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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): expert in breast cancer genomics 

The article by Prat, Brasó-Maristany, and Martínez-Sáez utilizes a previously described signature 

derived from supervised learning integrative computational approach to predict RNA-based tumor 

expression signatures using data from DNA copy-number alterations. This method was developed 

by the same group (in the large sense, Perou et al) and understanding that method is essential to 

understand and appreciate the presented results here. 

In the present manuscript the authors attempt a remarkable thing: because the expression based 

classification can be deduced from copy number alterations (again, one needs to read ref 10 to be 

convinced), then if one can detect the copy number alterations in ctDNA in the plasma/serum, 

then one can classify tumors non-invasively from a plasma sample. This is exactly what the 

authors show for ESR1+ and Her2 patients, and it is in my mind, as just said, remarkable. 

The authors analysed ctDNA from 246 samples with shallow whole genome DNA sequencing. A 

majority of the patients were ER+/Her2- (207), but some from the other subtypes were also 

included (Her2+ and TNBC, 16 patients in each). Also samples for some patients were available at 

different time points, so number of plasma samples is not the same as number of patients, then at 

some point the analysis is restricted to those who have both tumor and plasma sample (54), and 

before and after treatment (124), and only those with TF>3% were further anaslysed, so this 

ensemble of numbers may be described better. 

              

156 4-84%; median 9.4%), according to the ichorCNA tool. Here one needs to know why TF of 3% 

was chosen as a cut of? How does the classification deteriorate below this threshold? 

Patients with (TF) of <3% do they have better prognosis? 

Then the authors could ask the questions: 

-of 150 detectable signatures described in the tumor how many do we detect in plasma? 

I could not find this information explicitly provided. Could have missed it. One should be able to 

see this perhaps by comparing the number of rows in the heatmaps in figure 3 and 4. 

-Are some of these signatures over/underrepresented in plasma compared to tumor? 

-What is the correlation of each signature to tumor burden and TF. 

Here the authors present the results unadjusted ctDNA scores (TF correlates with overall number 

of detected CNA alterations and with 46 of 150 (31.0%) ctDNA-based signature scores), and 

adjusted for TF ctDNA-based signature scores (here the correlation to TF of course disappears, this 

gives a possibility for a more unbiased (byTF) comparison of ctDNA signatures from patient to 

patient. 

Then it is a bit unclear, do the authors continue the analyses (from line 177 on) with the adjusted 

or not adjusted ctDNA scores? F.ex. in the case of the comparison of tumor burden (as number of 

met sites) to TF to ctDNA scores? Because the ctDNA-based signatures that highly correlated with 

TF represented relevant biological processes, reducing their effect in the posterior analyses with 

adjusted data may be unfair? 

A moderate correlation between tumor and plasma is observed for around 40 ctDNA signatures, 

increasing to 60 if the timepoint of sample taking is closer. One could highlight some of those in 

the text as well say if the 60 contain the 40. It is readable from comparing the suppl tables, but 

still. 

Comments to figures: 

Figure 1. 



1A. Can take the space of signature 1, signature 2, signature 3…to instead illustrate all the 

compared pairs (tumor-plasma, before after treatment) 

1B. On the X axis add (TF) to Tumor fraction (TF) in order to signify that it is the same thing that 

is adjusted for in the right panel (one may get confused and think it is pathologically assessed 

tumor fraction in the tumor). Also a brief mention about how TF is calculated in the legend may 

help in addition to the Method section. 

1C. X axis, I would replace “tissue based” with “tumorDNA-based” 

Figure2. 

D and E should be swapped, both to accommodate the left to right reading pattern, and also 

because the hazard ratio information follows more naturally the survival curves. 

Figure D (which I suggest should become E) requires specific attention, as the columns need to be 

better explained. Of “Average ctDNA signal of 16 features of the RB-LOH DNA- 

based signature (column on the left), weight and direction of each feature (column in the middle) 

in the original signature as reported in Xia et al.(13) and mean change of the 16 features (column 

on the right) in 7 patients with paired plasma samples only the third is clear to the reader. How 

these values are obtained and what they mean should be explained in the legend instead of 

refering the reader to another paper. “original tissue based weight” cannot say much to one who 

would like to in understand what was done just from the figure. 

Figures 3 and 4 are, in my mind, somewhat less central to the present report. Would this 

sublassification based on ctDNA from plasma samples from this particular set of patients and its 

correlation to PAM50 and inclust be clinically relevant? What more does it say in addition to what 

was already estimated by the direct tumor-plasma correlation of ctDNA pathways? Maybe good to 

have. The data in Figure 4- was it not the main topic of the much referred to reference 10? I 

mention that just because a lot of attention also in the text is given to describe these results, 

which seem to me less central to the very important message this paper brings. 

Reviewer #2 (Remarks to the Author): clinical expertise in breast cancer and CDK4/6 inhibitor 

response 

Analysis of ctDNA is a valuable tool that has proven to be useful in identifying mutations and copy 

number alterations for targeted therapy. Here, the authors apply machine learning model, 

previously developed using tissue DNA, to detect 150 multi-gene signatures in ctDNA with the aim 

of identifying biologic features of the cancer including measures of estrogen receptor signaling and 

tumor proliferation. They examined a data set of 246 plasma samples, mostly from patients with 

advanced HR+/HER2- breast cancer, but included only those that had a tumor cell fraction >=3% 

(178 samples). Using a subgroup of 54 patients with paired ctDNA and tumor DNA, they found 

very limited correlation (0.4 average) between tumor and plasma signatures, raising the questions 

of what is really being measured by the ctDNA signatures if it is not reflective of the tumor tissue 

signatures, which is not addressed by the authors. The authors provided evidence supporting 

correlations between ctDNA proliferation signatures and tumor cell fraction, luminal A signatures 

and bone-only disease, luminal signatures and ER+ status, and HER2 signatures with HER2+ 

disease. Additionally, using a set of 87 pre-treatment plasma samples, they identified ctDNA 

signatures associated with poor prognosis and response to treatment with endocrine therapy and 

CDK4/6 inhibition, and focused on RB-LOH signature. Using an independent cohort, which after 

filtering to tumor fraction >3% was only 65 patients, they found that RB-LOH signature in ctDNA 

was associated with worse PFS. They also examined a cohort from MSK and found similar 

association between RB-LOH in tumor tissue taken <1 year from starting therapy and PFS – note 

that this was signatures derived from tumor tissue and ctDNA signature was not reported for the 

MSK set. Additionally they performed unsupervised clustering on ctDNA signatures and found 4 

clusters that were associated with PFS and OS in both ctDNA validation cohort and METABRIC 

tumor tissue cohort. Overall the authors conclude that applying their machine learning model to 

identify 150 signatures in ctDNA provides additional information about disease biology. 

Major Comments: 

1) The abstract needs to be restructured to reflect the methods and data presented in the paper, it 

is now very general and vague. 



2) The authors note initial signatures were developed as per Reference #10. It is the 

understanding of this reviewer that the initial signatures were developed from TCGA data, which 

include early stage tumors. The current paper focuses on advanced breast tumors. The signatures 

in advanced tumors may differ from those seen in early disease. One example is ESR1 mutations, 

rarely seen in early tumors, but commonly emerge in patients treated with endocrine therapy. 

3) The paper is very dense and contains vast amount of data including many supplementary files. 

The authors should state their specific hypotheses and consider organizing the results and 

methods accordingly. They may also consider splitting the paper into two separate ones. 

4) The descriptions of the cohorts studied in this paper are not clear. Consider assigning a number 

or letter to each cohort and use these consistently throughout the manuscript. 

5) Consider adding a table describing each of the cohorts, including prior treatment, and response 

to treatment. The knowledge of prior treatment is important as the dynamics of the markers may 

change over time. 

6) It appears that sample collection was prospective, but additional patient, tumor, and treatment 

information was collected from the patients’ medical records. Please discuss possible bias. 

7) Sample size considerations and power for each analysis are not included. Are the cohorts simply 

samples of convenience? Further explanations are required to understand the true level of 

evidence of each of the reports. 

