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Supplemental Figures 

 

Figure S1. Performance evaluation during the training process and ablation 

experiments about six key factors of CAME. (A) (Left) Classification accuracy of 

training and test during the training process of CAME. (Right) The changes of test 

classification accuracy and the adjusted mutual information (AMI) between the 

predicted labels and pre-clustered ones of query cells during the training process of 

CAME. (B) Ablation experiments showing the importance of each part or key hyper-

parameters adopted by CAME, where the values in parentheses represent the average 

accuracy across all the reference-query pairs. 

 

  



 

Figure S2. Multi-label cell-type prediction analysis. (A, C) Distribution of predicted 

probabilities of mouse brain cells (A) and turtle brain cells (C) with the human reference 

respectively, where each column shows a query cell type. The probabilities are 

calculated in a multi-label manner. (B, D) Reference type-removal experiments. Upper, 

both inhibitory and excitatory neurons were removed from the reference for two cases, 

and the neurons in the query data were predicted with much more uncertainty. Lower, 

predictions with the removal of oligodendrocytes from the reference for two cases, 

where most of the oligodendrocytes were assigned higher probability to its precursor 

type. 



 

Figure S3. Performance of CAME for cross-species cell-type assignment. (A) 

Overview of datasets. (B) Proportion (lower triangular) and number (upper triangular) 

of homologous genes between each pair of species. (C) Density plot of the proportions 

of the non-one-to-one homologous genes in HIGs (Methods) for two groups of dataset 

pairs. (D) Box plots showing the cell-type assignment performance of CAME and 

CAME* (using only one-to-one homologous genes) based on zebrafish-excluded and 

zebrafish-associated dataset pairs. 

  



 

Figure S4. Statistics of gene homologies and comparison between CAME and 

CAME*. (A) Performance comparison between CAME and CAME* in terms of cross-

species cell-type assignment for zebrafish-excluded dataset pairs. (B) Performance 

comparison between CAME and CAME* in terms of cross-species cell-type 

assignment for zebrafish-associated dataset pairs, where “X-Y” indicates the label 

transfer from species X to Y. C: chick, H: human, M: mouse, Z: zebrafish. 

 

  



 

Figure S5. Performance comparison of classification accuracy between CAME 

and other benchmarking methods. (A) Mean and median classification accuracies 

of CAME and other benchmarking methods on 139 pairs of cross-species scRNA-seq 

datasets (zebrafish excluded). Each column corresponds to a specific tissue. (B) Mean 

and median classification accuracies of CAME and baseline methods on the cross-

species scRNA-seq data associated with zebrafish. Each column corresponds to 

different species pairing with each other respectively.   



 

Figure S6. Performance comparison of cell-type classification of CAME and six 

benchmarking methods. (A) Pairwise comparison of the cell-typing performance of 

CAME and other six benchmarking methods on 139 pairs of cross-species scRNA-seq 

datasets in terms of macro-F1 and weighted-F1 (zebrafish-excluded). (B) Pairwise 

comparison of the cell-typing performance of CAME and other six benchmarking 

methods on 510 pairs of cross-species scRNA-seq datasets in terms of macro-F1 and 

weighted-F1 (zebrafish-associated). The notation “X-Y” indicates that X is the 

reference and Y is the query. H: Human, M: Mouse, C: Chick, Z: Zebrafish. 

  



 

Figure S7. Robustness to inconsistent and insufficient sequencing depths 

(zebrafish-excluded). (A) Violin plots of classification accuracies of CAME and six 

benchmarking methods with different down-sampling rates (0.75, 0.5, 0.25, 0.1) for 

read counts on the reference data. (B) Violin plots of classification accuracies of CAME 

and six benchmarking methods with different down-sampling rates (0.75, 0.5, 0.25, 0.1) 

on both reference and query data. 

