Supplementary information

FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2

In the format provided by the authors and unedited

Supplementary Information

FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2

Teresa Brevini*, Mailis Maes, Gwilym J. Webb, Binu V. John Claudia D. Fuchs, Gustav Buescher, Lu Wang, Chelsea Griffiths, Marnie Brown, William Scott, Pehuén Pereyra Gerber, William T. H. Gelson, Stephanie Brown, Scott Dillon, Daniele Muraro, Jo Sharp, Megan Neary, Helen Box, Lee Tatham, James Stewart, Paul Curley, Henry Pertinez, Sally Forrest, Petra Mlcochova, Sagar S. Varankar, Mahnaz Darvish-Damavandi, Victoria L. Mulcahy, Rhoda E. Kuc, Thomas L. Williams, James Heslop, Davide Rossetti, Vasileios Galanakis, Marta Vila-Gonzalez, Olivia C. Tysoe, Thomas W. M. Crozier, Johannes Bargehr, Sanjay Sinha, Sara S. Upponi, Corinna Fear, Lisa Swift, Kourosh Saeb-Parsy, Susan E. Davies, Axel Wester, Hannes Hagström, Espen Melum, Darran Clements, Peter Humphreys, Jo Herriott, Edyta Kijak, Helen Cox, Chloe Bramwell, Anthony Valentijn, Christopher J. R. Illingworth, Bassam Dahman, Dustin R. Bastaich, Raphaella D. Ferreira, Thomas Marjot, Eleanor Barnes, Andrew M. Moon, A. Sidney Barritt IV, Ravindra K. Gupta, Stephen Baker, Anthony P. Davenport, Gareth Corbett, Vassillis G. Gorgoulis, Simon J. A. Buczacki, Joo-Hveon Lee, Nicholas J. Matheson, Michael Trauner, Andrew J. Fisher, Paul Gibbs, Andrew J. Butler, Christopher J. E. Watson, George F. Mells, Gordon Dougan, Andrew Owen, Ansgar W. Lohse, Ludovic Vallier^{*†} and Fotios Sampaziotis^{*†}

[†] These authors share senior authorship.

*Correspondence to: Fotios Sampaziotis, <u>fs347@cam.ac.uk</u>; Ludovic Vallier,

lv255@cam.ac.uk; Teresa Brevini, tb647@cam.ac.uk.

Supplementary Figure S1. Gating strategy for flow cytometry analyses.

Supplementary Figure S1. Gating strategy for flow cytometry analyses. (a-d)

Representative flow cytometry plots showing gating strategy for all flow cytometric analyses, gating on: (**a**) exclusion of debris; (**b**) exclusion of doublets; (**c**) secondary-only control to exclude negative population; (**d**) representative ACE2+ population.

Supplementary Table S1. List of primary and secondary antibodies.

Target protein	Company	Product code	Dilution
ACE2	R&D	AF933	1:50 / 1:100
ACE2	abcam	ab15348	1:500
ACE2	abcam	ab108209	1:500 / 1:100
EPCAM	R&D	MAB9601	1:50 / 1:100
EPCAM	R&D	AF960	1:100
Cytokeratin 19	abcam	ab7754	1:100
Cytokeratin 19	abcam	ab52625	1:100
SOX2	abcam	ab15830	1:100
SOX2	R&D	AF2018	1:100
NKX2.1	abcam	ab72876	1:100
Cytokeratin 5	Thermo Fisher	MA5-17057	1:100
Surfactant protein C	Merck Millipore	AB3786	1:300
Acetylated alpha tubulin	Sigma	T7451	1:500
CD31	Novus biological	NB100-2284	1:100
CD31	abcam	ab119339	1:100
Alpha smooth muscle actin	abcam	ab124964	1:100
SARS-CoV spike glycoprotein	abcam	ab273433	1:100
SARS-CoV-2 nucleocapsid	Sino Biological	40143-R019	1:100
SOX17	R&D	AF1924	1:100
FXR	Novus biological	NBP2-16550	1:100
FXR	Santa Cruz	sc-25309 X	1:100
Actin	abcam	ab208080	1:100
Alexa Fluor Donkey Anti-Rabbit 568	Invitrogen	A10042	1:1000
Alexa Fluor Donkey Anti-Rabbit 488	Invitrogen	A21206	1:1000
Alexa Fluor Donkey Anti-Rabbit 568	Invitrogen	A10042	1:1000
Alexa Fluor Donkey Anti-Goat 488	Invitrogen	A11055	1:1000
Alexa Fluor Donkey Anti-Goat 568	Invitrogen	A11057	1:1000
Alexa Fluor Donkey Anti-Mouse 488	Invitrogen	A21202	1:1000
Alexa Fluor Donkey Anti-Mouse 647	Invitrogen	A31571	1:1000

