Supplementary material

Supplementary Figures

Supplementary Figure 1. Firing rates and miniature excitatory synaptic currents - *refers to Figure 1.*

(A) Representative firing pattern of MSNs (top) obtained with current injection (bottom) showing that similar depolarization at 25ms (doted lines) after the current injection results in similar number of AP. (B) Firing frequency vs. membrane depolarization, one-way RM ANOVA ($F_{(1,31)} = 0.43$, p = 0.52). (C) Representative recordings of mEPSCs. (D) Representative average mEPSCs. (E) mEPSCs frequency, two-tails unpaired t test (t = 2.30 df = 23, p = 0.03). (F) mEPSCs amplitude, two-tails unpaired t test (t = 1.37 df = 23, p = 0.18). Sample size (N = neurons/mice), for B: WT: N = 17/3; LSL: N = 16/3 and for E, F: WT: N = 14/7; LSL: N = 11/6. Data represents dot plots (one neuron) with mean ± SEM. *p ≤ 0.05.

Supplementary Figure 2. Neurodevelopmental profile (Active properties) – *refers to Figure 2.*

(A) F-I Slope (top), mean \pm SEM showing similar changes between LSL and WT over time (table S2); individual data obtained at different time points during development (bottom); regression analysis did not reveal a significant correlation for majority of the tested models (table 3); (B) Maximum firing rate mean \pm SEM (top) showing similar changes for LSL and WT over time (table S2); individual data obtained at different time points during development (bottom); regression analysis did not reveal a significant correlation for majority of the tested model (table 3) (C) AP Threshold Mean \pm SEM (top) showing similar changes between LSL and WT over time (table S2); individual data obtained at different time points during development SEM (top) showing similar changes between LSL and WT over time (table S2); individual data obtained at different time points during development (bottom); regression analysis did not reveal a significant correlation for majority of the tested model (table 3) (C) AP Threshold Mean \pm SEM (top) showing similar changes between LSL and WT over time (table S2); individual data obtained at different time points during development 9bottom); regression analysis did not reveal a significant correlation for majority of the tested model (table S2); individual data obtained at different time points during development 9bottom); regression analysis did not reveal a significant correlation for majority of the tested model (table S2); individual data obtained at different time points during development 9bottom); regression analysis did not reveal a significant correlation for majority of the tested model (table 3).

Supplementary Figure 3. UBE3A levels – *refers to Figure 4 and 5* (**A**) Schematic representation of *Ube3a* gene reinstatement (left, middle) or deletion (right) at different type points during development and the time point of Western blot quantification of UBE3A proteins (**B**), (**C**), (**D**) Relative UBE3A expression (top), Examples of Western blot analysis in striatum (bottom), after reinstatement of *Ube3* gene at P21 in (B), P70 in (C), and deletion of *Ube3* gene at P45 in (D). Two-way RM ANOVA: (B) ($F_{(1, 12)} = 33.66$, p < 0.001), *Post hoc* Bonferroni: LSL-VEH against WT-VEH (p < 0.001), LSL-VEH against WT-TAM (p < 0.001), LSL-VEH against LSL-TAM (p < 0.001), LSL-VEH against WT-TAM (p < 0.001), LSL-VEH against WT-VEH (p < 0.001), LSL-VEH against WT-VEH (p < 0.001), LSL-VEH against WT-TAM (p = 1); (C) ($F_{(1, 12)} = 72.27$, p < 0.001), *Post hoc* Bonferroni: Flox-TAM against WT-TAM (p < 0.001), Flox-TAM against WT-TAM (p < 0.001), Flox-TAM against WT-VEH (p < 0.001), Flox-VEH against WT-VEH (p = 1). Sample size: N = 4 mice in each condition.: Data represents dot plots (one mouse) with mean ± SEM. *p ≤ 0.05 , ***p ≤ 0.001

