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Figure S1. Dietary butyrate increases fat oxidation accompanied by parameters of BAT
activation dependent on gut microbiota.

Mice received antibiotics-induced microbiota depletion (AIMD) or saline (Vehicle) for six weeks while
being fed a high-fat diet (HFD) without or with 5% (w/w) sodium butyrate. In the second week, mice
were individually housed in automatic metabolic cages to assess energy expenditure by indirect
calorimetry. Respiratory exchange ratio (A, J, n=5-7), fat oxidation (B, K, n=5-7) and carbohydrate
oxidation (C, L, n=5-7) were calculated from data obtained during 3 consecutive days. Just before
termination, mice were intravenously injected with glycerol tri[*H]Joleate-labeled triglyceride-rich
lipoprotein-like particles, and *H-activity was assessed in plasma (D, M, n=6) and various organs (E, N,
n=6). Interscapular brown adipose tissue (iBAT) was isolated and used for immunohistochemistry
staining (F-1, O-R, n=7). Lipid content (F, O), uncoupling protein-1 (UCP-1) protein content (G, P) and
tyrosine hydroxylase (TH) protein content (H, Q) were quantified as representative pictures shown (I,
R). Data are shown as means + SEM; Statistical significance between two groups was determined with
two-tailed Student unpaired t-test; For data represented in the line graphs showing the changes over
time for a continuous variable, statistical significance between two groups at each time point was
determined using two-tailed Student unpaired t-test; *P<0.05, **P<0.01; Butyrate vs Control. gWAT,
gonadal white adipose tissue; HE, hematoxylin and eosin; LM, lean body mass; sBAT, subscapular

brown adipose tissue; sSWAT, subcutaneous white adipose tissue.
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Figure S2. Fecal microbiota transplantation from butyrate-treated lean donor mice does not
affect fat oxidation and brown adipose tissue activation in recipient mice.

Mice were fed a high-fat diet (HFD) without or with 5% (w/w) sodium butyrate prevention for 6 weeks.
After this, fresh feces were collected weekly, and used for fecal microbiota transplantation (FMT) to gut
microbiota-depleted recipient mice that were fed a HFD for 6 weeks. In the second week, mice were
individually housed in automatic metabolic cages for 3 consecutive days to assess energy expenditure
by indirect calorimetry measurement, and respiratory exchange ratio (A, n=7), fat oxidation (B, n=7) and
carbohydrate oxidation (C, n=7) were calculated. Just before termination, mice we were intravenously
injected with glycerol tri[*H]oleate-labeled triglyceride-rich lipoprotein-like particles, and 3H-activity was
assessed in plasma (D, n=8) and various organs (E, n=8). iBAT was collected and used for
immunohistochemistry staining, and lipid content (F, n=8), UCP-1 protein (G, n=8) and TH protein (H,
n=8) was quantified as presentative pictures shown (). Data are shown as means * SEM; Statistical
significance between two groups was determined with two-tailed Student unpaired t-test; For data
represented in the line graphs showing the changes over time for a continuous variable, statistical
significance between two groups at each time point was determined using two-tailed Student unpaired
t-test. *P<0.05, **P<0.01; Butyrate vs Control.
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Figure S3. Fecal microbiota transplantation from butyrate-treated lean donor mice selectively
enriches Lachnospiraceae bacterium 28-4 in recipient mice.
Linear discriminant analysis (LDA) score of taxonomic cladogram was obtained from linear discriminant
analysis effect size (LEfSe) analysis of metagenomics sequencing data (A, n=5). Gene of
Lachnospiraceae bacterium 28-4 was quantified by real-time PCR from cecal bacteria samples of donor
mice (n=4) and recipient ones (B, n=8) and bacterial samples cultured in vitro (C, n=5). Data are shown
as means = SEM (B and C); Statistical significance between two groups was determined with two-tailed
Student unpaired t-test; For data represented in the line graphs showing the changes over time for a
continuous variable, statistical significance between two groups at each time point was determined

using two-tailed Student unpaired t-test; ***P<0.001; Butyrate vs Control.
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Figure S4. Gut microbiota functional contribution analysis.

Relative contribution

Functional contributions of the gut microbiota (top 30 based on relative abundance) were analyzed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Pathway level 2). Statistical
significance between two groups was determined with Wilcoxon rank-sum test; *P<0.05, **P<0.01,
***P<0.001; Butyrate vs Control.
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Figure S5. Dietary butyrate does not increase the endogenous butyrate production related to
increased Lachnospiraceae bacterium 28-4.

Partial pathway of butyrate (butanoate) metabolism with a green box to highlight genes was adapted
from Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database (A). The expression of
genes coding butyrate kinase (B, n=5) and phosphate butyryltransferase (C, n=5) were quantified using
KEGG pathway database. The concentrations of SCFAs within the cecum samples of mice (D, G and
J, n=7-8) and in vitro culture medium (E and F, n=4) were measured by NMR. The gene of
Lachnospiraceae bacterium 28-4 within the cecum samples of mice receiving butyrate prevention (H)
or treatment (l) was quantified by real-time PCR (n=5-8). Data are shown as means + SEM; Statistical
significance between two groups was determined with two-tailed Student unpaired t-test. *P<0.05,
**P<0.01, ***P<0.001; Butyrate vs Control.
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97
98 Figure S6. Dietary butyrate does not affect the feeding behavior of mice.
99  Detailed procedures of conditioned taste aversion experiment were presented (A). The proportion of

100  sucrose consumption was calculated (B, n=5).