Supplementary Table S2. List of primers used for QPCR.

Target gene	Primer sequence (5' – 3')		
	Forward	GGAGCCATGTCTGGTAACGG	
ПИЬЗ	Reverse	CCACGCGAATCACTCTCATCT	
	Forward	AGGACTCATGACCACAGTCCATGC	
GAPDH	Reverse	GATGACCTTGCCCACAGCCTT	
	Forward	ACGACCATCCAGGACCTGCGG	
KK I I 9	Reverse	TCCCACTTGGCCCCTCAGCGTA	
	Forward	CTCCTAACCAGCCCCCTGTT	
AUEZ	Reverse	TGGAGGCATAAGGATTTTCTCCAC	
SARS Cold 2 RdRn	Forward	ATGGGTTGGGATTATCCTAAATGTGA	
SANS-COV-2 NUNP	Reverse	GCAGTTGTGGCATCTCCTGATGAG	
MS2	Forward	TGGCACTACCCCTCTCCGTATTC	
10132	Reverse	GTACGGGCGACCCCACGATGAC	
ΝΟΟΛΟ	Forward	CCTGCCTGAAAGGGACCATCC	
NRDUZ	Reverse	GCACCAGGGTTCCAGGACTTC	
	Forward	GCTTTGCTGAAAGGGTCTGC	
NI\ 1114	Reverse	CAGAATGCCCAGACGGAAGT	
11 10	Forward	AAACAGATGAAGTGCTCCTTCCAGG	
<i>ι</i> μ - <i>ι</i> β	Reverse	TGGAGAACACCACTTGTTGCTCCA	
II_6	Forward	AATTCGGTACATCCTCGACGG	
12-0	Reverse	GGTTGTTTTCTGCCAGTGCC	
IENa	Forward	GACTCCATCTTGGCTGTGA	
nna	Reverse	TGATTTCTGCTCTGACAACCT	
ΙΕΝΙλ	Forward	TCGCTTCTGCTGAAGGACTGCA	
11 1 1 1	Reverse	CCTCCAGAACCTTCAGCGTCAG	
KRT7	Forward	GATTGCTGGCCTTCGGGGT	
	Reverse	TCATCACAGAGATATTCACGGCTC	
CETR	Forward	AGTTGCAGATGAGGTTGGGC	
0/ //(Reverse	AAAGAGCTTCACCCTGTCGG	
GGT1	Forward	GTGAGAGCAGTTGGCTGTGC	
0011	Reverse	GTTGAACTCTGCTGTGGGGC	
SOX17	Forward	CGCACGGAATTTGAACAGTA	
	Reverse	GGATCAGGGACCTGTCACAC	
mGAPDH	Forward	GCACAGTCAAGGCCGAGAAT	
	Reverse	GCCTTCTCCATGGTGGTGAA	
mACE2	Forward	TCCATTGGTCTTCTGCCATCC	
	Reverse	AACGATCTCCCGCTTCATCTC	
mSHP	Forward	AAGGGCTTGCTGGACAGTTA	
	Reverse	TCTCTTCTTCCGCCCTATCA	
hGAPDH	Forward	AGGTTGTCTCCTGCGACTTCA	
	Reverse	GCATCAAAGGTGGAAGAGTGG	
hACE2	Forward	AAAGTGGTGGGAGATGAAGCGA	
	Reverse	GAACAGAGCTGCAGGGTCAC	

*KRT1*9, CK19; *NRB0*2, SHP; *NR1H4*, FXR; *KRT*7, CK7.

