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Supplementary Methods
MRI acquisition

The acquisition of multidimensional data was done using echo planar imaging (EPI) readout according to the MADCO
framework encoding scheme [2, 3], and by varying the following three experimental parameters: the inversion time, τ1, the echo
time, τ2, and the diffusion weighting, b, providing T1-, T2-, and diffusion-weighting, respectively.

The minimal values of the two timing parameters, τ1 and τ2, depend on the sample physical dimensions because of the varying
imaging matrix size that is intended to keep the spatial resolution constant at 200 µm in-plane and 300 µm slice thickness. We
kept the minimal τ1 and τ2 relatively constant across the samples at τ1 = 12.0± 1.5 and τ2 = 10.5± 0.8, by adjusting the number
of EPI segments as necessary (<8).

The three 1D distributions of T1, T2, and MD, were estimated, respectively, with the following data acquisition protocols:
A 1D T1-weighted data set (b = 0, τ2 = 10.5 ms) with 20 logarithmically sampled τ1 values ranging from 12 to 980 ms
by using an IR-DWI-EPI sequence; a 1D T2-weighted data set (b=0) with 20 logarithmically sampled τ2 values ranging from
10.5 to 125 ms by using a DWI-EPI sequence. For diffusion encoding, we used the isotropic generalized diffusion tensor MRI
(IGDTI) acquisition protocol to achieve an efficient orientationally averaged DW signal [1] with the following parameters: 16
linearly sampled b-values ranging from 2,540 to 14,700 s/mm2 in 3 directions, 14 linearly sampled b-values ranging from 4,140
to 14,700 s/mm2 in 4 directions, and 9 linearly sampled b-values ranging from 8,260 to 14,700 s/mm2 in 6 directions, using
the efficient gradient sampling schemes in Table 2 in [1]. This type of diffusion encoding increases the contrast given by local
anisotropy and is not intended to measure the isotropic diffusion in the system. Additional diffusion parameters were gradient
duration of δ = 4 ms and diffusion time of ∆ = 15 ms.

The three 2D distributions of MD-T1, MD-T2, and T1-T2, were estimated, respectively, with the following data acquisition
protocols (in conjunction with the a priori obtained 1D distributions as constraints): A 2D diffusion-T1-weighted data set with
16 sampled combinations of inversion times and b-values within the aforementioned 1D acquisition range; a 2D D-T2-weighted
data set with 16 sampled combinations of echo times and b-values within the aforementioned 1D acquisition range; and a 2D
T1-T2-weighted data set with 16 sampled combinations of inversion and echo times within the aforementioned 1D acquisition
range.

The data were averaged 4 times to maintain high signal-to-noise ratio (SNR), which was always maintained above 100
(defined as the ratio between the average unattenuated signal intensity within a tissue region of interest, and the standard deviation
of the signal intensity within the background). The sample temperature was set at 16.8◦C.

Immunohistochemistry
Primary antibodies used were antiglial fibrillary acidic protein (GFAP, mouse antihuman monoclonal antibody GA5 with

bond heat-induced epitope retrieval, epitope retrieval time 10 minutes, PA0026; Leica Biosystems, Wetzlar, Germany), amyloid
precursor protein (APP, mouse antihuman monoclonal antibody clone 22c11, dilution 1:10, epitope retrieval time 10 minutes,
MAB348; EMD Millipore, Burlington, MA), and abnormally phosphorylated tau (AT8; mouse anti-human monoclonal antibody,
dilution 1:2000, Thermo Scientific, MN1020, HIER 1:10 for 10 min), and myelin basic protein (MBP, 1:100, epitope retrieval
time 10 minutes, ab62631; Abcam, Cambridge, MA).
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Statistical analysis
A linear mixed-effects model was evaluated using the mean ROI values for MD-T1, MD-T2, and T1-T2, AD, RD, FA, T1 or

T2 as the dependent variable and GFAP histological density and age as the independent variables. A random intercept for each
subject was included. Within subjects, the different ROIs are derived from the same image and therefore cannot be assumed to be
independent. Similarly, the noise cannot be modeled as identical and independent within subjects. To address that, we included
a Gaussian structured noise covariance matrix in the model to account for spatial correlation among ROIs. In this case, the noise
covariance between two voxels separated by distance d is proportional to a Gaussian parametric function, exp(−(r/d)2), where r
is a parameter to be estimated.

