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Supplement

Supplemental methods
A: Identifying neurons in the ZM10104 strain
The ZM10104 strain used in this experiment expresses two fluorescent proteins: GCaMP6s driven by the ift-20 promoter, and
wCherry driven by gpc-1. GCaMP6s expression was localized to neuronal nuclei to minimize spatial overlap of neighboring
neurons, and to make identification of neurons easier. The promoter ift-20 drives GCaMP expression in all ciliated sensory neurons.
Our neurons of interest, the chemosensory neurons, lie in the lateral ganglia, but note that this promoter is pan-sensory, driving
expression in cells outside of the lateral ganglia. The wCherry landmark is expressed in the cytoplasm of AFD, AWB, ASI, ASE,
AWC, and ASJ. Note that it also is expressed in RIB, a neuron which is not labeled with GCaMP.

Relative positions are given in the orientation in Figure S1, with the nose to the left, the tail to the right, dorsal top, and
ventral bottom. Relative positions should be interpreted as “usually but not always," unless otherwise noted. Also note that overly
compressing an animal in any direction will distort the relative positions. Before identifying neurons, it is important to identify
the orientation of the animal in the recording by figuring out where the dorsal-ventral (DV) plane lies. This is most easily done by
identifying the plane of bilateral symmetry. Once you have oriented yourself, you can begin to identify neurons.

The easiest neurons to immediately identify in this strain are ASH, ASJ, and the anterior “triplet" of ASK, ADL, ASI. It is often
effective to identify these neurons first, then work on the other neurons using the color landmarks and process of elimination. AWC
and ASE should usually be in the neighborhood of ASH, and the four neurons AWA, AWB, ADF, and ASG are between ASH and
the anterior triplet. These four neurons occasionally overlap. To avoid signal mixing, overlapping neurons were excluded from the
dataset. For each odorant condition, neuronal identification was carried out independently by at least two individuals.

Dorsal

Ventral

Nose Tail

Figure S1. Identifying neurons in the ZM10104 strain. The ift-20 promoter drives GCaMP expression in the nuclei of ciliated sensory neurons. The nuclei of the chemosensory
neurons are all posterior to the nerve ring. A red landmark is provided by cytoplasmic expression of wCherry in the neurons AFD, AWB, ASI, ASE, AWC, and ASJ. Underlying C.

elegans figure adapted from the digital version of White et al. 1986 (Wormbook)(50).



Table S1: Criteria for identifying each neuron class

Neuron Color(s) Relative Position Notes
ASK green leftmost of the anterior triplet large. do not confuse with URX, a

small oblong neuron above ASK
ADL green part of the anterior triplet larger than ASI
ASI green & red part of the anterior triplet use color to distinguish from ADL
ASH green & red left of ASE, below AWA bright, circular
ASE green & red right of ASH smaller than ASH
AWC green & red variable. below ASH but can be to the

left, directly below, or to the right
often oblong in shape

ASJ green & red tail end of the ganglion, bottom left distance from AWC can vary
AWA green variable. usually above ASH smaller than ASH, circular
AWB green & red position variable, usually directly below

the anterior triplet
small, dim, a bit oblong. use color
to identify

ADF green usually left of AWA, AWB dim
ASG green usually right of AWA, AWB small, circular

To minimize the chances of incorrect identification, neuronal IDs for each odorant condition were reviewed by at least two individ-
uals, and ambiguous neurons were omitted from the analyzed datasets.

B: Olfactory stimuli and behavioral valences

Table S2: List of odorants
Odorant Chemical class Behavioral valence (low conc.)

1-pentanol alcohol attractive
1-hexanol alcohol attractive
1-heptanol alcohol repulsive
1-octanol alcohol repulsive
1-nonanol alcohol repulsive

isoamyl alcohol alcohol attractive
geraniol alcohol attractive

benzaldehyde aromatic attractive
methyl salicylate aromatic attractive

ethyl acetate ester attractive
ethyl butyrate ester attractive

ethyl heptanoate ester attractive
pentyl acetate ester attractive
butyl butyrate ester attractive

diacetyl ketone attractive
2-butanone ketone attractive
2-heptanone ketone attractive
2-nonanone ketone repulsive