Target gene	Primer seque	Primer sequence (5' – 3')		
OSTa	Forward	AGTTCAGGGCTTTGGGTAATTAAAC		
	Reverse	GGTGGAGGTCAGGGAAGGAAGA		
ACE2	Forward	CGCTATCTTGAGGAAGAAGGGGAA		
	Reverse	AGCAGGTACAAAGCATATGCAACC		
ACE2 negative region	Forward	AAGCGAGCTCAGTGTCCTCA		
	Reverse	AGGTAGGCCCTTGAACCCTG		

Supplementary Table S3. List of primers used for ChIP-QPCR.

Supplementary Table S4. List of primers used for luciferase reporter.

Target	Primer se	equence (5' – 3')
~ACE2	Forward	AGTTCAGGGCTTTGGGTAATTAAAC
YACE2	Reverse	GGTGGAGGTCAGGGAAGGAAGA
asup	Forward	ATTGAGATGCAGATCGCAGATCTCGAGCCCCTCATGGTTAGGGATCTGCTCTCAC
узпр	Reverse	TAGGTACCGAGCTCTTACGCGTGCTAGCCCCCTGCTTCTGGCTGACAACAG
IR1	Forward	AAGCGAGCTCAGTGTCCTCA
mutagenesis	Reverse	AGGTAGGCCCTTGAACCCTG

Age	Sex	Weight (kg)	Daily UDCA dose (mg)
61	Male	80	1250
42	Male	82	1250
47	Female	50	750
34	Female	68	1000
46	Male	74	1250
30	Male	63	1000
28	Female	61	1000
45	Female	75	1000

Supplementary Table S5. Volunteer cohort characteristics relative to Fig. 4b.

Participants shown in italics were excluded due to undetectable RNA levels. See methods.

Supplementary Table S6. UK-PBC cohort characteristics relative to Extended Data Figure 10.

Please, refer to downloadable xls file and Supplementary File S1 for the code employed in the analysis.

Supplementary Table S7. COVID-Hep and SECURE-Liver registries patient cohort characteristics.

	Total	No UDCA	UDCA	Propensity score matched (5:1) (No UDCA:UDCA)
n, total	788	757	31	155
Sex (Female)	347 (44.0%)	319 (42.1%)	28 (90.3%)	139 (89.6%)
Age (years; median, IQR)	58 (47–67)	58 (47–67)	56 (44–63)	57 (47–63)
BMI (overweight)	445 (56.4%)	434 (57.3%)	11 (35.4%)	44 (28.3%)
Diabetes	295 (37.4%)	291 (38.4%)	4 (12.9%)	24 (15.4%)
NAFLD	378 (47.9%)	376 (49.6%)	2 (6.4%)	10 (6.4%)
Immunosuppression	78 (9.9%)	70 (9.25%)	8 (25.8%)	41 (26.4%)
Chronic respiratory disease	104 (13.2%)	101 (13.3%)	3 (9.6%)	20 (12.9%)
Liver disease severity				
CLD, no cirrhosis	447 (56.7%)	423 (55.8%)	24 (77.4%)	122 (78.7%)
CTP A cirrhosis	184 (23.3%)	182 (24.0%)	2 (6.4%)	9 (5.8%)
CTP B cirrhosis	101 (12.8%)	97 (12.8%)	4 (12.9%)	19 (12.2%)
CTP C cirrhosis	56 (7.1%)	55 (7.2%)	1 (3.2%)	5 (3.2%)
COVID-19 outcome				
Hospitalised	636 (80.7%)	625 (82.5%)	11 (35.4%)	91 (58.7%)
ICU requirement	214 (27.1%)	213 (28.1%)	1 (3.2%)	21(13.5%)
ICU admission	172 (21.8%)	171 (22.5%)	1 (3.2%)	20 (12.9%)
Invasive ventilation	122 (15.4%)	121 (15.9%)	1 (3.2%)	15 (9.6%)
Death	117 (14.8%)	117 (15.4%)	0 (0%)	14 (9.0%)

UDCA, ursodeoxycholic acid; IQR, interquartile range; BMI, body mass index; CLD, chronic liver disease; CTP, Child-Turcotte-Pugh class;

BMI, body mass index; NAFLD, non-alcoholic fatty liver disease; ICU, intensive care unit.

