057 0.054

1.4173 0.500 0.088 0.092 0.092 0.113 0.107 0.055 0.043 0.046
1.4249 0.500 0.280 0.285 0.269 0.325 0.312 0.080 0.046 0.044

100,100 1.4349 0.500 0.563 0.546 0.511 0.589 0.576 0.143 0.046 0.044
1.4462 0.500 0.787 0.778 0.731 0.815 0.801 0.220 0.045 0.047
1.4580 0.500 0.924 0.919 0.878 0.935 0.929 0.310 0.046 0.047
1.4700 0.500 0.982 0.981 0.958 0.986 0.983 0.421 0.045 0.047

1.4173 0.500 0.171 0.169 0.155 0.177 0.178 0.062 0.050 0.048
1.4249 0.500 0.583 0.571 0.500 0.608 0.595 0.137 0.052 0.050

200,200 1.4349 0.500 0.913 0.906 0.837 0.916 0.914 0.257 0.055 0.051
1.4462 0.500 0.997 0.997 0.984 0.997 0.996 0.456 0.053 0.050
1.4580 0.500 1.000 1.000 1.000 1.000 1.000 0.676 0.052 0.047
1.4700 0.500 1.000 1.000 1.000 1.000 1.000 0.842 0.056 0.049

Generate from identical Normals: (size results)

Size of Size of Size of Size of Size of Size of Size of Size of
nA, nB length AUC length length length length length KS-test Wilcoxon t-test

(true) (true) −(N) −BC −(K)− r −(N)− r −(BC)− r

50, 50
√

2 0.500 0.033 0.031 0.045 0.047 0.047 0.039 0.059 0.057

100, 100
√

2 0.500 0.034 0.036 0.037 0.047 0.049 0.047 0.041 0.043

200, 200
√

2 0.500 0.039 0.035 0.048 0.045 0.042 0.048 0.050 0.049
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Table 2: Power and size results for gamma generated data under proper and improper ROC
curve scenarios. In the first two columns we show the sample size as well as the true values of
the underlying length and AUC. For the randomization based tests we used 1000 permutations.
All simulations results are based on 1000 Monte Carlo iterations.

Generate from Gammas: Proper ROC curves (power results)

Power of Power of Power of Power of Power of Power of Power of Power of
nA, nB length AUC length length length length length KS-test Wilcoxon t-test

(true) (true) −(N) −BC −(K)− r −(N)− r −(BC)− r

1.4236 0.5586 0.001 0.131 0.114 0.081 0.175 0.129 0.171 0.135
50, 50 1.4535 0.6259 0.021 0.553 0.434 0.303 0.638 0.493 0.611 0.468

1.4890 0.6803 0.085 0.907 0.826 0.635 0.937 0.846 0.905 0.801
1.5248 0.7248 0.252 0.982 0.960 0.868 0.988 0.963 0.976 0.947

1.4236 0.5586 0.000 0.274 0.199 0.110 0.323 0.256 0.290 0.201
100, 100 1.4535 0.6259 0.006 0.896 0.782 0.499 0.919 0.848 0.897 0.764

1.4890 0.6803 0.073 1.000 0.992 0.921 1.000 0.996 0.999 0.980
1.5248 0.7248 0.307 1.000 1.000 0.998 1.000 1.000 1.000 0.999

1.4236 0.5586 0.000 0.523 0.391 0.161 0.569 0.485 0.536 0.39
200, 200 1.4535 0.6259 0.003 0.998 0.981 0.808 1.000 0.984 0.995 0.966

1.4890 0.6803 0.047 1.000 1.000 0.996 1.000 1.000 1.000 1.000
1.5248 0.7248 0.348 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Generate from Gammas: Improper ROC curves (power results)

Power of Power of Power of Power of Power of Power of Power of Power of
nA, nB length AUC length length length length length KS-test Wilcoxon t-test

(true) (true) −(N) −BC −(K)− r −(N)− r −(BC)− r

1.4205 0.5000 0.000 0.069 0.092 0.109 0.103 0.047 0.055 0.057
50, 50 1.4408 0.5000 0.001 0.346 0.297 0.327 0.423 0.090 0.055 0.120

1.4758 0.5000 0.152 0.792 0.715 0.714 0.825 0.174 0.058 0.109
1.5125 0.5000 0.500 0.984 0.944 0.939 0.987 0.356 0.062 0.146

1.4205 0.5000 0.000 0.152 0.129 0.159 0.197 0.054 0.043 0.068
100, 100 1.4408 0.5000 0.000 0.714 0.590 0.595 0.764 0.203 0.041 0.181

1.4758 0.5000 0.227 0.994 0.973 0.959 0.994 0.486 0.045 0.212
1.5125 0.5000 0.767 1.000 1.000 0.998 1.000 0.844 0.052 0.305

1.4205 0.5000 0.000 0.313 0.250 0.253 0.351 0.099 0.049 0.095
200, 200 1.4408 0.5000 0.000 0.987 0.915 0.907 0.993 0.439 0.042 0.354