8) Please provide p-values for the correlations between tissue-based signatures and ctDNA-based 

signatures (page 6, starting line 195)? Specifically: 

a. The correlation coefficients, even for samples obtained within 8 weeks, are pretty low, but hard 

to interpret as no p-values given except in the 2 examples in Figure 1C. If there is no, or only 

limited, correlation between the tissue signature and the ctDNA signature, then what exactly is 

being measured in the ctDNA? These data should be presented first, and needs to be explained, 

because all the other correlations reported could be irrelevant if the signatures detected in ctDNA 

are not reflective of signatures obtained from tumor tissue. 

b. Later in the paper, the authors highlight the correlation between 48 features of tissue based RB-

LOH signature and ctDNA, suggesting that correlation is between tissue and ctDNA is important 

(page 8). 

c. On page 13, starting on line 390, the authors describe the correlation of 6 PAM50 RNA-based 

tissue signatures with each of the 150 ctDNA-based signatures, as well as correlation with gene 

expression in the n Counter Breast Cancer 360 Panel. This needs to be moved up in the paper and 

should be discussed along with relationship between ctDNA and tissue DNA signatures. 

d. What is the association between tissue based signatures and the other features presented (i.e. 

bone only disease, tumor burden, ER status, HER2 status, response to endocrine therapy, etc)? 

Are tissue based signatures or ctDNA based signatures better associated with these features? It is 

mentioned on line 304 that RB-LOH ctDNA signature was associated with PFS but not RB-LOH 

tumor signature, suggesting that ctDNA based signature may be better, but what about the other 

signatures? 

e. The authors comment in the introduction “the type of metastatic organ or site can compromise 

the expression patterns obtained from bulk RNA and might not reflect the intra-patient tumor 

heterogeneity” (p4, line 125) – perhaps this is the cause of the lack of correlation with tissue? It 

would be helpful if authors included the location of tissue biopsy specimen for metastatic patients 

and assessed correlation by metastatic site. What is the impact of the different sequencing 

methods used (shallow WGS for ctDNA vs targeted panel sequencing for tissue)? How dependent 

on sequencing method is the machine learning model? The overall lack of correlation between 

tissue and ctDNA signatures needs to be investigated further/better explained before anything else 

in the paper can be interpreted. 

9) The authors state that “The observed correlation between proliferation-related ctDNA-based 

biology with TF suggested that TF reflects the biological aggressiveness of the disease beyond the 

patient´s tumor burden” (page 6, line 177). This statement is not supported by the evidence 

provided. No evidence is given regarding the biological aggressiveness, such as rate of tumor 

growth, or rapidity of clinical progression. There is no support given for decision to use <3 versus 

>=3 metastatic sites as a measure of tumor burden and I do not believe this is an accurate 

measure of tumor burden. Furthermore, method used to count metastatic sites was not provided 

(are 2 spots in the liver 2 sites or 1? How large does a spot need to be to be counted? – this needs 

to be included in the methods section). Imaging based estimates of volume of disease would be 

more meaningful if available. Otherwise, I would not refer to this as “tumor burden” in this 

paragraph, but rather as number of metastatic sites. The lack of correlation between proliferation-



related signatures and “tumor burden” could in fact reflect conclusions other than those given by 

the author including 1) proliferation signatures are not good markers of tumor burden, or 2) tumor 

burden is not well measured by greater or less than 3 metastatic sites. The correlation presented 

between luminal A signatures and bone only disease is more compelling. If the authors are not 

able to better support their claims regarding tumor burden, then the findings related to tumor 

burden should be omitted or else very carefully stated with much more limited conclusions. 

10) Why did the authors focus on the RB-LOH signature? This was not the signature with the 

lowest p-value or highest HR. Without an explanation regarding why this signature was picked to 

focus on, it seems like cherry-picking. There is some discussion of relevance of RB-LOH in the 

discussion section, some of this should be included in the results to justify why the authors 

focused on this. 

11) What is the association between ctDNA-based tumor subtypes (clusters 1-4, page 12) and 

clinical factors such as prior treatment, response to treatment, location of metastatic disease, etc? 

What, if any, is the clinical relevance of identifying these clusters? I found this discussed on page 

14, beginning at li 

ne 417. This should be reorganized so the discussion of the clusters goes with the clinical meaning 

(PFS, OS) of the clusters. 

12) Given some of the comments listed above, it appears that the results are still hypothesis 

generating and the conclusions should be revised accordingly. 

Minor Comments: 

1) The authors characterize solid tumor biopsy in the metastatic setting as “challenging.” 

Depending on location, biopsy of metastases can actually be relatively straight forward. I agree 

that liquid biopsy has multiple advantages over solid tissue biopsy, including less invasiveness to 

the patient. I advise the authors to adjust their language around solid tumor biopsy to be more 

specific regarding the perceived disadvantages vs advantages of liquid biopsy. 

2) In line 546, the author state “To date, DNA sequencing has identified few FDA-approved 

actionable genetic alterations in cancer, especially breast cancers” and then go on to discuss that 

RNA expression phenotypes are associated with treatment benefit, implying that that expression 

signatures are more actionable. This is not supported by the literature. This sentence should be 

omitted or re-written. 

3) Figure 4 legend suggests that unsupervised cluster analysis was performed on the METABRIC 

tumor sample set. My reading of the paper was that cluster analysis was performed on the ctDNA 

data set, fixed, and then applied to the METABRIC dataset. This should be clarified. 

Reviewer #3 (Remarks to the Author): expertise in ctDNA profiling in breast cancer 

Prat and colleagues propose to use ctDNA profiling for (noninvasively) measuring several biological 

features in the metastatic breast cancer. Building this upon their previous work, they use copy 

number alterations to estimate gene expression activity of 150 signatures. Due to low levels of 

ctDNA in early-stage breast cancer, the focus of the paper is on metastatic setting, where in most 

cases, (tumor) allele fractions are expected to be at least in single digits. 

Cell-free DNA profiling is done by shallow whole genome sequencing (~0.5X). The idea of using 

copy number patterns to capture tumor phenotypes is very interesting and could be valuable in 

metastatic settings. This would be particularly useful due to its very low cost. 

Major comments: 

1- The authors use ichorCNA to evaluate tumor fractions. Unfortunately, while ichorCNA has been 

used in several studies so far, its performance is not well established (for both TF estimation & 

CNV detection); and therefore, before applying to the data generated in this study, one would 

need to know its sensitivity for CNV detection as a function of ctDNA conc. & sequencing coverage. 

Particularly, I would like to see whether ichor estimates (1) correlate well with SNV-based TFs, and 

(2) are sufficiently close to zero for non-cancer controls. 

2- Can authors comment on the TFs in this study? They seem too high (about 25-30% higher than 

20%). Is that comparable with other studies? A comparison with existing data would be valuable. 

3- It there any benefit in increasing sequencing depth? I am a bit skeptical that this method would 

work with 0.5X coverage (i.e., ultra low pass WGS), for ctDNA fractions less than 20%, especially 



since individual copy number (segment) states are fed to (pre-trained) models to calculate the 

signatures. Some analytical LOD analyses are needed, e.g., sensitivity of each signature vs 

coverage/TF. 

4- Figure 1B does not convey any additional information. The TFs are estimated by the copy 

number events and therefore correlation is clearly expected. Is there any correlation between 

number of CNV events and an orthogonal estimate of tumor fraction? Like SNVs? 

5- Figure 2E. This analysis is confusing. Does adjustment for TF mean a multivariable analysis with 

both ‘RB-LOH signature’ and ‘TF’ in the survival analysis? Also, given that there are 224 copy 

number segments contributing to that signature, a significance analysis is needed to show that if 

they randomly select 224 copy number segments, the survival stratification would no longer exist, 

or at least not as strong. 

6- The subtype predictor to generalize the four clusters from plasma ctDNA to tumor DNA is not 

properly evaluated. Authors should perform cross-validation to evaluate the performance of their 

proposed approach and then apply that as a classifier. 

7- An analysis comparing CNV events in tumor vs plasma cfDNA is needed; perhaps similar to the 

one in Herberts et al (Nat 2022- Fig 3d). 

8- Is the prognostic value of clusters in figure 3 more than TFs? How about total genome 

instability? Figure S15 shows that patients in cluster 1 have the smallest TFs, and clusters 3 & 4 

have the largest. So, given the data in figure 4, this may indicate that this is about genomic 

instability and not necessarily the clusters found using the estimated signatures. It would be great 

to test this. 

9- Why are overall survivals so different between figure 3 & 4? In fact, patients in clusters 3 & 4 

have very poor outcome in the first two years compared with those in the same clusters in figure 4 

(HR+/HER2- tumors). 

10- How do expression inference methods, such as those proposed by Ulz et al (2016, 2019) or 

Esfahani et al (2022) work here? I would imagine one may group genes to estimate the signature 

activity from shWGS. I see that there is one sentence in the discussion about it, however I believe 

a comparison is needed to justify using CNVs and not the epigenetic footprints.
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RESPONSE TO REVIEWERS  

Reviewer #1 (Remarks to the Author): expert in breast cancer genomics 

The article by Prat, Brasó-Maristany, and Martínez-Sáez utilizes a previously 
described signature derived from supervised learning integrative computational 
approach to predict RNA-based tumor expression signatures using data from DNA 
copy-number alterations. This method was developed by the same group (in the large 
sense, Perou et al) and understanding that method is essential to understand and 
appreciate the presented results here. 

