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Fig. S1. Crossing Schemes to Generate Genotypes for Figure 1.  
Crossing schemes used to generate the eight genotypes assayed in Figure 1B. Maternal and 
paternal genotypes are depicted above the boxes containing experimental genotypes. 
Experimental genotypes are indicated in both full and abbreviated forms. 
 



 
 
Fig. S2. Crossing Schemes to Generate Genotypes for Figure 2. 
Crossing schemes used to generate 3 genotypes assayed in Figure 2A. Annotated as in Fig. 
S1. Note to obtain an H3.3Anull status for all, a deficiency (Df(2L)BSC110) was employed in 
trans to a null allele of H3.3A. Larvae were selected by GFP negative status. 
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Fig. S3. Crossing Schemes to Generate Genotypes for Figures 2, 3, and S5. 
Crossing schemes used to generate 4 genotypes assayed in Figures 2, 3, and S5. Annotated 
as in Fig. S1. (A) Crosses pertaining to H3.3K26R mutant and control. Note that the HisC 
locus is wild type. Experimental progeny were Cy and GFP negative. (B) Crosses 
pertaining to H3.2K26R mutant and control.  Note that both If and CyO offspring were 
scored.  
 
 
 



 
 

 
 
 
Fig. S4. Crossing Schemes to Generate Genotypes for Figures 4-7. 
Crossing schemes used to generate 3 genotypes assayed in Figure 1B. Annotated as in Fig. 
S1. Note where applicable that to obtain an H3.3Anull status, the H3.3A2x1 allele is 
homozygous. All animals are in a His∆ plus 12x histone replacement transgenic 
background. Larvae were selected by YFP positive status. 
 
 



 
Fig. S5. Ectopic expression of H3.2K36R Enhances Pc Transformations in Adults.   
Either H3.2K36R and control histone genotypes were combined with a heterozygous Pc3 
mutation and scored for four characteristic PcG homeotic transformations. For full genetic 
scheme, see Fig. S2. T2-T1 (leg 2 to leg 1), T3-T1 (leg 3 to leg 4), A4-A5 (abdominal segment 
4 to abdominal segment 5), and W-H (wing to haltere) transformations were scored for each 
genotype. Notably, for the H3.2K36R analyses, the HisC locus was heterozygous to allow 
animals to reach adulthood, producing a ratio of H3.2WT to H3.2K36R genes of ~10:1 
(endogenous HisC locus contains ~110 genes). (A) To the left, a summary of the genetic 
scheme for the H3.2K36R and Pc3 genetic interaction experiment, created using 
BioRender.com. To the right, % Transformed for 4 homeotic transformations is plotted for 
each genotype. N value for number of flies scored for the H3.2K36R genotype (n=55) and for 
the control (n=62). Note, for T2-T1 and T3-T1, each appendage was scored separately, 
effectively doubling the n value for these transformations. GraphPad Prism was used to 
calculate a c2 value for each transformation. Significance is abbreviated as: *=p<0.05, 
**=p<0.01, ***=p<0.001, ****=p<0.0001. (B) Image of a typical T2-T1 transformation for 
each genotype collected by scanning electron microscopy at 250x magnification.  
 
 
 
 
 



Fig. S6. Bioinformatic Workflow for CUT&RUN Analysis. 
CUT&RUN data were processed as in https://github.com/mckaylabunc/cutNrun-pipeline 
with minor modifications. Briefly, QC was performed with FastQC (fastqc/0.11.7) (114) and 
FastQ Screen (v0.11.1) (115). Reads were aligned with Bowtie2 (v2.3.4.1) (116) to the DM6 
reference genome. SAMtools (v1.10) was used to remove duplicate reads and sort BAM 
files (117). BAM files were converted to BED files using BEDTools (v2.26) (113). These BED 
files were separated by fragment length (20-120bp, short fragments; 150-700bp, long 
fragments) and converted to separate fragment size binned BAM files. Bedgraphs were 
generated using BEDTools (v2.26) (113) and wigToBigWig (118) was used to convert BED 
files to bigWigs. BigWig files were RPGC (reads per genome coverage) normalized, and 
further transformed by z-normalization. Peak calling was performed using MACS2 
(v2.1.2) (119) normalizing against an IgG control file.  