2,3-pentanedione ketone attractive
2,5-dimethylpyrazine pyrazine attractive

2-methylpyrazine pyrazine attractive
2-isobutylthiazole thiazole attractive

2,4,5-trimethylthiazole thiazole attractive

C: Neuron tracking and signal extraction
To segment the neuronal nuclei in each recording, we built a GUI which allows users to navigate each 3D landmark image and
click to add or remove neuron centers (21, 74). This GUI allows the user to toggle between multiple fluorescent channels and a
maximum projection, allowing the user to take advantage of any fluorescent landmark labels in the strain. Complete labeling of all
neuron centers is only necessary once for a given animal, even if multiple recordings have been made. The user then labels a small
handful of widely spaced neurons (4-8) in the first frame of the activity recording. This small number of labeled neurons helps the
tracking algorithm to compensate for any global motion or distortion that may have occurred in the animal between the landmark
volume and the activity movie. In addition to segmentation, the GUI allows neurons to be manually identified. The names the user
applies are then associated with the activity traces of those neurons.



Neighborhood correlation tracking of individual neurons
While the entire brain of the worm can distort substantially across large distances, the neighborhood immediately surrounding a
neuronal nucleus of interest tends to remain consistent, with little local deformation. Our image registration strategy relies on this
fact. Instead of attempting to identify neuron centers in every frame, we try to match the neighborhood surrounding the neuron
center in the first frame to the most similar neighborhood in the following frame. We then return the center of the new neighborhood
as the position of the neuron center in the next frame.

We first employ this approach to map the neuron centers identified in the high-resolution landmark volume during the segmen-
tation step onto the first frame of the activity movie, which is captured at a lower resolution. We then proceed to compare each
frame of the movie to the next. The neighborhood correlation comparison is made independently for each neuron. While we lose
some information about local deformations by not integrating information about how neighboring neurons are moving, we gain the
ability to run the tracking of each neuron in a dataset as a parallel process, dramatically decreasing runtime. This also prevents a
mistake in tracking one neuron from propagating to other nearby neurons. We run the tracking on a down-sampled version of the
activity movie, also to improve runtime.

For a given neuron center, the tracking algorithm goes through the following steps:

1. Given the position of the given neuron center in the current frame, nt = (xt,yt,zt), we identify the neuron’s local 3D
neighborhood Nt in that frame, the volume with dimensions 2a ú 2b ú 2c, in the region spanned by [xt ≠ a,xt + a], [yt ≠
b,yt + b], and [zt ≠ c,zt + c].

2. We identify the naive center in frame t + 1, from where we begin our search for the neighborhood most similar to Nt.
For the first frame of the movie, this point is adjusted by a distance-weighted average of the manually labeled neurons:
nÕ

t+1 = (xt +��wxi,yt +��wyi,zt +��wzi). For any other frame, we simply take the naive center as the center of the
previous frame, nÕ

t+1 = nt = (xt,yt,zt).

3. Starting from the naive center nÕ
t+1, we perform image registration between the maximum intensity projections in x, y, and

z of putative neighborhood N Õ
t+1 and the previous neighborhood Nt, computing the pairwise correlation of these images.

We then repeat this process, moving the putative center nÕ
t+1 by 1 pixel per iteration until one of the following occurs:

(a) The algorithm finds a putative neighborhood N Õ
t+1 whose correlation with Nt exceeds the confidence threshold C

(usually set at above 90%). This putative neighborhood is then defined as Nt+1.

(b) The algorithm tests all putative neighborhoods within a maximum search radius rmax of the naive center nÕ
t+1, but

failed to find a putative neighborhood whose correlation exceeds the confidence threshold C. The algorithm then
returns the putative neighborhood with the highest correlation with Nt as Nt+1.

(c) If no neighborhood is found with a correlation exceeding a minimum value, the neuron is considered lost in frame t+1,
likely either due to motion taking the neuron outside the region of interest. No center is reported, and the last reported
neighborhood Nt is used as the basis of comparison for following frames (t+2, t+3, etc.).

4. The center of neighborhood Nt+1 is defined as the neuron center in this frame, nt+1.

5. Repeat until the end of the activity movie is reached.

We can optimize the tracking parameters such as neighborhood size (a,b,c), maximum search radius rmax, and confidence
threshold C for both accuracy and speed for different imaging conditions.

Extracting calcium dynamics
To extract calcium signals, we first map the positions of each tracked neuron center back onto the original-resolution volumetric
images. We then extract fluorescence values from these images. We identify a small volume around each neuron center, containing
voxels whose fluorescence will be assigned to the neuron. This volume is set as 2 µm x 2 µm x 3 µm for our data. We compute the
mean of the 10 brightest pixels within this volume to extract a raw fluorescence trace Fr(t). We then account for photobleaching
by exponential detrending, giving us a clean fluorescence activity trace F (t). We then identify the background fluorescence F0 for
each neuron, and report normalized neuron activity �F/F0.

