Supplementary Information

Allosteric autoregulation of DNA binding via a DNA-mimicking protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering

Gundeep Kaur^{1,8}, Ren Ren^{1,8}, Michal Hammel², John R. Horton¹, Jie Yang¹, Yu Cao¹, Chenxi He³, Fei Lan³, Xianjiang Lan^{4,5}, Gerd A. Blobel^{5,6}, Robert M. Blumenthal⁷, Xing Zhang^{1,*}, and Xiaodong Cheng^{1,*}

¹Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; ²Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA; ³Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; ⁴Department of Systems Biology for Medicine, School of Basic Medical Sciences; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ⁵Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; ⁶Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; ⁷Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA

*Correspondence: XZhan21@mdanderson.org; XCheng5@mdanderson.org

A z	NF410 (b)	hairpin	93 217	ZFs	366	478
BAG62922 hairpin 140						
ZNE410 (a) 2 5 ZE 212						
				.5 21	3	012
D			CRA_c	3 Z	Fs	209
D Human isoform	NCBI	Residues	hairpin Ioop	ZFs	Primate orthologs for variants of interest	
а	NP_001229853.1	516	Y	5		
b	NP_067011.1	478	Y	5		
С	NP_001229855.1	431	Y	5		
d	NP_001229856.1	405	Y	5		
е	NP_001229857.1	312	N	3.5	Olive baboon XP_021797063.1	Rhesus macaque XP_014999562.1
CRA_a	EAW81136.1	438	Y	5		
CRA_b =b	EAW81138.1	478	Y	5		
CRA_c	EAW81139.1	209	Ν	3	Coquerel's sifaka XP_012511651.1	
CRA_d =c	EAW81140.1	431	Y	5		
CRA_e =e	EAW81141.1	312	Ν	3.5		
CRA_f	EAW81142.1	517	Y	5		
CRA_g	EAW81143.1	258 (partial)	Y			
unnamed	BAG62922.1	140	Y	No	Chimpanzee PNI84189.1	Orangutan PNJ27821.1
	NR_040251.2	Non-co	ding RNA			

Figure S1. There are at least nine distinct isoforms for human ZNF410. (**A**) Cartoons of selected isoforms. (**B**) Three are particularly noteworthy, each of them is present in at least one other primate species. The unnamed isoform (BAG62922.1) begins at an internal methionine, but ends before any of the ZNFs. The other two are just the reverse – isoform e (NP_001229857 or EAW81141) is substituted for ZF1 and the first cysteine of ZF2, and CRA_c (EAW81139) begins just ahead of ZNF3.

Common name	Species	Clade	ZNF410 Ortholog	Cover	Identity (%)	Length (aa)
Human (isoform a)	Homo sapiens	Primate	NP_001229853.1	(100)	(100)	516
Rhesus macaque	Macaca mulatta	Primate	XP_014999559.2	93	95.67	478
Angolan colobus	Colobus angolensis	Primate	XP_011804978.1	98	90.20	506
Common marmoset	Callithrix jacchus	Primate	XP_002754185.2	93	95.46	478
Malayan flying lemur	Galeopterus variegatus	Dermoptera	XP_008565230.1	93	92.99	478
Mouse	Mus musculus	Glire	NP_659082.1	93	93.40	478
American beaver	Castor canadensis	Glire	XP_020022334.1	93	93.20	478
Guinea pig (cavy)	Cavia porcellus	Glire	XP_003472457.1	93	93.20	478
European rabbit	Oryctolagus cuniculus	Glire	XP_002719703.1	93	95.05	478
Arabian camel (dromedary)	Camelus dromedarius	Laurasiatheria	XP_010974834.2	93	92.99	478
Sperm whale	Physeter catodon	Laurasiatheria	XP_007109074.1	93	92.99	472
Cow	Bos taurus	Laurasiatheria	NP_001338875.1	93	92.37	478
Goat	Capra hircus	Laurasiatheria	XP_005686117.1	93	92.37	478
Horse	Equus caballus	Laurasiatheria	XP_001490078.2	93	92.37	478
Cat	Felis catus	Laurasiatheria	XP_003987863.1	93	91.55	478
Dog	Canis lupus familiaris	Laurasiatheria	XP_022277914.1	93	91.96	478
Polar Bear	Ursus maritimus	Laurasiatheria	XP_008698131.1	93	91.96	479
Chinese pangolin	Manis pentadactyla	Laurasiatheria	XP_036769129.1	93	91.96	477
Large flying fox	Pteropus vampyrus	Laurasiatheria	XP_023392808.1	93	91.98	479
Common vampire bat	Desmodus rotundus	Laurasiatheria	XP_024423383.1	93	90.52	478
Star-nosed mole	Condylura cristata	Laurasiatheria	XP_004682125.1	93	88.87	459
Elephant	Loxodonta africana	Afrotheria	XP_003408805.1	93	85.83	490
Armadillo	Dasypus novemcinctus	Xenarthra	XP_012379386.1	92	83.0	468
Koala	Phascolarctos cinereus	Metatheria	XP_020841968.1	93	78.17	499
Platypus	Ornithorhynchus anatinus	Monotremata	XP_028931293.1	92	72.88	467