Supplementary Tables Supplementary Table I. Developmental profile of the electrophysiological phenotypes (passive properties and synaptic transmission) – refers to Figure I and 2

gure		Parameter	Age	Genotypes	Genotypes (Mean ± SEM)			
Figu			J	WT	LSL	Test	þ value	
			P15	104.62 ± 9.25	100.77 ± 13.33		0.877	
		Rheobase (pA)	P2 I	189.15 ± 9.87	150.79 ± 6.66	-	0.010	
	с		P35	252.95 ± 19.33	180.00 ± 15.01	_	0.000	
			P45	276.00 ± 19.27	180.0 ± 15.89	-	0.000	
			P130°	287.78 ± 13.20	198.62 ± 9.68	_	0.000	
			P15	68.70 ± 1.73	71.80 ± 3.15	_	0.698	
			P2 I	105.00 ± 3.90	88.30 ± 2.86	_	0.001	
	D	Сарасitance (рF)	P35	111.00 ± 4.52	89.60 ± 4.60		0.001	
			P45	109.00 ± 4.72	89.30 ± 5.80	_	0.002	
			P130ª	114.00 ± 4.91	100.00 ± 3.73		0.016	
	E	Input resistance hyperpolarized (Mohm)	P15	106.50 ± 8.19	124.93 ± 8.03	est	0.029	
			P2 I	58.71 ± 3.51	72.39 ± 3.54	LSD te	0.016	
ure 2			P35	46.90 ± 5.87	60.31 ± 5.60	nova,	0.087	
Fig			P45	46.59 ± 4.54	63.27 ± 5.44	hoc A	0.014	
			P130ª	41.36 ± 3.20	54.87 ± 3.02	Post	0.032	
		Input resistance depolarized (Mohm)	P15	552.10 ± 66.34	467.30 ± 66.86		0.358	
			P2 I	419.20 ± 40.55	535.00 ± 48.27	-	0.043	
	F		P35	314.01 ± 58.72	472.30 ± 56.49	_	0.036	
			P45	227.80 ± 41.71	430.50 ±64.52		0.007	
			P130ª	209.30 ± 20.99	352.40 ± 39.50	_	0.039	
			P15	1.18 ± 0.09	1.45 ± 0.20		0.541	
			P21	2.89 ± 0.19	2.37 ± 0.15	1	0.014	
	н	sEPSC frequency (Hz)	P35	3.35 ± 0.19	2.38 ± 0.25	1	0.021	
			P45	3.40 ± 0.20	2.50 ± 0.16	1	0.045	
			P130ª	3.86 ± 0.33	2.92 ± 0.23	1	0.000	

a) Refers also to Mean and SEM in Figure 1

Supplementary Table 2. Developmental profile of the electrophysiological phenotypes (active properties) – refers to Figure

I and 2 and SI

Figure		Parameter	Age	Genotypes (Mean ± SEM)		Statistics	
				WT	LSL	Test	p value
	Α	F-I slope (Hz/s)	P15	0.16 ± 0.007	43.08 ± 1.60	Post hoc Anova	0.287
			P2 I	0.15 ± 0.006	39.16 ± 0.93	LSD test	0.160
			P35	0.15 ± 0.005	42.53 ± 1.94		0.172
			P45	0.148 ± 0.007	39.76 ± 1.19	-	0.146
			P130ª	0.16 ± 0.004	40.10 ± 1.94	-	0.735
re	В	Maximum firing	P15	41.54 ± 1.83	43.08 ± 1.60	-	0.562
Figu		frequency (112)	P2 I	38.52 ± 1.21	39.16 ± 0.93	-	0.685
ıtary			P35	41.06 ± 1.20	42.53 ± 1.94		0.499
emer			P45	39.6 ± 1.4334	39.76 ± 1.19	-	0.937
olqqu			P130ª	42.45 ± 1.1	40.10 ± 1.94		0.234
S	с	AP threshold	P15	-43.05 ± 0.55	-43.08 ± 1.31		0.980
		(1114)	P2 I	-39.24 ± 0.73	-40.32 ± 0.71		0.186
			P35	-42.32 ± 0.56	-42.96 ± 0.51		0.573
			P45	-41.30 ± 0.59	-41.72 ± 0.60		0.666
			P130ª	-41.59 ± 0.52	-40.76 ± 0.51		0.381