In the present manuscript the authors attempt a remarkable thing: because the 
expression-based classification can be deduced from copy number alterations (again, 
one needs to read ref 10 to be convinced), then if one can detect the copy number 
alterations in ctDNA in the plasma/serum, then one can classify tumors non-
invasively from a plasma sample. This is exactly what the authors show for ESR1+ and 
Her2 patients, and it is in my mind, as just said, remarkable. 

We thank the reviewer for this very positive comment. We believe our novel approach in 
plasma will allow the identification (and tracking) of key biology in patients with 
metastatic breast cancer beyond single gene alterations. In addition, our approach could 
be applied to other cancer-types. Our current plan is to standardize the assay from both 
tissue and plasma and seek prospective validation. Several companies and academic 
groups are interested in our technology/approach, and we plan to start 1-2 prospective 
trials in the upcoming 1-2 years.  

The authors analysed ctDNA from 246 samples with shallow whole genome DNA 
sequencing. A majority of the patients were ER+/Her2- (207), but some from the other 
subtypes were also included (Her2+ and TNBC, 16 patients in each). Also samples for 
some patients were available at different time points, so number of plasma samples is 
not the same as number of patients, then at some point the analysis is restricted to 
those who have both tumor and plasma sample (54), and before and after treatment 
(124), and only those with TF>3% were further anaslysed, so this ensemble of numbers 
may be described better. 

We thank the reviewer for this comment. We have now better clarified the number of 
patients/samples in each cohort. To do so, we have created a new Figure (now Figure 1), 
which has all the information about the different plasma cohorts analyzed, the number of 
patients/samples, the proportion of HR+/HER2-, HER2+ and TNBC cases, the cases with 
tumor tissue DNA sequencing data, the number of cases with RNA expression data and 
the proportion of samples with a TF above 3%. 

              
156 4-84%; median 9.4%), according to the ichorCNA tool. Here one needs to know 
why TF of 3% was chosen as a cut of? How does the classification deteriorate below 
this threshold? Patients with (TF) of <3% do they have better prognosis? 
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We thank the reviewer for pointing this out. The reason of choosing a TF cutoff of 3% is 
based on the original ichorCNA study by Adalsteinsson and colleagues (Nature 
Communications, 2017), where they showed that a TF of 3% achieves a sensitivity of 0.95 
for detecting presence of tumor and a specificity of 0.91 for correctly classifying a 
healthy donor. We have now added this justification in the methods section of the 
manuscript titled “DNA-sequencing of plasma samples”.  

Regarding how the signatures were detected below the 3% cutoff, we did not pursue this 
since no detection of altered ctDNA segments was found (only 1 case of 246 cases, 0.4%). 
In our plasma-1 dataset (n=178), the median number of altered segments in cases with a 
TF of 3-10%, 10-20% and >20% was 51.5 (range 5-389), 240.5 (range 9-429) and 229 (range 
29-433), respectively.  

Finally, regarding the prognosis (PFS and OS) of patients with a TF <3% treated with 
CDK4/6i+ET, this can be found in Supplemental Fig. S7. The results show that this group 
of patients have an improved PFS compared to the other groups. However, we did not 
observe a statistically significant association with OS. 

Then the authors could ask the questions: 
-of 150 detectable signatures described in the tumor how many do we detect in 
plasma? I could not find this information explicitly provided. Could have missed it. 
One should be able to see this perhaps by comparing the number of rows in the 
heatmaps in figure 3 and 4. 

We thank the reviewer for this comment. Like tissue, all signatures were identified in 
              
below, we provide more data of the correlation of DNA segments and DNA signatures in 
paired tumor versus plasma samples (see below). 

-Are some of these signatures over/underrepresented in plasma compared to tumor? 

We thank the reviewer for this comment. According to the correlation coefficients of the 
150 signature scores evaluated in paired tissue versus plasma samples (Supplemental 
Table 6), we have observed that none of the 4 immune-related DNA-based signatures 
are statistically significantly correlated and the correlation coefficients are very low (i.e., 
0.26, 0.18, -0.02 and -0.08). Thus, detection of tumor immune-related biological 
processes from plasma ctDNA might be challenging. We have now added this comment 
in the discussion section, in “limitations”: “Seventh, ctDNA-signatures might not capture 
well tumor immune-related biology as tissue DNA-signatures.” 

-What is the correlation of each signature to tumor burden and TF. 
Here the authors present the results unadjusted ctDNA scores (TF correlates with 
overall number of detected CNA alterations and with 46 of 150 (31.0%) ctDNA-based 
signature scores), and adjusted for TF ctDNA-based signature scores (here the 
correlation to TF of course disappears, this gives a possibility for a more unbiased 
(byTF) comparison of ctDNA signatures from patient to patient. 

We thank the reviewer for this comment. The correlations of each signature with TF 
(unadjusted and adjusted) are reported in Supplemental Table S3. We have now added 
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p-values. Regarding the correlation of each signature with tumor burden, we have 
decided to remove it based on the comment/suggestion from Reviewer#2, since there is 
no objective or perfect way to 1) measure tumor burden, or 2) define tumor burden from 
the clinical perspective 

Then it is a bit unclear, do the authors continue the analyses (from line 177 on) with 
the adjusted or not adjusted ctDNA scores? F.ex. in the case of the comparison of 
tumor burden (as number of met sites) to TF to ctDNA scores? Because the ctDNA-
based signatures that highly correlated with TF represented relevant biological 
processes, reducing their effect in the posterior analyses with adjusted data may be 
unfair? 

We thank the reviewer for asking for this clarification, and we apologize for the confusion. 
The large majority of the analyses from line 177 have been done using the signatures 
adjusted by TF. For clarity, we have now specified every time, in the text, whether the 
signatures were adjusted or unadjusted every time they are cited. 

A moderate correlation between tumor and plasma is observed for around 40 ctDNA 
signatures, increasing to 60 if the timepoint of sample taking is closer. One could 
highlight some of those in the text as well say if the 60 contain the 40. It is readable 
from comparing the suppl tables, but still. 

As suggested by the reviewer, we have now highlighted 2 of the top signatures highly 
correlated between tumor tissue and plasma, which are: 

UNC_8q_Amplicon_Median_BMC.Med.Genomics.2011_PMID.21214954 
UNC_Scorr_P53_Mut_Correlation_BMC.Cancer.2006_PMID.17150101 

In addition, we have now clarified that 36 of the 40 (90%) signatures, which were found 
correlated in the overall “paired” population, are also contained within the 63 signatures 
found in paired samples obtained on the same timepoint (Supplemental Table S4). Of 
note, this last group has a lower number of samples (n=27) than the overall population 
(n=54), which should affect the power to detect significant differences. 

Comments to figures: 
Figure 1. 
1A. Can take the space of signature 1, signature 2, signature 3…to instead illustrate all 
the compared pairs (tumor-plasma, before after treatment) 

As suggested by the reviewer, we have now modified Fig. 2A (former Fig. 1A) to better 
illustrate what has been performed in our study.  

1B. On the X axis add (TF) to Tumor fraction (TF) in order to signify that it is the same 
thing that is adjusted for in the right panel (one may get confused and think it is 
pathologically assessed tumor fraction in the tumor). Also a brief mention about how 
TF is calculated in the legend may help in addition to the Method section. 

As suggested by the reviewer, we have added how TF is calculated in the figure legend. 
Regarding former Fig. 1B (now Fig. 2), we have now modified this entire figure to better 
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reflect all the analyses/results using paired plasma versus tissue samples and, as 
suggested by reviewer#2, we removed Fig. 1B. 

1C. X axis, I would replace “tissue based” with “tumorDNA-based” 

As suggested by the reviewer, we have changed “tissue-based” for “tumor DNA-based” 
in Fig. 2B-C (former Fig. 1).

Figure2. 
 D and E should be swapped, both to accommodate the left to right reading pattern, 
and also because the hazard ratio information follows more naturally the survival 
curves. 

As nicely suggested by the reviewer, we have swapped both sections of Fig. 3 (former 
Fig. 2).

Figure D (which I suggest should become E) requires specific attention, as the 
columns need to be better explained. Of “Average ctDNA signal of 16 features of the 
RB-LOH DNA-based signature (column on the left), weight and direction of each 
feature (column in the middle) in the original signature as reported in Xia et al.(13) and 
mean change of the 16 features (column on the right) in 7 patients with paired plasma 
samples only the third is clear to the reader. How these values are obtained and what 
they mean should be explained in the legend instead of refering the reader to another 
paper. “original tissue based weight” cannot say much to one who would like to in 
understand what was done just from the figure. 