  



 

Figure S8. Robustness to inconsistent and insufficient sequencing depths 

(zebrafish-associated). Violin plots of classification accuracies of CAME and six 

benchmarking methods with different down-sampling rates (0.75, 0.5, 0.25, 0.1) for 

read counts on reference, query, and both datasets respectively.  

 

  



 

Figure S9. Performance comparison of classification accuracy of CAME under 

different gene selection strategies and hyperparameters. (A) Mean and median 

classification accuracies of CAME of CAME under different gene selection strategies 

and hyperparameters on 139 pairs of cross-species scRNA-seq datasets (zebrafish 

excluded). Each column corresponds to a specific tissue. (B) Mean and median 

classification accuracies of CAME under different gene selection strategies and 

hyperparameters on the cross-species scRNA-seq data associated with zebrafish. 

Each column corresponds to different species pairing with each other respectively.   



 

Figure S10. Cross-species alignment of homologous cell types by CAME and 

other five methods. UMAP plots of cell embeddings based on CAME and five typical 

data integration methods including FastMNN, Harmony, LIGER, Cell BLAST, and 

Seurat on four pairs of datasets, including human and mouse pancreas data, ("panc8” 

and “FACS”), human and lizard brains (“Lake_2018” and “Tosches_lizard”), human and 

mouse brains (“Lake_2018” and “Tasic18”), human and mouse retinal cells 

(“Menon_microfluidics” and “Macosko”). Cells are colored by their dataset identities 

(the first row) or cell types (the second row) respectively.   



 

Figure S11. Robustness to multi-reference batch effects with given batch labels. 

UMAP plots of cell embeddings based on the output of CAME and five typical data 

integration methods including FastMNN, Harmony, LIGER, Cell BLAST, and Seurat. 

The reference datasets are the human pancreatic scRNA-seq data from eight batches 

by five different platforms and the query is from mouse pancreas cells. Cells are 

colored by their cell types (the first column) and dataset identities (the second column) 

respectively. The UMAP plots on the third column show the reference datasets, colored 

by batch identities.    



 

Figure S12. Genes of top attentions and gene embeddings of human and mouse 

brains. (A) Dot plots showing the expressions of genes with top attentions in the 

corresponding cell types. (B) UMAP plots of genes showing the average expression 

patterns (z-scored across cell-types for each gene) of the major types for human and 

mouse brain, where each point represents a gene and the color of each scatter is 

scaled by the expression level of that cell type in each gene. SMC is short for “smooth 

muscle cell”, and VLMC is short for “vascular and leptomeningeal cell”. 

  



 

Figure S13. Comparisons of the four interneuron subtypes between human and 

mouse brains. (A) The predicted cell-type probabilities for each cell (each column) in 

the scRNA-seq data of the mouse brain, taking the gene expressions of the human 

brain as the reference (each row shows a cell type in human data). (B) The UMAP 

plots of cell embeddings by CAME, colored by datasets (left) or cell type (right). (C) 

The gene expression profiles of each inhibitory neural subtype in humans (upper, blue 

dots) or mice (lower, red dots), where the genes were detected as the top DEGs of 

each human interneuron subtype. (D) Similar to (C), the top DEGs of each mouse 

interneuron subtype are shown.  



 

Figure S14. Explorations of the Meis2 inhibitory cell which is mouse-specific in 

cell-type transferring. (A) The predicted cell-type probabilities for each cell (each 

column) in the scRNA-seq data of the human cortex, taking the gene expressions of 

the human brain as the reference (each row shows a cell type in human data). (B) The 

UMAP plots of cell embeddings by CAME, colored by datasets (left) or cell type (right). 

(C) Abstracted graph of the heterogeneous cell-gene graph. Each node represents a 

cell type (pink) or a gene module (light blue). The size of a node is scaled by the 

number of single cells in that type or the number of genes in that gene module. The 

width of an edge is scaled by either the normalized mean expression levels of a cell 

type in the connected gene module or the conservancy of inter-species gene modules 

based on the gene embeddings learned by CAME. (D) Enrichment analysis of gene 

module 8 which is related to mouse-specific Meis2 cells. 