Figure S2. Phylogeny of ZNF410 among 25 diverse mammals, chosen based (1).

1. Hecker, N. and Hiller, M. (2020) A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. *Gigascience*, **9**, giz159.

(A)	Mammalia	Aves	Reptilia	Amphibia	Osteichthyes			
Vertebrate orthologs	Homo sapiens	Gallus gallus	Anolis carolinensis	Xenopus tropicalis	Lepisosteus oculatus			
	NP_001229855.1	NP_001006480.2	XP_003214434.1	NP_001072669.1	XP_015205560.1			
	human	chicken	green anole lizard	western clawed frog	shortnose gar			
Cover (%)	(100)	87	98	98	98			
E value	(0.0)	0.0	0.0	2e-151	2e-142			
Identity (%)	(100)	86	69	63	58			
Length (aa)	431 (isoform c)	431 (isoform c) 445		403	448			
(B) Substitutions relative to human ortholog								
Hairpin loop	(60 aa)	6	8	11	18			
ZFs	(115 aa)	4	7	21	20			
(C) Number of ZNF410 binding sites within 1 KB of CHD4 promoter (all in the same orientation)								
	11	9	10	11	4			
(D)		** ** *	* *					
H. sapiens GLGSSAEHLVFVQDEAEDSGNDFLSSESTDSSIPWFLRVQELAHDSLIAATRAQLAKNAKTSSNGE								
G. gallus GLGSPAEHLVFVQDEVEDSGNDFLSHDSTDSSTPWFLRVQELAHDSLIAATRAQLAKNAKASNNGE				NAKASNNGE				
X. tropicali	S GLUES CLUES CHLVF	VODEAED <u>S</u> GNDLF <u>S</u> N VODEAEDSGNDFLSN	DCTDSNTPWFLRVQE	LAHDSLIAATRAQLAK LAHDSLIAATRAOLAK	NAKASNNGE SV <mark>KTSS</mark> VGE			
L. oculatus	GLAA <mark>SAE</mark> PLVF	VEDEVDNDISTG	ESADGSTPWYLRVQE	LAHDSLIAATRAQLAK	D <mark>AK</mark> A <mark>S</mark> NSGD			
		*** * *	* *					

Figure S3. (**A**) Summary of five vertebrate ZNF10 orthologs. (**B**) Number of substitutions within the hairpin loop and ZF region are listed. (**C**) Number of ZNF410 binding sites within 1 KB 5' to CHD4 promoters are listed. (**D**) Sequence alignment of the corresponding hairpin loop. Acidic residues in proposed DNA-mimicking segments of human (top) and gar (bottom) orthologs are indicated with red asterisks.

Figure S4. Two orthogonal views of AlphaFold predictions of (A) *Bos taurus* and (B) mouse ZNF410 orthologs. The predicted corresponding long α B helix blocks the DNA binding.