As suggested by the reviewer, we have now better clarified the labels of Fig. 3E (former 
Fig. 2D). Regarding the label “original tissue based weight”, we have changed it to: “DNA 
segment weights”, to better clarify that these are the weights of each segment within the 
RB-LOH signature.

Figures 3 and 4 are, in my mind, somewhat less central to the present report. Would 
this subclassification based on ctDNA from plasma samples from this particular set of 
patients and its correlation to PAM50 and inclust be clinically relevant? What more 
does it say in addition to what was already estimated by the direct tumor-plasma 
correlation of ctDNA pathways? Maybe good to have. The data in Figure 4- was it not 
the main topic of the much referred to reference 10? I mention that just because a lot 
of attention also in the text is given to describe these results, which seem to me less 
central to the very important message this paper brings. 

We thank the reviewer for this comment. In our opinion, Figures 4 and 5 (previously 3 and 
4) bring new and relevant results worth reporting here. In Figure 4, we show, for the first 
time, the ability to identify tumor subtypes in plasma samples based on CNA-based data, 
as done with gene expression in tumor tissue. These ctDNA-based subtypes recapitulate 
the known RNA-based luminal versus non-luminal classification and are strongly 
prognostic (for both PFS and OS) in our combined series of 152 patients treated with 
CDK4/6i+ET. In Figure 5, we show that these tumor subtypes identified from plasma 
ctDNA-based data are very well recapitulated in tumor tissue DNA, and their clinical 
behavior in advanced disease (i.e., survival outcome) is recapitulated in early disease. 
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Overall, this result in tumor tissue reinforces the value of DNA-based tumor subtyping in 
breast cancer (whether plasma or tumor tissue is used) but, more importantly, reinforces 
the value of all our prior findings in plasma. 

Reviewer #2 (Remarks to the Author): clinical expertise in breast cancer and CDK4/6 
inhibitor response 

Analysis of ctDNA is a valuable tool that has proven to be useful in identifying 
mutations and copy number alterations for targeted therapy. Here, the authors apply 
machine learning model, previously developed using tissue DNA, to detect 150 multi-
gene signatures in ctDNA with the aim of identifying biologic features of the cancer 
including measures of estrogen receptor signaling and tumor proliferation. They 
examined a data set of 246 plasma samples, mostly from patients with advanced 
HR+/HER2- breast cancer, but included only those that had a tumor cell fraction >=3% 
(178 samples). Using a subgroup of 54 patients with paired ctDNA and tumor DNA, 
they found very limited correlation (0.4 average) between tumor and plasma 
signatures, raising the questions of what is really being measured by the ctDNA 
signatures if it is not reflective of the tumor tissue signatures, which is not addressed 
by the authors.  

We thank the reviewer for raising this concern. We agree that the correlation coefficients 
are not 0.9-1.0. However, we must consider that the biology of a tumor tissue biopsy is 
expected to differ from the biology of a plasma sample. For example, the samples were 
not obtained on the same date. In addition, plasma samples are likely to recapitulate an 
“average” biological state from many metastatic lesions, whereas tumor biopsies reflect 
the biological state of one tumor lesion. Nonetheless, the correlation coefficients are 
significant, and improve if the time gap between the date where the samples were 
obtained is close. Moreover, the plasma-based RB-LOH signature better predicts PFS 
and OS than the same signature evaluated in tumor tissue (current Fig. 3D).  

To further demonstrate that CNA-based data from plasma allows the identification of 
similar biological states as in tissue, we have estimated the intra-patient correlation 
coefficients across the CNA-based signals of 514 DNA segments using 54 paired samples 
(tumor tissue versus plasma). Overall, 57% of patients had a correlation coefficient 
between plasma and tissue >0.50, which increased to 83% when we evaluated 29 
patients with plasma TF >10%. In these 29 patients with a plasma TF>10%, 59% and 24% 
patients had a correlation coefficient of >0.70 and >0.80, respectively (table below). We 
have now added these results in Supplemental Material.  

Overall, these results strongly suggest that plasma ctDNA can reliably capture CNA-
based signals from tumor tissue, although the amount of ctDNA might impact the ability 
to accomplish this. This limitation has now been acknowledged in the discussion section, 

limitations paragraph: “First, 39% of patients had a TF <3%, and ctDNA-signatures could 

not be evaluated. In addition, 30% of patients had a TF of 3-10% and this might limit the 
detection of the ctDNA-based signatures. Further studies evaluating deeper ctDNA 
sequencing strategies and signature detection in patients with very low TF, including those 
with early-stage disease, is warranted. For example, expressed genes might be inferred by 
evaluating nucleosome footprints from whole-genome sequencing of plasma DNA(37).” 
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Table S5. Proportion of patients with a certain correlation coefficient when 514 DNA signals are compared between paired 
plasma and tissue. 

TF >10% TF 3-10% ALL

n=29 n=25 n=54

Cor >0.80 24% 4% 15%

Cor >0.70 59% 12% 37%

Cor >0.60 62% 20% 43%

Cor >0.50 83% 28% 57%

Cor >0.40 90% 36% 65%

Cor >0.30 97% 44% 72%

Cor >0.20 97% 48% 74%

Cor >0.10 97% 64% 81%

Cor <0.10 3% 36% 19%

Figure. Correlation between plasma and tissue of 514 DNA signals in a single patient.  
Correlation coefficient = 0.928. 

Finally, we evaluated if the ctDNA-based RB-LOH is significantly associated with PFS and 
OS in 71 patients with a TF 3-10% before starting endocrine therapy in combination with a 
CDK4/6 inhibitor. Like the overall population, we observed a statistically significant 
association with both clinical endpoints (PFS: HR=1.32, p=0.023; OS: HR=1.54, p=0.011). This 
results strongly suggests that our approach can work, even in patients with a TF 3-10%. 
This new result can now be found in Supplemental Material. 

The authors provided evidence supporting correlations between ctDNA proliferation 
signatures and tumor cell fraction, luminal A signatures and bone-only disease, 
luminal signatures and ER+ status, and HER2 signatures with HER2+ disease. 
Additionally, using a set of 87 pre-treatment plasma samples, they identified ctDNA 
signatures associated with poor prognosis and response to treatment with endocrine 
therapy and CDK4/6 inhibition, and focused on RB-LOH signature. Using an 
independent cohort, which after filtering to tumor fraction >3% was only 65 patients, 
they found that RB-LOH signature in ctDNA was associated with worse PFS. They also 
examined a cohort from MSK and found similar association between RB-LOH in tumor 
tissue taken <1 year from starting therapy and PFS – note that this was signatures 
derived from tumor tissue and ctDNA signature was not reported for the MSK set. 
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Additionally they performed unsupervised clustering on ctDNA signatures and found 
4 clusters that were associated with PFS and OS in both ctDNA validation cohort and 
METABRIC tumor tissue cohort. Overall the authors conclude that applying their 
machine learning model to identify 150 signatures in ctDNA provides additional 
information about disease biology. 

Major Comments: 
1) The abstract needs to be restructured to reflect the methods and data 

presented in the paper, it is now very general and vague. 

As suggested by the reviewer, we have improved the 150-words abstract to better 
reflect the methods and data presented in the article: “Liquid biopsy has proven valuable 
in identifying individual genetic alterations; however, the ability of plasma ctDNA to capture 
complex tumor phenotypes with clinical value is unknown. To address this question, we 
performed 0.5X shallow whole-genome sequencing in plasma from 459 patients with 
metastatic breast cancer, including 245 patients treated with endocrine therapy and a 
CDK4/6 inhibitor (ET+CDK4/6i) from 2 independent cohorts. We demonstrated that machine 
learning multi-gene signatures, obtained from ctDNA, identify complex biological features, 
including measures of tumor proliferation and estrogen receptor signaling, similar to what is 
accomplished using direct tumor tissue DNA or RNA profiling. More importantly, a ctDNA-
based genomic signature tracking retinoblastoma loss-of-heterozygosity, and newly 
discovered DNA-based subtypes, were found significantly associated with poor response 
and survival outcome following ET+CDK4/6i, independently of plasma tumor fraction. Our 
approach opens new opportunities for the discovery of additional multi-feature genomic 
predictors coming from ctDNA in breast cancer and other cancer-types.”

 2) The authors note initial signatures were developed as per Reference #10. It is the 
understanding of this reviewer that the initial signatures were developed from TCGA 
data, which include early stage tumors. The current paper focuses on advanced 
breast tumors. The signatures in advanced tumors may differ from those seen in early 
disease. One example is ESR1 mutations, rarely seen in early tumors, but commonly 
emerge in patients treated with endocrine therapy. 