 

  



 

Figure S15. Separate module extraction based on gene embeddings by CAME 

on human and macaque testicular data respectively. (A) The abstracted 

heterogeneous cell-gene graph. (B) Gene modules detected by separate module 

extraction of genes from humans (above) and macaques (below). Non-one-to-one 

homologous gene pairs and species-specific genes were included. 

 

  



 

Figure S16. Statistics of common and private DEGs and gene expression 

comparison between zebrafish and chick. (A) Table of the number of cross-species 

overlapped DEGs in homologous cell types. The blank means that the cell type was 

not detected or annotated in either dataset. “common1v1”: commonly DEGs that are 

one-to-one homologous in the species pair. “common1”, “common2”: common DEGs 

that are homologous in the species pair. “private1”, “private2”: DEGs that are only 

occurred in species1 or species2, respectively. (B) Dot plot showing the common 

DEGs or canonical markers of amacrine cells and microglial cells in zebrafish and chick 

retinas respectively. Note that the significant marker CSF1R and CD74 of chick 

microglial cells have more than one homology in zebrafish. 

  



 

Figure S17. Performance comparison of CAME with homologous gene 

relationships inferred by Ensembl_Compara and Domainoid. (A) Venn plot 

showing the intersection and difference set of the homologous genes inferred by 

Ensembl_Compara and Domainoid. (B) Mean and median classification accuracies of 

CAME with homologous gene relationships inferred by Ensembl_Compara and 

Domainoid on cross-species scRNA-seq datasets. The notation “X-Y” indicates that X 

is the reference and Y is the query. H: Human, M: Mouse, C: Chick, T: Turtle, L: Lizard, 

E: Macaque. (C) Performance comparison of CAME in terms of cell-typing accuracy 

where each point represents a pair of cross-species datasets and is colored by 

different tissues. (D) Performance comparison of CAME in terms of cell-typing 

accuracy with a boxplot. 

  



 

Figure S18. Performance comparison for model training on the whole graph (WG) 

and sub-graphs (SG) (i.e., mini-batches). The reference data and query data are up-

sampled from the human and mouse pancreas dataset (the number of cells in 

reference and query is equal and the number of total cells is ranging from 20000 to 

600000). To make a fair comparison, the genes were calculated from raw datasets. (A) 

Cell-typing performance comparison between the WG and SG training strategies 

based on 649 pairs of cross-species datasets in terms of Accuracy, Macro-F1, and 

Weighted-F1 scores. (B) The training time and peak graphical memory usage are 

showed for a different number of total cells. 

 

  



Supplemental Tables 

 

Table S1. scRNA-seq datasets used for benchmarking studies. 

 

Dataset Organism Organ Platform Number 

of cells 

Baron_human [1] Homo sapiens Pancreas inDrop 8,569 

Baron_mouse [1] Mus musculus Pancreas inDrop 1,886 

panc8 (SeuratData) Homo sapiens Pancreas mixed 14,890 

FACS [2] Mus musculus Pancreas Smart-seq2 1,328 

testis_human [3] Homo sapiens Testis Drop-seq 13,837 

testis_monkey [3] Macaca fascicularis Testis Drop-seq 21,574 

testis_mouse [3] Mus musculus Testis Drop-seq 34,633 

Lake_2018 [4] Homo sapiens Brain snDrop-seq 35,289 

Tasic18 [5] Mus musculus Brain Smart-seq2 22,614 

Campbell [6] Mus musculus Brain Drop-seq 20,921 

Chen [7] Mus musculus Brain Drop-seq 12,089 

Quake_Smart-seq2_Brain 

_Non-Myeloid [2] 