Differential peak analysis was performed using featureCounts (110) and DESeq2 
(v1.34.0) (111). Details for generating intervals for each differential analysis (broad 
domains-Fig 4B, concatenated short fragment peaks from supernatant-Fig S11, short 
fragment peaks with Pho binding- Figs. 5C&S10B) can be found in Fig. S8. All genotypes 
were included to build each DESeq2 model. After models were created, differential analysis 
was performed between specified genotype comparisons of interest. For broad domains (Fig. 
4B), pellet reads of all fragment sizes were used for DESeq2 analysis. For PRE based 
analyses in Fig 5C, S10B, and S11, only short fragment (20-120bp) pellet reads were 
analyzed with DESeq2.  

All heatmaps and metaplots were generated from pooled bigWigs for each genotype 
using the deepTools (v3.2.0) package (112) and the reference-point option, rather than 
scale-region. Details for reference-point selection can be found in Fig. S8. Details for which 
files and parameters were used to produce heatmaps and metaplots can be found in the 
Bioinformatic Analyses section of Materials and Methods.  This figure was created using 
BioRender.com. 



Fig. S7. Spearman Correlations for CUT&RUN Replicates 
The deepTools (v3.5.1) package (112), was used to calculate Spearman correlations between 
bigWig files from CUT&RUN replicates. (A) Supernatant fraction (B) Pellet fraction. 
Spearman correlations between replicates from the same genotype are higher from within 
the pellet fraction.   





Fig. S8. Interval Selection for Bioinformatic Analyses. 
BEDtools (v.2.3.0) (109) was used for intersecting and concatenating intervals from BED 
files generated from 1) Flybase Coordinate Converter Tool 2) MACS2 (119). (A) For 
DESeq2 analysis of broad domains (Fig. 4B), broad peaks output by MACS2 for each 
genotype were concatenated with Bedtoolsr (2.30.0-4) (120). Concatenated peaks were 
merged within 10kb to produce the broad domains used for the final analysis. (B) For 
narrow peak summit intervals in PRE analysis, short fragment supernatant narrow peak 
summits were extended +150bp. A master list concatenated from all four genotypes was 
further reduced by merging overlapping intervals, and used for the DESeq2 in analysis in 
Fig S11. For DESeq2 analyses of putative PRE regions with Pho binding capability, this list 
was intersected with Pho binding sites, and intervals overlapping Pho were analyzed in Fig 
5C and S10B. (C) For heatmaps and metaplots in Fig4D-E, Pho binding regions from 
Brown and Kassis 2018 (59) were merged within 3kb with BEDTools (v.2.3.0). K27me3 
MACS2 narrow peak summits + 150bp intervals from each control genotype that 
intersected these merged Pho intervals was compiled with BEDTools (v.2.3.0). Lists for both 
controls were intersected with BEDTools to generate a final list of “robust putative PREs” 
used for analysis in Fig. 4D. (D) For Figs. 5B & S10A metaplots, a master list of intervals 
from MACS2 narrow peak summits + 150bp for H3.3WTH3.2HWT, H3.3WTH3.2K36R, 
H3.3AnullH3.2HWT, and H3.3K36RH3.2HWT genotypes was concatenated. Overlapping intervals 
were merged. Merged intervals overlapping the “robust PREs” were used for subsequent 
metaplots. (E) For Figs. 5E-F, all unmerged Pho binding intervals (59) were sorted into 2 
bed files by K27me3 status using the K27me3 broad domain peak annotation used for Fig. 
4B with BEDTools (v.2.3.0). The Y chromosome was excluded for all analyses utilizing Pho 
binding data. This figure was created using BioRender.com. 



Fig. S9. Metaplots and Heatmaps for Individual CUT&RUN Replicates. 
Analyses from Fig. 4E&5B were repeated with z-score normalized bigWigs from individual 
replicates alongside pooled bigWigs to assess the degree of variability between samples 
within the same genotype. (A) For broad domain analysis of large fragments, there is little 
variability between replicates, and pooled replicates overlay cleanly with the majority of 
individual replicates if one replicate is slightly lower. (B) Signal from short fragment pellet 
reads is generally more variable between replicates making precise quantification difficult. 