a) Refers also to Mean and SEM in Figure 1

Rheobase								
М	odel Summary	R Square	F(1,110)	Sig.	Constant	ы	b2	Ь3
	Linear	0.203	28.089	0	181.169	0.865	n.a.	n.a.
	Logarithmic	0.335	55.335	0	-22.131	67.966	n.a.	n.a.
	Inverse	0.442	87.084	0	327.689	-3109.781	n.a.	n.a.
	Quadratic	0.409	37.697	0	80.47	5.141	-0.026	n.a.
Equation ^a	Cubic	0.465	31.322	0	-1.812	9.967	-0.091	0
	Compound	0.197	26.931	0	165.098	1.004	n.a.	n.a.
	Power	0.335	55.33	0	59.139	0.342	n.a.	n.a.
	S	0.467	96.216	0	5.853	-16.076	n.a.	n.a.
	Growth	0.197	26.931	0	5.107	0.004	n.a.	n.a.
	Exponential	0.197	26.931	0	165.098	0.004	n.a.	n.a.
	Logistic	0.197	26.931	0	0.006	0.996	n.a.	n.a.
		•	Cap	oacitance	•		•	
м	odel Summary	R Square	F(1, 100)	Sig.	Constant	ы	Ь2	Ь3
	Linear	0.058	6.14	0.015	97.647	0.123	n.a.	n.a.
	Logarithmic	0.14	16.308	0	60.712	11.795	n.a.	n.a.
	Inverse	0.24	31.545	0	123.655	-611.015	n.a.	n.a.
	Quadratic	0.304	21.637	0	67.656	1.374	-0.007	n.a.
° no	Cubic	0.307	14.472	0	62.752	1.66	-0.011	1.45E- 05
uati	Compound	0.058	6.213	0.014	94.892	1.001	n.a.	n.a.
Eq	Power	0.15	17.702	0	64.853	0.121	n.a.	n.a.
	S	0.27	37.009	0	4.822	-6.417	n.a.	n.a.
	Growth	0.058	6.213	0.014	4.553	0.001	n.a.	n.a.
	Exponential	0.058	6.213	0.014	94.892	0.001	n.a.	n.a.
	Logistic	0.058	6.213	0.014	0.011	0.999	n.a.	n.a.
			Input resistar	nce hyper	bolarized			r
М	odel Summary	R Square	F(1, 94)	Sig.	Constant	ы	Ь2	Ь3
	Linear	0.152	16.834	0	69.821	-0.232	n.a.	n.a.
	Logarithmic	0.283	37.074	0	129.339	-19.493	n.a.	n.a.
	Inverse	0.43	70.993	0	27.085	951.31	n.a.	n.a.
	Quadratic	0.348	24.84	0	100.744	-1.516	0.008	n.a.
° no	Cubic	0.43	23.103	0	131.859	-3.324	0.032	-9.03E- 05
luati	Compound	0.169	19.052	0	63.3	0.996	n.a.	n.a.
Eq	Power	0.304	40.996	0	168.621	-0.322	n.a.	n.a.
	S	0.433	71.688	0	3.454	15.212	n.a.	n.a.
	Growth	0.169	19.052	0	4.148	-0.004	n.a.	n.a.
	Exponential	0.169	19.052	0	63.3	-0.004	n.a.	n.a.
	Logistic	0.169	19.052	0	0.016	1.004	n.a.	n.a.
			Input resist	ance depo	olarized			
м	odel Summary	R Square	F(1, 107)	Sig.	Constant	ы	b2	Ь3
atio	Linear	0.137	16.967	0	433.025	-1.823	n.a.	n.a.
Equ	Logarithmic	0.207	27.849	0	841.182	-137.704	n.a.	n.a.

Supplementary Table 3. Regression analysis of the developmental electrophysiological profile