We thank the reviewer for this comment. Indeed, metastatic disease acquires genetic 
alterations (such as ESR1 mutations) compared to early-stage disease. At the RNA 
expression level, we and others have shown that there is a higher proportion of non-
luminal subtypes (i.e., HER2-enriched and Basal-like) in HR+/HER2- disease in the 
metastatic setting compared to the early-stage setting (Prat et al. JAMA Oncol 2016; Prat 
et al. JCO 2021, Cejalvo et al Cancer Res 2017; Aftimos et al. Cancer Discovery 2021). In 
many instances, there is a true shift of tumor subtype from luminal A or B in primary 
disease to non-luminal in the metastatic setting. Importantly, phenotypic profiling using 
intrinsic subtyping (i.e., PAM50) of metastatic tumors provides strong prognostic value 
(Brasó-Maristany et al. Mol Oncol 2021; Prat et al. JCO 2021). Of note, the PAM50 assay 
was developed in primary tumors, and still “works” as a prognostic/predictive tool in the 
advanced setting, as demonstrated in MONALEESA-02/03/07 trials (Prat et al. JCO 2021), 
EGF30008 trial (Prat et al. JAMA Oncol 2016) and BOLERO-2 trial (Prat et al. Oncologist 
2019). 
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To address this comment, we analyzed the 150 DNA-based signatures across 158 tumor 
tissues (either primary tumors or metastatic tumors). As shown in the heatmap below, the 
identification of the 4 clusters/subtypes is independent of the tissue profiled (i.e., primary 
versus metastasis). However, the frequencies of Clusters 1-4 differ. For example, the 
proportion of primary tumors falling in Clusters 1, 2, 3 and 4 was 47.6%, 27.0%, 11.1% and 
14.3%, respectively. The proportion of metastatic tumors falling in Clusters 1, 2, 3 and 4 
was 27.0%, 39.3%, 19.1% and 14.6%, respectively. Thus, an enrichment for cluster 1 (better 
prognosis) was observed in primary tumors compared to metastatic tumors (p=0.0103). 
This enrichment for aggressive tumor biology in metastatic disease is consistent with the 
results of previous studies using gene expression-based data (cited above). Overall, we 
conclude that, although individual genetic differences exist between primary and 
metastatic disease, the biological processes captured by our signatures can be identified 
in both clinical settings (i.e., metastatic, and early), despite the signatures being derived 
originally from early-stage tumors. We have now included this result in Supplemental 
Material. 

Figure. Proportion of cases in each cluster based on tissue-type (primary versus metastatic). 
Cluster 1: 47.6% in primary vs. 27.0% in metastatic (p-value=0.0103) 

Figure. Unsupervised hierarchical clustering of 150 DNA-based signatures across 158 tumor tissue samples (n=63 primary 
tumors and 89 metastatic tumors). 
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2) The paper is very dense and contains vast amount of data including many 
supplementary files. The authors should state their specific hypotheses and consider 
organizing the results and methods accordingly. They may also consider splitting the 
paper into two separate ones. 

We acknowledge this is a dense study with lots of data and results. However, we would 
like to keep it as one single article, which will be the basis of future work by our group 
and others on this area. As suggested, we have now clarified better the specific 
hypotheses in the introduction section: “Here we hypothesized that DNA-based signatures 
tracking breast cancer biological processes can be detected in ctDNA and provide clinically 
useful information. In addition, we hypothesized that the 150 DNA-signatures in plasma and 
tissue can help identify tumor subtypes within hormone receptor-positive and HER2-
negative breast cancer (HR+/HER2-).” 

3) The descriptions of the cohorts studied in this paper are not clear. Consider 
assigning a number or letter to each cohort and use these consistently throughout 
the manuscript. 

We agree that more clarity is needed. As suggested by reviewer#1 as well, we have now 
added a new Figure 1 (see below) that identifies and describes each cohort. In addition, 
we have now labeled each plasma cohort as Plasma-1, Plasma-2, CDK-Validation-1 and 
CDK-Validation-2 cohorts. These cohort IDs are used throughout the manuscript. In 
addition, we have now moved the Supplemental Table with the clinical-pathological 
characteristics of CDK-Validation-2 cohort to the main Table 2, where the clinical-
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pathological features of CDK-Validation-1 cohort were shown. This will allow a better 
understanding of the different cohorts used throughout the study. 

New Figure 1. 

4) Consider adding a table describing each of the cohorts, including prior 
treatment, and response to treatment. The knowledge of prior treatment is important 
as the dynamics of the markers may change over time. 

Although it would be valuable information, the heterogeneity of the prior treatments 
received and the variability in the duration of these treatments makes it difficult to draw 
conclusions. Nonetheless, we have been able to retrieve “type of prior therapy” (i.e., none, 
endocrine therapy, chemotherapy, or both) before initiating endocrine therapy in 
combination with a CDK4/6 inhibitor for the first validation CDK cohort (CDK-Validation-
1). This information has now been added in Table 2, which now also includes the clinical-
pathological data of the CDK-Validation-2 cohort. 

5) It appears that sample collection was prospective, but additional patient, 
tumor, and treatment information was collected from the patients’ medical records. 
Please discuss possible bias. 

The two independent datasets which were used to link the genomic data with clinical 
outcome do not come from clinical trials and thus are subjected to potential inherent 
biases such as patient selection or subjectivity in determining drug response or 
progressive disease. We have now described these potential biases in the discussion 
section, study limitations paragraph: “Fifth, although both independent datasets collected 
plasma samples prospectively from patients treated with endocrine therapy and a CDK4/6 
inhibitor, the cohorts are not from clinical trials and are prone to potential biases such as 
patient selection, inconsistent evaluation of the disease during therapy and subjectivity in 
determining drug response and progressive events”. 
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6) Sample size considerations and power for each analysis are not included. Are 
the cohorts simply samples of convenience? Further explanations are required to 
understand the true level of evidence of each of the reports. 

The objective of this study was to provide, for the first time, proof that DNA-based 
signatures tracking breast cancer biological processes can be detected in ctDNA from 
metastatic breast cancer and could have clinical implications. In our view, this is an 
exploratory study that shows clinical validity at this point. Further studies are needed to 
determine Level 1 evidence and, more importantly, clinical utility. We did not perform a 
sample size calculation and we used all the samples available for correlative analyses. 
This has been added as a limitation in the discussion section: “Second, this was an 
exploratory study, and no formal sample size calculation was performed. Thus, the lack of a 
formal design through a pre-planned analysis prohibits inference of negative results”. 

7) Please provide p-values for the correlations between tissue-based signatures 
and ctDNA-based signatures (page 6, starting line 195)? Specifically: 

As suggested, we have now added p-values to Supplemental Table S6. 

a. The correlation coefficients, even for samples obtained within 8 weeks, are 
pretty low, but hard to interpret as no p-values given except in the 2 examples in 
Figure 1C. If there is no, or only limited, correlation between the tissue signature and 
the ctDNA signature, then what exactly is being measured in the ctDNA? These data 
should be presented first, and needs to be explained, because all the other 
correlations reported could be irrelevant if the signatures detected in ctDNA are not 
reflective of signatures obtained from tumor tissue. 

As suggested, we now show the p-values in Supplemental Table S6. Across the 54 
patients with paired tumor versus plasma samples, 78% of the DNA-based signatures 
(117/150) show a statistically significant result. When we evaluate the signals from the 514 
DNA segments, 450 (87%) are found statistically significantly correlated with a median 
correlation coefficient of 0.47. In addition, 93 of 514 (18%) segments have a correlation 
coefficient >0.60. Correlations from signals from DNA segments have now been added in 
Supplemental Material. 

We agree with the reviewer that the correlation coefficients are not perfect (i.e., 0.9-1,0). 
However, we must consider that the biology obtained from a tumor tissue biopsy is 
expected to differ from the biology obtained from a plasma sample. For example, the 
samples were not obtained on the same date. In addition, plasma samples are likely to 
recapitulate an “average” biological state from metastatic lesions, whereas tumor 
biopsies reflect the biological state of just one lesion. Nonetheless, the correlation 
coefficients are significant for the majority of signatures and DNA segments, and the 
correlation coefficients increase if the time gap between both samples is closer. 
Moreover, we show that the plasma-based RB-LOH signature better predicts PFS and OS 
than the same signature evaluated in tumor tissue (Fig. 3D).  