Manual proofreading of traces
Manual proofreading is an opportunity to improve data quality by removing neurons which have been mistracked, adjusting the
computer-determined baseline fluorescence F0, and correcting or adding nuclear IDs. Proofreading also enabled us to remove
traces which were contaminated by signals from neighboring neurons. The software then compiles all processed traces for a given
individual into a single data structure.



D: Imputing missing single-trial responses
Across trials of all neurons and all conditions, about 20% of the neuron responses were either not captured, or excluded due to
tracking mistakes or signal contamination issues. To perform single-trial discrimination analysis in the (N -dimensional) neural
response space, we first had to fill these missing data points in a reasonable and biologically motivated way.

For a given odorant and M trials, the peak responses of the N = 11 sensory neurons can be compiled in a matrix R œ RN◊M .
Without any assumptions for the values R, it is impossible to infer the missing data. Fortunately, due to the intrinsic correlation
between the responses of different olfactory neurons, the full response matrix R is low rank (as indicated by the PCA of neural
responses). We can use this low-rank information to recover the missing entries: “matrix completion” algorithms can solve this
problem very efficiently (77, 78).

To verify that matrix completion can indeed recover the missing entries faithfully, we performed a holdout evalua-
tion. For the response matrix to each odor, we performed matrix completion after randomly removing 20 entries (xi, i =
1, · · · ,20). The imputed matrix is denoted as Xú. We then calculated the Pearson correlation coefficient fl between
the estimated entries xú

i with the true entries xi. The average value of fl is around 0.7 (Figure S6A-B). We used the
MATLAB code provided in (79) with default parameters for matrix completion (https://github.com/udellgroup/
Codes-of-FGSR-for-effecient-low-rank-matrix-recovery). Specifically, we chose an algorithm based on
minimization of the nuclear norm MC_Nulcear_IALM.

E: Computational methods for discriminability quantification
For binary classification of all odorant pairs, we used linear regression and a simple SVM (linear or Gaussian kernel). To decode
odor identity from the entire single-trial dataset, we built a multi-class classifier. We concatenate all of the single-trial responses
of the 23 odorants at high concentration. Each trial is an 11-dimensional point, one dimension for every neuron class. Each point
has an associated label indicating the odorant identity. This data set was randomly divided into 10 parts, 9 of which are used as a
training set (90%) and one which is used as a validation set (10%).

We used the MATLAB function fitcecoc to fit a multi-class model which supports both SVM and other classifiers. Mecha-
nistically, this method reduces the problem of overall classification into a sequence of binary classification problems. The perfor-
mance was quantified by the classification error, estimated using the crossval function. The confusion matrix was generated
using the functions kfoldPredict and confusionchart. The training is repeated 10 times, using each of the 10 parts of the
datasets as the validation set, and the results were compiled.

For the in silico knockouts, we removed neurons from the training dataset, resulting, for example in 10-dimensional responses
when one neuron was removed. We trained the multi-class classifier as above.

F: Statistics, code, and software
All statistical computations and image analysis code were written and run in MATLAB using standard toolboxes, with the exception
of the OME Bio-Formats API (used to read Nikon ND2 file formats) (80) and CET Perceptually Uniform Color Maps (81).

https://github.com/udellgroup/Codes-of-FGSR-for-effecient-low-rank-matrix-recovery
https://github.com/udellgroup/Codes-of-FGSR-for-effecient-low-rank-matrix-recovery