					1			
	Inverse	0.255	36.538	0	139.753	6075.632	n.a.	n.a.
	Quadratic	0.222	15.084	0	600.932	-8.918	0.042	n.a.
	Cubic	0.267	12.74	0	788.779	-19.924	0.193	-0.001
	Compound	0.147	18.438	0	360.306	0.995	n.a.	n.a.
	Power	0.233	32.574	0	1262.669	-0.421	n.a.	n.a.
	s	0.296	45.016	0	4.99	18.824	n.a.	n.a.
	Growth	0.147	18.438	0	5.887	-0.005	n.a.	n.a.
	Exponential	0.147	18.438	0	360.306	-0.005	n.a.	n.a.
	Logistic	0.147	18.438	0	0.003	1.005	n.a.	n.a.
			sEPSC	F frequen	cy			
м	odel Summary	R Square	F(1, 95)	Sig.	Constant	ы	Ь2	Ь3
	Linear	0.239	29.808	0	2.376	0.016	n.a.	n.a.
	Logarithmic	0.319	44.509	0	-0.949	1.151	n.a.	n.a.
	Inverse	0.362	53.888	0	4.841	-48.043	n.a.	n.a.
	Quadratic	0.346	24.827	0	1.157	0.07	0	n.a.
° no	Cubic	0.346	16.393	0	1.066	0.075	0	2.84E- 07
uatic	Compound	0.194	22.849	0	2.123	1.005	n.a.	n.a.
Eq	Power	0.288	38.408	0	0.655	0.402	n.a.	n.a.
	S	0.372	56.276	0	1.638	-17.908	n.a.	n.a.
	Growth	0.194	22.849	0	0.753	0.005	n.a.	n.a.
	Exponential	0.194	22.849	0	2.123	0.005	n.a.	n.a.
	Logistic	0.194	22.849	0	0.471	0.995	n.a.	n.a.
			F-	l Slope				
м	odel Summary	R Square	F(1,110)	Sig.	Constant	Ы	Ь2	Ь3
	Linear	0.017	1.904	0.17	0.14	7.48E-05	n.a.	n.a.
	Logarithmic	0.004	0.479	0.49	0.136	0.002	n.a.	n.a.
	Inverse	0	0.024	0.877	0.144	0.021	n.a.	n.a.
	Quadratic	0.049	2.81	0.065	0.152	0	3.03E- 06	
on "	Cubic	0.059	2.256	0.086	0.162	-0.001	1.13E- 05	-3.08E- 08
quat	Compound	0.019	2.154	0.145	0.137	1.001	n.a.	n.a.
E	Power	0.006	0.674	0.413	0.131	0.021	n.a.	n.a.
	s	0	0	0.995	-1.956	0.006	n.a.	n.a.
	Growth	0.019	2.154	0.145	-1.989	0.001	n.a.	n.a.
	Exponential	0.019	2.154	0.145	0.137	0.001	n.a.	n.a.
	Logistic	0.019	2.154	0.145	7.305	0.999	n.a.	n.a.
			Maximu	ım firing r	ate			
м	odel Summary	R Square	F(1,110)	Sig.	Constant	ы	Ь2	ЬЗ
	Linear	0.027	3.108	0.081	39.168	0.022	n.a.	n.a.
	Logarithmic	0.023	2.538	0.114	35.798	1.247	n.a.	n.a.
tion "	Inverse	0.011	I.234	0.269	41.506	-34.836	n.a.	n.a.
Equat	Quadratic	0.028	1.555	0.216	38.914	0.033	-6.48E- 05	- - :
	Cubic	0.034	1.265	0.29	40.845	-0.08	0.001	-5.76E- 06
	Compound	0.029	3.342	0.07	38.616	1.001	n.a.	n.a.

	Power	0.025	2.835	0.095	35.251	0.034	n.a.	n.a.
	s	0.013	1.472	0.228	3.717	-0.967	n.a.	n.a.
	Growth	0.029	3.342	0.07	3.654	0.001	n.a.	n.a.
	Exponential	0.029	3.342	0.07	38.616	0.001	n.a.	n.a.
	Logistic	0.029	3.342	0.07	0.026	0.999	n.a.	n.a.
			AP	Threshold				
м	odel Summary	R Square	F(1,110)	Sig.	Constant	ы	Ь2	Ь3
	Linear	0.001	0.171	0.68	41.21	0.002	n.a.	n.a.
	Logarithmic	0	0.088	0.767	40.981	0.093	n.a.	n.a.
	Inverse	0	0.004	0.947	41.297	0.823	n.a.	n.a.
	Quadratic	0.002	0.244	0.784	41.544	-0.012	8.47E- 05	n.a.
ona	Cubic	0.014	0.993	0.397	40.178	0.068	-0.001	4.27E- 06
luati	S	0	0.029	0.865	3.72	-0.053	n.a.	n.a.
Ec	Growth	0.002	0.338	0.562	3.714	7.71E-05	n.a.	n.a.
	Exponential	0.002	0.338	0.562	41.014	7.71E-05	n.a.	n.a.
	Logistic	0.002	0.338	0.562	0.024	Ι	n.a.	n.a.
	Compound	0.002	0.338	0.562	41.014	I	n.a.	n.a.
	Power	0.001	0.262	0.609	40.564	0.004	n.a.	n.a.

a) Refers to the equations used in the different models:

Linear: F(postnatal day)= Constant + (b1 * postnatal day).