Moreover, we evaluated if the ctDNA-based RB-LOH is significantly associated with PFS 
and OS in 71 patients with a TF 3-10% before starting endocrine therapy in combination 
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with a CDK4/6 inhibitor. Like the overall population, we observed a statistically significant 
association with both clinical endpoints (PFS: HR=1.32, p=0.023; OS: HR=1.54, p=0.011). This 
results strongly suggests that our approach can work even in patients with a TF 3-10%. 
This new result can now be found in Supplemental Material. 

To further demonstrate that CNA-based data from plasma allows the identification of 
biological states in tissue, we calculated the intra-patient correlation coefficients of the 
CNA-based signals across 514 DNA segments using 54 paired samples (tumor tissue 
versus plasma). Overall, 57% of patients had a correlation coefficient >0.50, which 
increased to 83% when 29 patients with a plasma TF >10% were evaluated. In these 29 
patients with a plasma TF>10%, 59% and 24% had a correlation coefficient of >0.70 and 
>0.80, respectively (table below). Overall, these results strongly suggest that plasma 
ctDNA can reliably capture CNA-based signals from tumor tissue, although the amount 
of ctDNA might impact the ability to accomplish this. This limitation has now been 

acknowledged better in the discussion section, limitations paragraph: “First, 39% of 

patients had a TF <3%, and ctDNA-signatures could not be evaluated. In addition, 30% of 
patients had a TF of 3-10% and this might limit the detection of the ctDNA-based signatures. 
Further studies evaluating deeper ctDNA sequencing strategies and signature detection in 
patients with very low TF, including those with early-stage disease, is warranted. For 
example, expressed genes might be inferred by evaluating nucleosome footprints from 
whole-genome sequencing of plasma DNA(37).” 

Table S5. Proportion of patients with a certain correlation coefficient when 514 DNA signals were compared between 
paired plasma and tissue. 

TF >10% TF 3-10% ALL

n=29 n=25 n=54

Cor >0.80 24% 4% 15%

Cor >0.70 59% 12% 37%

Cor >0.60 62% 20% 43%

Cor >0.50 83% 28% 57%

Cor >0.40 90% 36% 65%

Cor >0.30 97% 44% 72%

Cor >0.20 97% 48% 74%

Cor >0.10 97% 64% 81%

Cor <0.10 3% 36% 19%

Figure 2C. Correlation between plasma and tissue of 514 DNA signals in a single patient.  
Correlation coefficient = 0.928. 

b. Later in the paper, the authors highlight the correlation between 48 features of 
tissue based RB-LOH signature and ctDNA, suggesting that correlation is between 
tissue and ctDNA is important (page 8). 
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We thank the reviewer for this comment, which is in line to our previous response. The 
fact that the main 48 features of the RB-LOH signature, which was derived from primary 
tumors from the TCGA dataset, are well captured in plasma ctDNA in advanced disease, 
and in the “right direction” (i.e., features with a negative weight have a negative signal in 
ctDNA and features that have a positive weight have a positive signal in ctDNA), argues in 
favor of plasma ctDNA as a reliable tool to measure the status of this signature. This 
hypothesis is further confirmed by the fact that samples at progression to endocrine 
therapy and CDK4/6 inhibition show an increase in the RB-LOH score in plasma 
compared to baseline samples before starting therapy, and this is due to the “right” 
biological changes in the signal of each DNA segment of the RB-LOH signature, such as 
the decrease in the 13q14 segment where RB1 gene is located. 

c. On page 13, starting on line 390, the authors describe the correlation of 6 
PAM50 RNA-based tissue signatures with each of the 150 ctDNA-based signatures, as 
well as correlation with gene expression in the n Counter Breast Cancer 360 Panel. 
This needs to be moved up in the paper and should be discussed along with 
relationship between ctDNA and tissue DNA signatures. 

As suggested, we have now moved this result up in the article in the new Figure 2 
(previously Figure 1), where we describe the correlation of ctDNA-based signature with 
DNA/RNA-based tissue data. 

d. What is the association between tissue based signatures and the other features 
presented (i.e. bone only disease, tumor burden, ER status, HER2 status, response to 
endocrine therapy, etc)? Are tissue based signatures or ctDNA based signatures 
better associated with these features? It is mentioned on line 304 that RB-LOH ctDNA 
signature was associated with PFS but not RB-LOH tumor signature, suggesting that 
ctDNA based signature may be better, but what about the other signatures? 

As suggested by the reviewer, we have now compared the ability of the tissue-based 
signatures versus the ctDNA-based signatures to better predict PFS and OS in 28 
patients with paired data in the CDK-VALIDATION-1 cohort. The result is now in 
Supplemental Material. Of the 150 DNA-based signatures, 17% and 13% were statistically 
significantly associated with PFS and OS, respectively, when evaluated in plasma. When 
the same signatures were evaluated in tissue, only 2% and 1% were statistically 
significantly associated with PFS and OS, respectively. Thus, ctDNA-based signatures are 
better in predicting survival outcomes in advanced breast cancer treated with endocrine 
therapy and CDK4/6 inhibition than the same signatures when evaluated in tissue. As 
argued in the manuscript, the potential explanation is that plasma-based signatures 
capture “the most up to date” biological state of the disease before starting therapy. 

d. The authors comment in the introduction “the type of metastatic organ or site 
can compromise the expression patterns obtained from bulk RNA and might not 
reflect the intra-patient tumor heterogeneity” (p4, line 125) – perhaps this is the cause 
of the lack of correlation with tissue? It would be helpful if authors included the 
location of tissue biopsy specimen for metastatic patients and assessed correlation 
by metastatic site. What is the impact of the different sequencing methods used 
(shallow WGS for ctDNA vs targeted panel sequencing for tissue)? How dependent on 
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sequencing method is the machine learning model? The overall lack of correlation 
between tissue and ctDNA signatures needs to be investigated further/better 
explained before anything else in the paper can be interpreted. 

Our comment in the introduction about RNA expression profiling of metastatic tissue is 
based on our prior work reported by Brasó-Maristany et al. Mol Oncol 2020 (PMID: 
34051058). There, we observed that metastatic organ site might affect the expression of 
some genes; in particular, 74 of 771 genes analyzed were organ-specific and subtype 
independent. Some of these genes, like keratin-5 (KRT5) expression in skin might impact 
the tumor subtype classification of Basal-like disease, for example. Nonetheless, RNA-
based expression in metastatic breast cancer is reliable and can provide prognostic 
information, as shown by us and other groups.  

Regarding evaluating the organ site of the metastatic biopsy performed for tissue-based 
DNA-seq analysis, unfortunately we do not have this information and it would take 4-6 
months to obtain. The type of metastatic organ biopsied could indeed impact the 
correlation of signatures with plasma ctDNA-based data. However, we feel it is beyond 
the scope of this study to evaluate this thoroughly, since this would require a very large 
sample size of tissue biopsies from many different organs, and the focus of our study is 
plasma ctDNA and not tissue DNA. Of note, the MSKCC tissue-based DNAseq metastatic 
dataset used in our study shows that the prognostic value of the RB-LOH tissue-based 
signature is strong, despite different types of tissue being used (primary or any 
metastatic site). Thus, this argues in favor of our tissue DNA-based signatures to reliable 
detect the correct tumor phenotype and be somewhat less affected by the type of 
metastatic organ. 

Regarding the type of sequencing methods and how they might affect the detection of 
the DNA signatures, the results from Xia et al. (Nat Communic 2019) and our study show 
that the 150 signatures can be detected successfully across a variety of sequencing 
approaches: TCGA (whole exome sequencing), METABRIC (Affymetrix SNP 6.0), MSKCC 

cohort (an in-house targeted sequence panel of 400 genes), shallow WGS plasma 
ctDNA and the VHIO tissue panel (a custom hybridization-based capture panel targeting 
435 genes with an in-built genome-wide SNP backbone targeting 20000 SNPs). The 
most plausible explanation is that we are measuring the signals from large chromosomal 
regions (55% of the segments have >1.5 million bases, and 71% of the segments have >0.8 
million bases and 89% of the segments have >0.2 million bases – see response to 

reviewer#3 regarding this topic). In addition, the 500 DNA segments were selected in 
Xia et al. because they represent highly recurrent events in breast cancer. Said that, more 
fine tuning of the methodology used for signature detection in tissue and plasma is 
needed before implementing these biomarkers in the clinic. This is currently work 
ongoing by our group to analytically validate and standardize the tissue and plasma DNA 
signatures. 