Supplementary Results
Anomaly detection algorithm on voxel-averaged maps

We applied an adjusted anomaly detection machine learning algorithm on conventional maps to make a valid comparison
between 1D voxel-averaged T1, T2, AD, RD, and FA maps versus the newly generated multidimensional maps for detecting
astrogliosis. The same initial steps in the original processing procedure (Fig. 4 A-E) were used here. The cross-validation
steps, however, could not be performed in the exact same fashion because of the inherent difference between scalar values and
distributions. Once all normal-appearing voxels are identified within a subject, a Monte Carlo cross-validation procedure is used
to create multiple random splits (Ncv = 1000 in this study) of 66% and 34% of the normal-appearing voxels into training and
validation data, respectively. For each such split, instead of obtaining the normative spectral signature (e.g., T1-MD) and then
train to find deviations from it, in the case of voxel-averaged data we first save a list of the normative scalar values using the
’normal’ tissue image mask. The next step determines the range of normative scalar values for a particular subject; we tested
two ranges, µ ± σ and µ ± 2σ, where µ and σ represent the mean and standard deviation of the normative values, respectively.
By applying the same logic as in the multidimensional anomaly detection algorithm, knowing the range of normative voxel-
averaged values allows to find the voxels that reside outside of this range, and subsequently label them as abnormal regions. It is
now clear that the µ± 2σ range is more conservative by design than the µ±σ range because it allows for less ’abnormal’ voxels.
This process is repeated Ncv = 1000 times to allow the assessment of uncertainty and predictive accuracy, resulting in a set of
’abnormal’ range values per subject. The minimal value of µ − σ (or µ − 2σ) and maximal value of µ + σ (or µ + 2σ) across all
splits is selected, and used to produce final binary maps of abnormal regions (shown in Fig. S6).

Using these final binary maps of abnormal regions as masks on their respective adjusted T1, T2, AD, RD, and FA maps results
in corresponding ’abnormal’ maps. We show these maps along with histological GFAP density images of six representative
control (Cases 3, 4, and 7) and injured cases (Cases 10, 11, and 12) shown in Figs. S7 and S8 using the µ ± σ and µ ± 2σ
normative ranges, respectively.

The non-specificity of these so-called abnormal regions is clear. The less conservative normative range of µ ± σ resulted in
inconsistent labeling across the different subjects, even within a particular voxel-averaged metric. For instance, the final binary
maps of abnormal regions from voxel-averaged T1 indicated that astrogliosis is abundant in the control cases (Figs. S6-S7, A-C),
with presence in most of the WM (Case 3), in all of the GM (Case 4), and both WM and GM (Case 7). The specificity towards
astrogliosis did not improve in the injured subjects (Figs. S6-S7, D-F), where in cases 10 and 11 all of the WM deemed abnormal,
and an inconsistent mixture of GM and WM in Case 12 was found to contain astrogliosis. To improve the specificity, the more
conservative normative range of µ ± 2σ was used as well. However, in most instances, it resulted in very scattered detection that
did not to agree with the underlying anatomy and pathology of the tissue (Fig. S8).

The clear lack of similarity and agreement between the MRI maps and GFAP histology in Figs. S7 and S8 shows that
despite using an anomaly detection machine learning algorithm, the microstructural and chemical composition changes induced
by astrogliosis are still averaged-out when one only considers scalar value MRI maps.
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Supplementary Table and Figures

Table S1: Medical and neuropsychiatric history in subjects with history of traumatic brain injury (TBI) and healthy controls

Case Medical history Neuropsychiatric history

1
Hyperlipidemia, sleep apnea,

shingles, retinal tear None reported

2 Alcohol abuse, diabetes Depression
3 Diabetes, myocardial infarction, essential thrombocytosis None reported

4
Hypertension, congestive heart failure, aortic valve

replacement,diabetes, COPD None reported

5
Sports injuries: torn retina,

torn patellar tendon, torn ACL None reported

6 Alcohol abuse None reported
7 Diabetes, hypertension, hypercholesterolemia None reported

8 Soft tissue injury, chronic pain PTSD, reduced cognitive function, confusion, memory loss,
seizures, paranoia, delusions, emotional liability