Supplemental figures
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Figure S2. Single neuron response observations and example experiments. Examples of single experiments in which an animal was presented with multiple pulses of (A)
1-octanol and (B) diacetyl at the same concentration, demonstrating the consistency of sensory neuron responses under these conditions. Note that in each experiment, some
neurons are missing due to occlusion or signal contamination. (C) A control experiment in which three odorants were presented to a single animal, evoking distinct and
reproducible responses. (D) A control experiment in which one odorant (1-pentanol) was presented at 3 concentrations, evoking distinct and reproducible responses at each
concentration. (E) AWB is an OFF response for most stimuli, such as 1-hexanol, but is occasionally an ON response, as is the case for high concentration diacetyl. High
concentration isoamyl alcohol elicits an ON response from AWB, but low concentration isoamyl alcohol elicits an OFF response. This has been previously observed in Yoshida et
al., 2012 (15). (F) We observe inhibitory responses to some odorants in ASK. (G) ASJ has an excitatory response to some odorants, such as 1-nonanol, but has an inhibitory
response to 2-butanone. (H) We observe L/R asymmetries in ASE in response to several odorants, such as ethyl heptanoate and butyl butyrate.
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Figure S3. Supplemental panels for Figure 2. (A) An odor space constructed from the molecular descriptors of 122 odorants (gray) previously studied in C. elegans. We
selected for our experiments a panel of 23 odorants (red) which span the odor space (left). These 23 odorants are presented in odor space colored by their chemical class
(center). On the right is the variance explained as a function of the PC number in the odor space. (B) The molecular descriptor loadings of the first 3 principal components of the
C. elegans odor space, plotted on the same axes. The leading components of PC 1 are measures of aromaticity, and the leading components of PC2 are measures of
electronegativity. Peak responses for six odors tested at (C) 10≠7 and (D) 10≠8 dilutions. Statistically significant responses (q Æ 0.01) are indicated with stars—no significant
activity was observed at the lowest tested dilution. (E) Compiled responses to three representative odorants at multiple concentrations (1-pentanol, 1-nonanol, and
benzaldehyde) show similar neural responses across concentration. The magnitude of neuron responses generally increases with increasing concentration, and for some
conditions, additional neurons are recruited at high concentration. (F) Dose responses for the six sensory neurons not printed in Figure 2E. (G) The fitted log-linear slopes m for
the dose response of each neuron-odorant pair. The peak responses r as a function of odorant dilution c were fitted to the equation r(c) ¥ m log10 c + I, and the slope m was
determined through linear regression. (H) Odorants (high concentration) clustered by their peak average neuronal responses. (I) The variance explained and the loadings of the
first two principal components of the standardized average peak neural response PC space in Figure 2F.
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Figure S4. Time trace correlations and phase trajectory analyses. (A) Average time trace correlation map of the 11 chemosensory neuron responses across all 23 odorants.
(B) Average correlation maps of responses to all 23 odorants at high concentration, plotted on the same axes, show diverse response dynamics. (C) Phase trajectory plots of
average neural activity for select odorants, all plotted in a common PC space (Pareto plot of the PC space on the left). The shade of each color indicates concentration, with low
concentration indicated by a light shade and high concentration indicated by a dark shade. Different concentrations of the same odorant tend to generate similar trajectories.
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Figure S5. Average peak responses plotted in odor space. (A) The fraction of significant odor responses to three chemical groups: alcohols (7 total stimuli), esters (5 total
stimuli), and ketones (5 total stimuli). Neurons are ordered by overall response fraction (Figure 4A). Average peak responses of each of the 11 chemosensory neuron classes
plotted in odor space (Figure S3A), at (B) high odorant concentration (10≠4), (C) medium odorant concentration (10≠5), and (D) low odorant concentration (10≠6).
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Figure S6. Supplemental panels for Figure 5. (A) Cumulative distributions of peak responses of every neuron (four exemplar odorants shown). (B) Signals were not always
captured from all 22 chemosensory neurons in every trial. We used a matrix completion algorithm to impute these missing data points. Here are shown the peak responses all
chemosensory neurons to 1-heptanol in different trials, with missing responses in dark blue (left) and after matrix completion (right). (C) Left : To quantify the performance matrix
completion, we randomly removed 20 measured responses (true response) and compared the imputed values from matrix completion (predicted responses).Right : The
histogram of Pearson’s correlation coefficient between true responses and predicted responses. For each response matrix, we repeated 5 times. (D/E) Representations of
single-trial peak neural responses to sets of (D) three similar and (E) three dissimilar odorants. These data are plotted in a PC space constructed from the individual trial
responses to all odorants in the dataset. (Inset: The Pareto plot of the variance explained by each PC.) (D) We see that three similar odorants, the straight-chain alcohols
1-hexanol, 1-heptanol, and 1-nonanol, have more similar neural representations. (E) In contrast, three odorants of three distinct chemical classes, 2-methylpyrazine (a pyrazine),
diacetyl (a ketone), and pentyl acetate (an ester), have more easily separable neural representations. Binary classification of all odorant pairs by (F) logistic regression and (G)
SVM. Both methods return very low classification errors, demonstrating that the single-trial peak responses of any two odorants can be distinguished. Shown here are
classification error heatmaps at high concentration (10≠4 dilution), for which the average classification error is 0.055 for the logistic regression and 0.035 for the SVM.
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