Mus musculus Brain Non-

Myeloid 

Smart-seq2 3,401 

Tosches_lizard [8] Pohona vitticeps Brain Drop-seq 4,187 

Tosches_turtle [8] Trachemys scripta 

elegans 

Brain Drop-seq 18,664 

Adam [9] Mus musculus Kidney Drop-seq 3,660 

Karaiskos_mouse [10] Mus musculus Kidney Drop-seq 12,954 

Park [11] Mus musculus Kidney 10x 43,745 

Quake_10x_Kidney [2] Mus musculus Kidney 10x 2,781 

Wu_human [12] Homo sapiens Kidney 10x_snRNA-

seq 

4,298 

Young [13] Homo sapiens Kidney 10x 5,685 

Hochane [14] Homo sapiens Kidney 10x 14,606 

Alemany_Kidney [15] Danio rerio Kidney ScarTrace 4,415 

Menon_microfluidics [16] Homo sapiens Retina microfluidics 20,091 

Menon_seqwell [16] Homo sapiens Retina Seq-Well 3,014 

Macosko [17] Mus musculus Retina Drop-seq 44,808 

mouse_NMDA_3hr [18] Mus musculus Retina 10x 7,442 

mouse_NMDA_6hr [18] Mus musculus Retina 10x 6,202 

mouse_NMDA_12hr [18] Mus musculus Retina 10x 4,225 

mouse_NMDA_24hr [18] Mus musculus Retina 10x 4,194 

mouse_NMDA_36hr [18] Mus musculus Retina 10x 1,573 

mouse_NMDA_48hr [18] Mus musculus Retina 10x 5,189 

mouse_NMDA_72hr [18] Mus musculus Retina 10x 2,591 

mouse_NMDA_P60 [18] Mus musculus Retina 10x 6,889 

mouse_LD_0hr [18] Mus musculus Retina 10x 11,383 



mouse_LD_4hr [18] Mus musculus Retina 10x 3,094 

mouse_LD_10hr [18] Mus musculus Retina 10x 6,371 

mouse_LD_24hr [18] Mus musculus Retina 10x 4,756 

mouse_LD_P60 [18] Mus musculus Retina 10x 15,256 

zebrafish_LD_4hr [18] Danio rerio Retina 10x 3,475 

zebrafish_LD_10hr [18] Danio rerio Retina 10x 5,226 

zebrafish_LD_20hr [18] Danio rerio Retina 10x 6,784 

zebrafish_LD_36hr [18] Danio rerio Retina 10x 10,183 

zebrafish_LD_Adult [18] Danio rerio Retina 10x 19,485 

zebrafish_NMDA_4hr [18] Danio rerio Retina 10x 7,387 

zebrafish_NMDA_10hr [18] Danio rerio Retina 10x 4,727 

zebrafish_NMDA_20hr [18] Danio rerio Retina 10x 4,603 

zebrafish_NMDA_36hr [18] Danio rerio Retina 10x 4,034 

zebrafish_NMDA_Adult [18] Danio rerio Retina 10x 19,485 

zebrafish_TNFa_10hr [18] Danio rerio Retina 10x 9,769 

zebrafish_TNFa_20hr [18] Danio rerio Retina 10x 5,086 

zebrafish_TNFa_36hr [18] Danio rerio Retina 10x 6,269 

zebrafish_TNFa_72hr [18] Danio rerio Retina 10x 7,931 

zebrafish_TNFa_Adult [18] Danio rerio Retina 10x 19,485 

chick_P10 [18] Gallus gallus 

domesticus 

Retina 10x 13,819 

 

 

 

 

Table S2. Top 10 enriched GO terms for each of the gene modules extracted from 

scRNA-seq data of human and mouse brains. All the GO terms are filtered by the 

Benjamini-Hochberg adjusted p-value < 0.1 (see the Excel table). 

 

 

 

 

Table S3. Top 10 enriched GO terms for each of the gene modules extracted from 

scRNA-seq data of human and macaque testis. All the GO terms are filtered by the 

Benjamini-Hochberg adjusted p-value < 0.1 (see the Excel table). 
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