Figure S5. SAXS curves/profile for 17 bp DNA using in our experiments. (**A**) Scattering intensity profile. (**B**) Guinier plot. (**C**) Kratky plot. (**D**) P(r) plot.

Figure S6. ZNF410 FL exists in compact and extended conformations. (**A**) Plot of Rg vs. Dmax values for all 10,000 models obtained in BILBOMD conformational sampling. The initial AlphaFold model is shown as an orange dot. (**B**) MULTIFOXS analysis suggests ZNF410 FL has the probability to adopt two conformational states (the two blue dots in panel A). (**C**) Fitting of experimental X-ray scattering profile (magenta dots) to the calculated scattering (black line) of 2-state models. (**D**) Examples of models representing two states of ZNF410 FL (compact and extended). (**E**) The fitting of experimental X-ray scattering profile (blue dots) to the calculated scattering (black line) of the fitting model in the presence of DNA. (**F**) One example of a DNA bound ZNF410 model. (**G**) A sampling of DNA bound ZNF410 models with varied conformations of NT and CT.

Figure S7. **ZF-CT** exists as mixture of compact and extended conformations. (A) Plot of Rg vs. Dmax values for all 10,000 models obtained in BILBOMD conformational sampling. The starting AlphaFold model is shown as an orange dot. (**B**) MULTIFOXS analysis suggests ZF-CT has the probability to adopt (at least) two conformational states (two blue dots in panel A). (**C**) Fitting of experimental scattering profile (magenta dots) to the calculated scattering (black line) of a two-model ensemble. (**D**) Examples of models represent two states of ZF-CT in the absence of DNA (compact and extended). (**E-F**) The fitting of experimental X-ray scattering profile (blue dots) to the calculated scattering (black line) from the multi-model states in the presence of DNA (panel F).

Residues	name	pXC#					
1-478	FL	2179					
1-366	NT-ZF	2218					
1-216	NT	2288					
217-366	ZF	2180					
217-478	ZF-CT	2217					
	mutant		Primers used in the mutagenesis				
1-478	S148D	2330	5'-CAGAAGATGATGGGAATGATTTCCTC-3'				
			3'-TCCTACTCCGTCTTCTACTACCCTTACT-5'				
			(the underlined codon is the intended mutation)				
1-478	S/T-D/E:	2319	(1) (5'-TGTTCCAGGGGCCCCTGGGATCCATGTTATCAG				
			ATGAGTTAGAAT-3') and the pertinent				
	(S148D/		<pre>mutagenic reverse primer (5'-CATGGAATGTC</pre>				
	S154D/		<u>ATCGTCTTCGTCCTCATCGTCGAGGAAATCATTCCCATC-3')</u>				
	S155D/		(2) (5'-ATTTCCTC <u>GACGAT</u> GAG <u>GACGAA</u> GAC <u>GATGAC</u> ATT				
	S157D/		CCATGGTTCCTCCGG-3') and the 3' reverse				
	T158E/		primer (5'-TCAGTCACGATGCGGCCGCTCGAGTCATGT				
	S160D/		CCGTCTTTCAGTTAA-3')				
	S161D)		The underlined codons are the intended mutations.				
1-478	D/E-A:	2341	(1) 5'-TTGTACAGGCTGCGGCAGCAGCTTCAGGGAATGATT				
		_	TC-3' and the pertinent mutagenic reverse				
	(D143A/		primer (5'-CATGGAATGTCATCGTCTTCGTCCTCATCGTC				
	E144A/		GAGGAAATCATTCCCATC-3')				
	E146A/		(2) 5'-TTCCCTGAAGCTGCTGCCGCAGCCTGTACAAACACT				
	D147A		AA-3' and the 3' reverse primer (5'-TCAGTCA				
	211/11)		CGATGCGGCCGCTCGAGTCATGTCCGTCTTTCAGTTAA-3')				
			The underlined codons are the intended mutations.				
1-366	S/T-D/E	2312	Same as pXC2319				
1-366	D/E-A	2342	Same as pXC2341				

 Table S1. Expression constructs and DNA primers used in this study