Finally, we would like to point out that there is a significant correlation between tissue 
and plasma signatures, as discussed above. In this direction, another aspect to highlight 
is that plasma ctDNA was used to derive the 4 cluster/subtype-based predictor. This 
predictor was applied to tissue-based DNA data such as METABRIC (Affymetrix SNP 6.0) 

and MSKCC cohort (an in-house targeted sequence panel of 400 genes), and these 
subtypes showed the expected prognostic association as in our 2 plasma validation 



15 

cohorts. Overall, this data, together with the results discussed previously, strongly 
suggest that ctDNA-based data can reliably identify DNA-based signatures with clinical 
value. 

8) The authors state that “The observed correlation between proliferation-related 
ctDNA-based biology with TF suggested that TF reflects the biological 
aggressiveness of the disease beyond the patient´s tumor burden” (page 6, line 177). 
This statement is not supported by the evidence provided. No evidence is given 
regarding the biological aggressiveness, such as rate of tumor growth, or rapidity of 
clinical progression. There is no support given for decision to use <3 versus >=3 
metastatic sites as a measure of tumor burden and I do not believe this is an accurate 
measure of tumor burden. Furthermore, method used to count metastatic sites was 
not provided (are 2 spots in the liver 2 sites or 1? How large does a spot need to be to 
be counted? – this needs to be included in the methods section). Imaging based 
estimates of volume of disease would be more meaningful if available. Otherwise, I 
would not refer to this as “tumor burden” in this paragraph, but rather as number of 
metastatic sites. The lack of correlation between proliferation-related signatures and 
“tumor burden” could in fact reflect conclusions other than those given by the author 
including 1) proliferation signatures are not good markers of tumor burden, or 2) 
tumor burden is not well measured by greater or less than 3 metastatic sites. The 
correlation presented between luminal A signatures and bone only disease is more 
compelling. If the authors are not able to better support their claims regarding tumor 
burden, then the findings related to tumor burden should be omitted or else very 
carefully stated with much more limited conclusions. 

We agree with the reviewer that “tumor burden” is very difficult to quantify or even 
define objectively. We chose the definition of “less than 3 metastatic sites” or “3 or more 
metastatic sites” since it has been used in clinical trials in metastatic breast cancer to 
define high vs low tumor burden (for example, in the MONALEESA-02 phase III trial (link: 
https://bit.ly/3TaAM1g). Nonetheless, we agree we cannot conclude “the lack of 
association of TF with tumor burden” with just 1 analysis. Therefore, we have decided to 
remove the entire paragraph from the manuscript, including Supplemental Table 4 and 5.

9) Why did the authors focus on the RB-LOH signature? This was not the 
signature with the lowest p-value or highest HR. Without an explanation regarding 
why this signature was picked to focus on, it seems like cherry-picking. There is some 
discussion of relevance of RB-LOH in the discussion section, some of this should be 
included in the results to justify why the authors focused on this. 

As suggested, we have now included a sentence in the results section to justify why we 
choose to further explore this signature: “A high score of a ctDNA-signature tracking RB-
LOH(19) was found one of the top biomarkers associated with poor outcome and treatment 
response (Fig. 2B-C). Since loss of RB is a known mechanism of resistance to CDK4/6 
inhibitors(22,29,31,32), we decided to focus on this signature, which is composed of 224 copy 
number features, including amplification of 2p (e.g., ETV6), 3q (e.g., PIK3CA), 8q (e.g., MYC), 
20q (e.g., AURKA) and 21q (e.g., TMPRSS2 and ERG), and deletion of 2q (e.g., PARD3B), 4q, 5q, 
12q, 13q (e.g., RB1), 15q and 17p.” 
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10) What is the association between ctDNA-based tumor subtypes (clusters 1-4, 
page 12) and clinical factors such as prior treatment, response to treatment, location 
of metastatic disease, etc? What, if any, is the clinical relevance of identifying these 
clusters? I found this discussed on page 14, beginning at line 417. This should be 
reorganized so the discussion of the clusters goes with the clinical meaning (PFS, OS) 
of the clusters. 

As suggested, we have now better justified in the results section why we aimed to 
identify subtypes in ctDNA: “Phenotype-based classification in metastatic breast cancer 
using tumor tissue RNA expression profiling such as intrinsic subtyping (i.e., Luminal A, 
Luminal B, HER2-enriched and Basal-like) is prognostic and might predict treatment 
benefit(5-7). To evaluate if the biology displayed by the 150 ctDNA-based signatures can 
identify subtypes with clinical relevance, we performed an unsupervised hierarchical cluster 
             ” Regarding 
the relationship between clusters 1-4 and treatment response, we observed an overall 
response rate (ORR) of 52.73%, 34%, 7.14% and 16.67% in Cluster 1, Cluster 2, Cluster 3 and 
Cluster 4, respectively (p<0.001). Regarding the relationship between cluster 1-4 and prior 
endocrine sensitivity, this was observed in 91.67%, 80.0%, 57.14%, and 55.56% in Cluster 1, 
Cluster 2, Cluster 3 and Cluster 4, respectively (p=0.004). We have now included the ORR 
and prior endocrine sensitivity results in Figure 4C, all of which support the differences in 
biology observed in these 4 subtypes. Finally, we do not have information regarding prior 
treatments, so we cannot provide this data. 

Figure 4C. Association of ctDNA-based clusters with response and prior endocrine sensitivity in patients treated with 
endocrine therapy and CDK4/6 inhibition. 

11) Given some of the comments listed above, it appears that the results are still 
hypothesis generating and the conclusions should be revised accordingly. 

In our opinion, our study proofs that CNA-based data can provide clinically relevant 
information in metastatic breast cancer, specifically in HR+/HER2- disease treated with 
endocrine therapy and CDK4/6 inhibition. Our future work is to standardize the assay and 
demonstrate its clinical utility. 

Minor Comments: 
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1) The authors characterize solid tumor biopsy in the metastatic setting as 
“challenging.” Depending on location, biopsy of metastases can actually be relatively 
straight forward. I agree that liquid biopsy has multiple advantages over solid tissue 
biopsy, including less invasiveness to the patient. I advise the authors to adjust their 
language around solid tumor biopsy to be more specific regarding the perceived 
disadvantages vs advantages of liquid biopsy. 

We agree with the reviewer. We have now stated that only “sometimes” solid tumor 
biopsies are challenging: “….tumor invasive biopsy procedure, which can be quite 
challenging sometimes in the metastatic setting.” 

2) In line 546, the author state “To date, DNA sequencing has identified few FDA-
approved actionable genetic alterations in cancer, especially breast cancers” 
and then go on to discuss that RNA expression phenotypes are associated with 
treatment benefit, implying that that expression signatures are more 
actionable. This is not supported by the literature. This sentence should be 
omitted or re-written 

We have re-phrased the sentence: “To date, DNA sequencing has identified few FDA-
approved actionable genetic alterations in cancer, especially breast cancers. Phenotypic 
characterization using multi-gene RNA-based expression might add new biological and 
clinically relevant information. However, implementation of tumor-based RNA-based gene 
expression profiling in the metastatic setting is a major challenge since tumor tissue is often 
not readily available.” 

3) Figure 4 legend suggests that unsupervised cluster analysis was performed on 
the METABRIC tumor sample set. My reading of the paper was that cluster 
analysis was performed on the ctDNA data set, fixed, and then applied to the 
METABRIC dataset. This should be clarified. 

Figure 5 (former Figure 4) represents an unsupervised cluster analysis on METABRIC 
tumor sample set. The identification of cluster 1-4 in each sample, which can be seen 
below the data matrix, is based on the ctDNA dataset, which was fixed, used to derive 
the predictor, and then applied to the METABRIC dataset. We have now better clarified 
this in Figure 5 legend: “Figure 5. DNA-based tumor profiles in tissue samples and 
association with clinical outcomes. (A) Unsupervised cluster analysis of 1,689 tumor samples 
(columns) from METABRIC dataset(26) and the 150 DNA-based signatures scores (rows). 
Orange and violet colors represent scores above and below the median value of the 
signature across the dataset. Below the array tree, the InctClust classification(26) and the 
PAM50 molecular subtypes are shown for each sample. The 4 clusters/subtypes identified 
using a ctDNA-based subtype predictor are shown below the data matrix”.  
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In addition, we performed shallowWGS in 14 healthy individuals, and the log2 values by 
ichorCNA estimates were determined to be on average 0. In detail, below: 

Table S14. Statistics of bin log2 values output from iChorCNA of 14 healthy control samples (1Mb 
bins) 

Regarding the association with sequencing coverage, we address this point in another 
response to this reviewer below. Overall, the performance of ichorCNA to estimate TF 
seems appropriate for our study. We have now included this plot in Supplemental data. 

2- Can authors comment on the TFs in this study? They seem too high (about 25-
30% higher than 20%). Is that comparable with other studies? A comparison 
with existing data would be valuable. 