 
 
Fig. S10. H3K27me3 directed cleavage is unaltered at PREs in H3.2K36R mutants.  
(A) Metaplots of K27me3 directed CUT&RUN signal + 500bp around peak summits called 
from all 4 genotypes that overlap robust PREs intervals identified in Figure 4 (n=426), see 
Fig. S8 for details. Separate plots were generated for long and short fragments. The 
H3.3WTH3.2K36R mutant is plotted alongside the H3.3WTH3.2HWT control. (B) DESeq2 
analysis for peak summit intervals identified from all 4 genotypes overlapping Kassis Pho 
binding sites genome-wide (n=985) for the H3.3K36RH3.2HWT mutant vs. control, annotated 
as in Fig 5B. 
 



 
 
 
 
 

 
Fig. S11. Differential Peak Analysis of All H3K27me3 Subnucleosomal Fragment 
Sized Peaks. DESeq2 differential analysis of all H3K27me3 short fragment peak summit 
intervals , irrespective of Pho status (n=4341). An M/A plot of these intervals for 1) 
H3.3WTH3.2K36R mutant vs. H3.3WTH3.2HWT control and 2) H3.3K36RH3.2HWT mutant vs. 
H3.3AnullH3.2HWT control is shown (details in Fig. S8). Points with an adjusted p-value > 
0.05 and a Log2 fold change (Log2FC) > |1| are colored (red = downregulated, blue = 
upregulated).  
 



 
 
Fig. S12. Images Used for Staging Embryos in Figure 3. 
(A) Stage 16 embryos of H3K36R mutant genotypes and controls were fixed and stained 
with anti-AbdB antibodies. Embryos were stained with anti-GFP antibodies to detect YFP 
for staging and genotype selection. For each embryo, a single slice from the anti-GFP 
channel was used for staging the embryos in Figure 3A. Scale bar = 50µm. (B) Same as in 
A, except staging for embryos stained with anti-Ubx instead of anti-AbdB, and from the 
embryos depicted in Figure 3B.  
 
 
 



 

 
 
Fig. S13. Classification of AbdB derepression phenotypes in Stage 16 embryos.  
(A) Stage 16 embryos were stained for AbdB, and maximum intensity Z-projections through 
the VNC were created and inspected for derepressed cells (see Fig.7 and methods for 
details). A horizontally stacked bar graph indicates percentages of each genotype falling 
into each category of phenotypic severity. For each genotype an n (left of graph) indicates 
the number of stage 16 embryos subjected to detailed image analysis . (B) Example images 
of stage 16 embryos falling into each category examined in A.  
 
 



 
 
Fig. S14. Classification of Ubx derepression phenotypes in Stage 16 embryos. (A) 
Stage 16 embryos were stained for Ubx and maximum intensity Z-projections through the 
VNC were created and inspected for derepressed cells (see Fig.7 and methods for details). A 
horizontally stacked bar graph indicates percentages of each genotype falling into each 
category of phenotypic severity. For each genotype an n (left of graph) indicates the number 
of stage 16 embryos subjected to detailed image analysis . (B) Example images of stage 16 
embryos falling into each category examined in A. Black circles indicate cells excluded from 
consideration because we observed Ubx expression in control embryos. 
 



 

 
 
Fig. S15. Embryos with Combined Mutation of H3.3K36R and H3.2K36R Exhibit 
Moderate Synergistic Derepression of ANTP.  Stage 16 embryos of H3K36R mutant 
genotypes and controls were fixed and stained with anti-ANTP antibodies. Embryos were 
stained with anti-GFP antibodies to detect YFP for staging and genotype selection. Scale 
bar = 50µm. (A) Representative Anti-ANTP staining for 5 genotypes. Brackets indicate the 
expected boundary of ANTP expression in wild type embryos. Filled arrows highlight 
individual cells exhibiting anterior derepression of ANTP. Black arrows indicate 
derepressed cells. Overall, individual H3.2 and H3.3 mutants closely resemble 
H3.3WTH3.2HWT negative controls, while H3.3K36RH3.2K36R were generally intermediate 
between H3.3WTH3.2HWT  and H3.3WTH3.2K27R controls. (B) Single slice from anti-GFP 
channel staining YFP for same embryos in A depicting staging.  
 



 
 
Table S1. Shorthand nomenclature for genotypes used in this study.  
A key is provided here for easy reference. The left column indicates the shorthand genotype 
used in the text and figures. The right column lists the full genotype with all relevant 
alleles and transgenes.  
 