1.4758 0.5000 0.265 1.000 1.000 0.998 1.000 0.910 0.051 0.426
1.5125 0.5000 0.947 1.000 1.000 1.000 1.000 0.998 0.055 0.565

Generate from identical Gammas: (size results)

Size of Size of Size of Size of Size of Size of Size of Size of
nA, nB length AUC length length length length length KS-test Wilcoxon t-test

(true) (true) −(N) −BC −(K)− r −(N)− r −(BC)− r

50, 50
√

2 0.500 0.000 0.032 0.055 0.046 0.049 0.042 0.054 0.048

200, 200
√

2 0.500 0.000 0.030 0.035 0.052 0.049 0.044 0.041 0.039

200, 200
√

2 0.500 0.000 0.034 0.055 0.045 0.051 0.058 0.045 0.050
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Table 3: Coverage and areas of joint confidence regions for underlying (specificity,sensitivity) pair associated with the estimated cutoffs:
egg shaped vs rectangular regions. The targeted coverage is 95%. 1000 Monte Carlo iterations are used for each result.

Generate from Gamma: Improper ROC curves

Smooth Bootstrap Regular Bootstrap
n0, n1 Dist.of Dist.of Coverage Area Coverage Area Coverage Area Coverage Area

healthy diseased of egg of egg of rect of rect of egg of egg of egg of rect of rect

50, 50 G(20, 1.2) G(4, 7) 0.9440 0.0525 0.9590 0.0626 0.944 0.0559 0.9530 0.0701
100, 100 G(20, 1.2) G(4, 7) 0.9490 0.0299 0.9540 0.0360 0.9440 0.0315 0.9530 0.0402
200, 200 G(20, 1.2) G(4, 7) 0.9540 0.0170 0.9530 0.0208 0.9520 0.0176 0.9580 0.0227

Generate from Mixtures: Improper ROC curves

Smooth Bootstrap Regular Bootstrap
n0, n1 Dist.of Dist.of Coverage Area Coverage Area Coverage Area Coverage Area

healthy diseased of egg of egg of rect of rect of egg of egg of egg of rect of rect

50, 50 N(10, 1) 0.5N(8, 32) + 0.5N(14, 32) 0.9230 0.0184 0.934 0.0200 0.8830 0.0197 0.909 0.2180
100, 100 N(10, 1) 0.5N(8, 32) + 0.5N(14, 32) 0.9370 0.0105 0.9430 0.0114 0.9310 0.0111 0.9450 0.0122
200, 200 N(10, 1) 0.5N(8, 32) + 0.5N(14, 32) 0.9370 0.0066 0.9440 0.0061 0.9370 0.0064 0.9410 0.0070
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Figure 3: Sensitivity at different levels of specificity: 95%, 85% and 75%.
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Table 4: Simulations for comparing the Silverman’s plug in bandwidth and kernels via duffusion
for estimating the length of the ROC. We considered 1000 Monte Carlo iterations for all gama
scenarios and the bimodal mixture scenario.

Silverman Diffusion

Sample size true length Bias SE MSE Bias SE MSE

1.4205 0.1298 0.0351 0.0181 0.0838 0.0442 0.0090
(30,30) 1.4408 0.1188 0.0400 0.0157 0.0680 0.0457 0.0067

1.4758 0.0723 0.0391 0.0068 0.0436 0.0501 0.0044
1.5125 0.0571 0.0439 0.0052 0.0335 0.0564 0.0043

1.4205 0.0905 0.0242 0.0088 0.0365 0.0192 0.0017
(50,50) 1.4408 0.0855 0.0277 0.0081 0.0251 0.0228 0.0012

1.4758 0.0517 0.0305 0.0036 0.0115 0.0308 0.0011
1.5125 0.0339 0.0347 0.0023 0.0048 0.0353 0.0013

1.4205 0.0541 0.0141 0.0031 0.0168 0.0104 0.0004
(100,100) 1.4408 0.0483 0.0183 0.0027 0.0085 0.0151 0.0003

1.4758 0.0263 0.0222 0.0012 0.0004 0.0201 0.0004
1.5125 0.0164 0.0255 0.0009 -0.0041 0.0236 0.0006

1.4205 0.0315 0.0091 0.0011 0.0110 0.0070 0.0002
(200,200) 1.4408 0.0265 0.0124 0.0009 0.0039 0.0107 0.0001

1.4758 0.0118 0.0145 0.0003 -0.0025 0.0133 0.0002
1.5125 0.0062 0.0171 0.0003 -0.0058 0.0158 0.0003

Bimodal Mixture:

Sample size true length Bias SE MSE Bias SE MSE
(30,30) 1.7103 -0.0069 0.0231 0.0006 -0.0028 0.0180 0.0003
(50,50) 1.7103 0.0077 0.0456 0.0021 0.0466 0.0550 0.0052
(100,100) 1.7103 -0.0009 0.0317 0.0010 0.0075 0.0276 0.0008
(200,200) 1.7103 0.0075 0.0583 0.0035 0.1089 0.0968 0.0212
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