Liver disease aetiology	No UDCA	UDCA
Cholestatic only	20 (12.9%)	20 (64.5%)
Primary biliary cholangitis (PBC)	1 (0.6%)	20 (64.5%)
Primary sclerosing cholangitis (PSC	17 (11.0%)	0 (0.0%)
Other cholestatic (ICP, Biliary atresia)	2 (1.3%)	0 (0.0%)
Autoimmune	47 (30.3%)	9 (29.0%)
Autoimmune hepatitis (AIH)	46 (29.7%)	1 (3.2%)
Overlap syndrome (PBC/AIH)	1 (0.6%)	8 (25.8%)
Non-alcoholic fatty liver disease (NAFLD)	10 (6.5%)	2 (6.5%)
NAFLD	8 (5.2%)	0 (0.0%)
NAFLD and PBC	0 (0.0%)	2 (6.5%)
NAFLD and viral hepatitis	2 (1.3%)	0 (0.0%)
Viral hepatitis	63 (40.6%)	0 (0.0%)
Other (congenital; cryptogenic; veno-occlusive disease; unknown)	15 (9.7%)	0 (0.0%)
n, total	155	31

Supplementary Table S8. Liver disease aetiology relative to Fig. 4d.

Supplementary Table S9. VOCAL registry patient cohort characteristics.

	Total	No UDCA	UDCA	Propensity score matched (3:1) (No UDCA:UDCA)
n, total	119	95	24	72
Sex (Female)	3 (2.5%)	1 (1.1%)	2 (8.3%)	1 (1.4%)
Age (years; median, IQR)	58.9	59.0 (9.2)	58.5 (9.0)	57.6 (8.9)
BMI (BMI; median IQR)	29.75	30.0 (4.3)	28.8 (7.9)	29.6 (4.1)
Diabetes	100 (84.0%)	78 (82.1%)	22 (91.7%)	61 (84.7%)
Hypertension	97 (81.5%)	77 (81.1%)	20 (83.3%)	60 (83.3%)
Kidney transplantation	21 (17.6%)	17 (17.9%)	4 (16.7%)	16 (22.2%)
Smoker	67 (56.3%)	56 (59.0%)	11 (45.8%)	45 (62.5%)
Immunosuppression				
Calcineurin inhibitors	109 (91.6%)	87 (91.6%)	22 (91.7%)	68 (94.4%)
Anti-metabolites	73 (61.3%)	61 (64.2%)	12 (50.0%)	46 (63.9%)
Chronic respiratory disease	44 (37.0%)	37 (39.0%)	7 (29.2%)	27 (37.5%)
Ethnicity				
White	74 (62.2%)	59 (62.1%)	15 (62.5%)	44 (61.1%)
Black	20 (16.8%)	14 (14.7%)	6 (25.0%)	12 (16.7%)
Hispanic/Latino	8 (6.7%)	8 (8.4%)	0 (0%)	5 (6.9%)
Other	16 (13.4%)	14 (14.7%)	2 (8.3%)	11 (15.3%)
Unknown	1 (0.8%)	0 (0%)	1 (4.2%)	0 (0%)
Location in the United States				
Northeast	28 (23.5%)	25 (26.3%)	3 (12.5%)	28 (25.0%)
Southeast	20 (16.8%)	17 (17.9%)	3 (12.5%)	12 (16.7%)
Midwest	34 (28.6%)	21 (22.1%)	13 (54.2%)	20 (27.8%)
South	18 (15.1%)	15 (15.8%)	3 (12.5%)	13 (18.1%)
Northwest	6 (5.0%)	6 (6.3%)	0 (0%)	0 (0%)
Southwest	13 (10.9%)	11 (11.6%)	2 (8.3%)	9 (12.5%)

UDCA, ursodeoxycholic acid; IQR, interquartile range; BMI, body mass index.