Logarithmic: F(postnatal day) = Constant + (b1 * ln(postnatal day))

Inverse: F(postnatal day) = Constant + (b1 / postnatal day)

Quadratic: F(postnatal day) = Constant + (b1 * postnatal day) + (b2 * postnatal day **2).

Cubic: F(postnatal day) = Constant + (b1 * postnatal day) + (b2 * postnatal day **2) + (b3 * postnatal day **3)

S-curve: $F(postnatal day) = e^{**}(Constant + (b1/postnatal day))$

Growth: F(postnatal day) = e**(Constant + (b1 * postnatal day))

Exponential: F(postnatal day) = Constant * (e**(b1 * postnatal day))

Logistic: F(postnatal day) = I / (I/u + (Constant * (bI** postnatal day)))

Compound: F(postnatal day) = Constant * (b1** postnatal day)

Power: F(postnatal day) = Constant * (postnatal day **b1)

		LIF	ne3a m	anipulation	Mean	+ SEM	Statistics				
el	etei	01	esu m		Mean	1 SEM	Two-way Post-hoc Bonferroni p			o values	
Par	Param	Age		Treatment	Genotype		ANOVA (genotype X treatment) F/b values	LSL-VEH vs. WT- VEH	LSL-VEH vs WT- TAM	LSL-VEH vs LSL- TAM	
-	1	1			wт	LSL					
E		tement		VEH	261.54 ± 21.12	196.37 ± 10.76	F(1, 108) = 4.17,	0.041	0.007	0.001	
			721	ТАМ	264.00 ± 13.34	257.50 ± 10.41	p = 0.044	0.041	0.000		
L	Rheobase (pA) reinsta	reinsta	P70	VEH	304.12 ± 13.3	218.82 ± 15.06	F(1,67) = 0.12, p = 0.76	0.009	0.004	I	
				ТАМ	260.77 ± 23.66	210.66 ± 17.24					
		2			WT	Flox		r			
s	Jeletion	deletio	P45	VEH	260.00 ± 10.10	275.56 ± 13.1	F(1,69) = 0.59, p = 0.49				
				TAM	280.56 ± 14.78	249.42 ± 13.8	P 0,		-	-	
	1	1	1	1	WT	LSL					
н			₩ P21	VEH	162.17 ± 17.77	304.14 ± 22.77	F(1,108) = 6.27, p = 0.014	0.003	0.0001	0.001	
	hm)	atemen		ТАМ	185.58 ± 22.2	220.32 ± 25.53					
¥	ice (Mo	reinsto	P70	VEH	187.42 ± 17.18	349.00 ± 36.15	(F(1,67) = 0.04,	0.005	0.004	I	
	ƙesistan			ТАМ	234.20 ± 19.75	292.70 ± 24.8	p = 0.16				
	ut F		eletion 642		WT	Flox		1			
т	dul	eletion		VEH	147.46 ± 12.35	121.60 ± 9.16	F(1,69) = 1.99,				
		Ā		ТАМ	118.02 ± 11.55	151.13 ± 15.35	p = 0.026				
		1	1		WT	LSL					
(7				VEH	4.70 ± 0.70	3.29 ± 0.25	F(1,107) = 5.16,	0.014	0.3	0.2	
		tement	F 21	ТАМ	4.01 ± 0.35	4.02 ± 0.24		0.010	0.5	0.3	
z	cy (Hz)	reinste	P70	VEH	4.88 ± 0.38	3.08 ± 0.26	F(1,87) = 0.22,	0.002	0.017		
	uənbə.			ТАМ	4.46 ± 0.31	3.02 ± 0.34	p = 0.63				
	iC fi				WT	Flox					
С	sEPS	eletion	P45	VEH	5.36 ± 0.33	5.25 ± 0.43	F(1,69) = 0.22,				
		de		ТАМ	4.60 ± 0.32	4.38 ± 0.34	p = 0.63				

Supplementary Table 4. Critical windows for the electrophysiological phenotype – refers to Figure 4