9
Soft tissue injury, chronic pain,
low testosterone, alcohol abuse PTSD, anxiety, depression

10
Alcohol and polysubstance abuse,

chronic pain, urinary tract infection PTSD, anxiety, depression

11
Cannabis abuse, alcohol
abuse, low testosterone PTSD, unspecified bipolar/paranoid disorder

12 None reported Sleep disturbance,
anxiety, depression

13
Hypertension, hyperlipidemia,

coronary artery disease None reported

14 None reported PTSD, anxiety, depression

Chronic obstructive pulmonary disease (COPD), Anterior cruciate ligament (ACL), Post traumatic stress disorder (PTSD)
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Figure S1: MRI and histopathology co-registration qualitative and quantitative accuracy assessments. The transformed histology images were overlaid on MR
images using independent intensity scales (purple for GFAP and green for MRI) to assess the quality of the co-registration. The Jaccard index, J, was computed
to quantify the overlap scores between the co-registered modalities. In addition, qualitative agreement is demonstrated by the overlap in WM-GM interfaces of
the MRI and GFAP histology images, which are shown in blue and red, respectively.
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Figure S2: Amyloid precursor protein (APP), phosphorylated tau (pTau), and myelin basic protein (MBP) immunoreactivity in representative cases. Subject with
impact TBI but without blast exposure (Case 3): (A) and (D) show APP, (G) and (J) show pTau, and (M) and (P) show MBP. Subject without impact TBI but
with blast exposure (Case 11): (B) and (E) show APP, (H) and (K) show pTau, and (N) and (Q) show MBP. Subject with both impact and blast exposure TBI
(Case 8):(C) and (F) show APP, (I) and (L) show pTau, and (O) and (R) show MBP. No axonal damage (APP), tau pathology (pTau), or demyelination (MBP)
were observed in any other the cases in this study.
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Figure S3: Changes in the T1-MD multidimensional MR signature induced by confirmed astrogliosis. Maps of 2D spectra of subvoxel T1-MD values recon-
structed on a 16×16 grid of a representative (A) control (case 7) and (B) injured (case 10) subjects, along with their respective GFAP histological image (top left
of each panel). Magnified spectral regions showing highest content of spectral information from (C) control and (D) injured cases. (E) T1-MD spectra averaged
across all subjects in WM, GM, and GFAP-positive regions of interest (ROIs, left to right), and a superposition of the average spectra from the three ROIs.The
Jensen Distances between the regions with astrogliosis and normal-appearing WM, and between regions with astrogliosis and normal-appearing GM T1-MD
spectral signatures were 0.07 and 0.08, respectively. The Jensen Distances between normal-appearing WM and GM was 0.13.
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Figure S4: Changes in the T1-T2 multidimensional MR signature induced by confirmed astrogliosis. Maps of 2D spectra of subvoxel T1-T2 values reconstructed
on a 16×16 grid of a representative (A) control (case 7) and (B) injured (case 10) subjects, along with their respective GFAP histological image (top left of each
panel). Magnified spectral regions showing highest content of spectral information from (C) control and (D) injured cases. (E) T1-T2 spectra averaged across
all subjects in WM, GM, and GFAP-positive regions of interest (ROIs, left to right), and a superposition of the average spectra from the three ROIs. The Jensen
Distances between the regions with astrogliosis and normal-appearing WM, and between regions with astrogliosis and normal-appearing GM T1-T2 spectral
signatures were 0.09 and 0.11, respectively. The Jensen Distances between normal-appearing WM and GM was 0.21.
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Figure S5: Maps of injury biomarkers standard deviations from the cases in Fig. 5. The standard deviations were computed from the Monte Carlo cross-validation
procedure for anomaly detection in individuals. (A)-(C) are subjects that were not exposed to blast (Cases 3, 4, and 7), while (D)-(F) were (Cases 10-12). The
standard deviations are under an order of magnitude smaller than the corresponding means, pointing to relative stability and low uncertainty.
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Figure S6: Final binary maps of suspected abnormal regions based on 1D voxel-averaged data. Six representative cases are shown. (A)-(C) are subjects without
severe astrogliosis (Cases 3, 4, and 7), while (D)-(F) had substantial GFAP over-expression (Cases 10-12). Two thresholds for values that are considered within
the normative range were used: µ ± σ and µ ± 2σ, resulting in less and more conservative injury detection, respectively. Note the clear lack of similarity and
agreement between these MRI maps GFAP histology (shown in, e.g., Fig. S6).
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Figure S7: Voxel-averaged MRI maps obtained using the anomaly detection algorithm with µ ± σ. (A)-(C) are subjects without severe astrogliosis (Cases 3,
4, and 7), while (D)-(F) had substantial GFAP over-expression (Cases 10-12). The different rows correspond to the different MRI contrasts, including all the
conventional relaxation and DTI parameters. In addition, the co-registered histological GFAP images and density maps are shown. The abnormal regions in
these T1, T2, AD, RD, and FA maps do not correspond to the histological ground truth, and lack specificity towards astrogliosis.
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Figure S8: Voxel-averaged MRI maps obtained using the anomaly detection algorithm with µ ± 2σ. (A)-(C) are subjects without severe astrogliosis (Cases 3,
4, and 7), while (D)-(F) had substantial GFAP over-expression (Cases 10-12). The different rows correspond to the different MRI contrasts, including all the
conventional relaxation and DTI parameters. In addition, the co-registered histological GFAP images and density maps are shown. The abnormal regions in
these T1, T2, AD, RD, and FA maps do not correspond to the histological ground truth, and lack specificity towards astrogliosis.
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Figure S9: Downsampled MR images from all cases, used for whole image correlation. After matching the GFAP density images resolution to their MRI
counterparts, both MRI and histological maps were downsampled by a factor of 12 to account for co-registration errors and to reduce spatial dependencies,
resulting in a total of 556 pairs of MR image volumes and GFAP densities from all 14 subjects.

Figure S10: Gray-white matter interface regions of interest shown on proton density MR images.
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