Nomenclature Genotype

For Figure 1A

HWT/HWT His∆, twiGal4   ; 12xH3.2HWT

His∆, UAS:YFP    12xH3.2HWT

HWT/K36R His∆, twiGal4   ; 12xH3.2HWT

His∆, UAS:YFP    12xH3.2K36R

K36R/HWT His∆, twiGal4   ; 12xH3.2K36R

His∆, UAS:YFP    12xH3.2HWT

K36R/K27R His∆, twiGal4   ; 12xH3.2K36R

His∆, UAS:YFP    12xH3.2K27R

K36R/K9R His∆, twiGal4   ; 12xH3.2K36R

His∆, UAS:YFP    12xH3.2K9R

K27R/K36R His∆, twiGal4   ; 12xH3.2K27R

His∆, UAS:YFP    12xH3.2K36R

K27R/HWT His∆, twiGal4   ; 12xH3.2K36R

His∆, UAS:YFP    12xH3.2HWT

K9R/HWT His∆, twiGal4   ; 12xH3.2K9R

His∆, UAS:YFP    12xH3.2HWT

For Figures 1B, and  4-7

H3.3Anull + ; H3.3A2x1 ;  +
+      Df(2L)Bsc110   +

H3.3K36R H3.3BK36R ; H3.3A2x1 ; +
H3.3BK36R Df(2L)Bsc110     +

H3.3∆ H3.3B0 ; H3.3A2x1 ; +
H3.3B0 Df(2L)Bsc110      +

H3.3WTH3.2HWT + ; His∆, twiGal4   ; 12xH3.2HWT

+    His∆, UAS:YFP           +

H3.3WTH3.2K36R + ; His∆, twiGal4   ; 12xH3.2K36R

+    His∆, UAS:YFP           +

H3.3nullH3.2HWT + ; H3.3A2x1, His∆, twiGal4   ; 12xH3.2HWT

+    H3.3A2x1, His∆, UAS:YFP           +

H3.3K36RH3.2HWT H3.3BK36R ; H3.3A2x1, His∆, twiGal4   ; 12xH3.2HWT

H3.3BK36R H3.3A2x1, His∆, UAS:YFP           +

H3.3K36RH3.2K36R H3.3BK36R ; H3.3A2x1, His∆, twiGal4   ; 12xH3.2K36R

H3.3BK36R H3.3A2x1, His∆, UAS:YFP           +

H3.3WTH3.2K27R + ; His∆, twiGal4   ; 12xH3.2K27R

+    His∆, UAS:YFP           +



 
Table S2. DESeq2 Output for K27me3 CUT&RUN for Broad Domains. DESeq2 
output accompanying Fig. 4B. Differential peak analysis by DESeq2 on broad H3K27me3 
domains (details in Fig.S8) using all-fragment BAM files from the pellet fraction. Separate 
columns comparing H3.3WTH3.2K36R vs. H3.3WTH3.2HWT control and H3.3K36RH3.2HWT vs. 
H3.3AnullH3.2HWT are included. 
 
 
Table S3. DESeq2 Output for K27me3 CUT&RUN for Short Fragment Peak 
Intervals Overlapping Pho. DESeq2 output accompanying Fig. 5C and S10B. 
Differential peak analysis by DESeq2 on short fragment peak intervals from H3K27me3 
domains CUT&RUN that overlap Pho binding sites (details in Fig.S8) using small fragment 
BAM files from the pellet fraction. Separate columns comparing H3.3WTH3.2K36R vs. 
H3.3WTH3.2HWT control and H3.3K36RH3.2HWT vs. H3.3AnullH3.2HWT are included. 
 
 
Table S4. DESeq2 Output for All K27me3 CUT&RUN for Short Fragment Peak 
Intervals. DESeq2 output accompanying Fig. S11. Differential peak analysis by DESeq2 
on short fragment peak intervals from H3K27me3 domains CUT&RUN (details in Fig.S8) 
using small fragment BAM files from the pellet fraction. Separate columns comparing 
H3.3WTH3.2K36R vs. H3.3WTH3.2HWT control and H3.3K36RH3.2HWT vs. H3.3AnullH3.2HWT are 
included. 
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