As suggested, we have evaluated the recent studies by Reichert et al. Annal Oncol 2022 
(https://doi.org/10.1016/j.annonc.2022.09.163) and Husain et al. JCO Precision Oncol 
2022 (https://ascopubs.org/doi/full/10.1200/PO.22.00261). Both studies focused on TF 
in metastatic cancer across several cancer-types. In Reichert et al. (n=402 metastatic 
breast cancer samples), the median TF was 4% (IQR: 1-21%), meaning that 25% of patients 
had a TF above 21%. Overall, 164 patients of 402 (42%) had a TF above 10%. In Husain et al. 
(n=3,265), the median TF was 2%, and 28% had a TF above 10%. Overall, these results are 
in line with ours (n=603 plasmas), where the median TF across all plasma samples was 
6.3% (IQR: 0-13%) and 31.2% of patients had a TF above 10%. We have now cited both 
articles and added this information in the manuscript. 

3- It there any benefit in increasing sequencing depth? I am a bit skeptical that this 
method would work with 0.5X coverage (i.e., ultra low pass WGS), for ctDNA fractions 
less than 20%, especially since individual copy number (segment) states are fed to 
(pre-trained) models to calculate the signatures. Some analytical LOD analyses are 
needed, e.g., sensitivity of each signature vs coverage/TF. 

As suggested by the reviewer, we have performed analytical analyses to validate our 
approach. 

First, we would like to highlight that despite being considered ultra-low pass WGS by 
definition (0.1-0.5X coverage), our coverage is at the higher end (i.e., 0.5X). We performed 

Min. 1st Qu. Median Mean 3rd Qu. Max. bins sd Margin_Error CI95.lower.limit CI95.Upper.limit

Healthy control 1 -0.100 -0.019 0.001 0.001 0.022 0.136 2510 0.032 0.001 0.000 0.003

Healthy control 2 -0.135 -0.015 0.000 0.000 0.017 0.098 2510 0.025 0.001 0.000 0.001

Healthy control 3 -0.121 -0.020 0.000 0.001 0.023 0.144 2510 0.035 0.001 -0.001 0.002

Healthy control 4 -0.115 -0.015 0.001 0.001 0.020 0.095 2510 0.028 0.001 0.000 0.003

Healthy control 5 -0.100 -0.014 0.001 0.001 0.017 0.165 2510 0.026 0.001 0.000 0.002

Healthy control 6 -0.222 -0.017 0.000 0.001 0.017 0.407 2510 0.031 0.001 0.000 0.002

Healthy control 7 -0.105 -0.017 0.002 0.002 0.020 0.171 2510 0.030 0.001 0.001 0.003

Healthy control 8 -0.099 -0.016 0.001 0.002 0.020 0.288 2510 0.030 0.001 0.000 0.003

Healthy control 9 -0.178 -0.021 0.001 0.001 0.024 0.139 2510 0.036 0.001 0.000 0.002

Healthy control 10 -0.127 -0.018 0.002 0.001 0.020 0.143 2510 0.031 0.001 0.000 0.003

Healthy control 11 -0.149 -0.021 0.001 0.002 0.026 0.124 2510 0.036 0.001 0.000 0.003

Healthy control 12 -0.148 -0.015 0.001 0.001 0.018 0.099 2510 0.026 0.001 0.000 0.002

Healthy control 13 -0.146 -0.021 0.000 0.000 0.022 0.131 2510 0.034 0.001 -0.001 0.002

Healthy control 14 -0.098 -0.018 0.000 0.000 0.019 0.093 2510 0.029 0.001 -0.001 0.001

AVERAGE -0.131 -0.018 0.001 0.001 0.020 0.159 2510 0.030 0.001 0.000 0.002

log2 1Mb bin sizes
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an in-silico downsampling of sample coverage for 12 samples in order to assess 
performance at different coverages. Different TFs are represented within these 12 
samples. For each, a subset of aligned reads was selected to account for: 2X (40 M reads, 
151 nt long), 1X (20M reads, 151 nt long), 0.5X (10M reads, 151 nt long) and 0.1X.(2M reads, 
151 nt long) coverages. Reported TFs were consistent across coverages, as shown in the 
table below. 

Table S12. Tumor fraction reported by iChorCNA using shWGS at different coverage depths (2X, 1X, 0.5X, 
0.1X) 

Sample 

Tumor 

Fraction - 40M 

reads_2X 

coverage 

Tumor 

Fraction - 20M 

reads_1X 

coverage 

Tumor 

Fraction - 10M 

reads_0.5X 

coverage 

Tumor 

Fraction - 2M 

reads_ 0.1X 

coverage 

CASE 1 0.0000  0.0000  0.0000  0.0203  

CASE 2 0.0779  0.0803  0.0843  0.1049  

CASE 3 0.0909  0.1124  0.0978  0.0990  

CASE 4 0.2160  0.2180  0.2209  0.2582  

CASE 5 0.3587  0.3591  0.3534  0.3495  

CASE 6 0.4411  0.4405  0.4389  0.4428  

CASE 7 0.4667  0.4518  0.4506  0.4431  

CASE 8 0.5513  0.5497  0.5481  0.5389  

CASE 9 0.5661  0.5672  0.5650  0.5812  

CASE 10 0.6456  0.6448  0.6448  0.6474  

CASE 11 0.6489  0.6473  0.6464  0.6629  

CASE 12 0.6548  0.6430  0.6493  0.6291  

The bin-to-bin (1Mb) log2 values of these samples correlated as follows (correlation is 
shown between 2X and each of the remaining conditions) (see table below). There is a 
decrease in correlation of log2 values reported by iChorCNA for the 0.1X condition 
(although average correlation is 0.828) in samples of TF<10%, although 0.5X (the 
coverage used in the presented study) performs similarly to 1X. 

Table S13. Correlation of bin-to-bin log2 values reported by iChorCNA using shWGS at different coverage depths (2X, 

1X, 0.5X, 0.1X). 

Sample ID 
bin-to-bin 

log2 at 2X* 

bin-to-bin 

log2 at 1X* 

bin-to-bin 

log2 at 0,5X* 

bin-to-bin 

log2 at  0,1X* 

CASE 1 1 0.7591 0.6939 0.3978 

CASE 2 1 0.9946 0.9909 0.9651 

CASE 3 1 0.8895 0.8293 0.5832 

CASE 4 1 0.9712 0.9548 0.8389 

CASE 5 1 0.9764 0.9621 0.8652 

CASE 6 1 0.9969 0.995 0.9794 

CASE 7 1 0.9868 0.9784 0.9175 

CASE 8 1 0.997 0.9952 0.9794 

CASE 9 1 0.9942 0.9906 0.9615 

CASE 10 1 0.9972 0.9954 0.9807 

CASE 11 1 0.8382 0.7586 0.5064 

CASE 12 1 0.9945 0.9904 0.9621 

AVERAGE 1 0.9496 0.9279 0.8281 

*all comparisons are referred to 2X coverage 
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Next, we applied our CNA signatures on the 11 samples with TF>3%. Again, 0.5X 
coverages raise similar profiles across all signatures to 1X and 2x.  

Table S14. Correlation of 150 CNA signatures run on samples that have been in-silico diluted to different 
coverage depths 

Coverage 
CASE 

2 

CASE 

3 

CASE 

4 

CASE 

5 

CASE 

6 

CASE 

7 

CASE 

8 

CASE 

9 

CASE 

10 

CASE 

11 

CASE 

12 
AVERAGE 

40M 1 1 1 1 1 1 1 1 1 1 1 1 

20M 0.85 0.97 0.99 1 1 0.96 1 1 1 1 0.95 0.97 

10M 0.86 0.98 0.98 0.99 1 0.95 1 1 1 1 0.99 0.98 

2M 0.80 0.78 0.92 0.98 0.99 0.87 0.99 1 1 0.97 0.97 0.93 

We also show the RB-LOH signature correlation in detail (Supplementary Figure S24). Of 
note, the 0.5X coverage samples raise similar signature score values to 1X and 2X. For 
TFs below 20%, 0.1X coverage may raise different scores and is not recommended for 
this approach. 

Figure S24. RB-LOH signature score using different coverage in 11 samples with TF>3%.

Finally, regarding determining the sensitivity of each signature according to TF, we have:  

1) Performed ‘serial’ dilutions of TF by in-silico mixing reads from the 6 cases with 
TF>50% with reads from the pooled 14 healthy control samples to generate TFs of: 
50%, 20%, 10%, 5% and 1%. The resulting samples were analyzed with iChorCNA, 
and our CNA signatures were applied. We show the average correlation of the 150 
signature values as a whole in each datapoint. 
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Table S15. Correlation of 150 CNA signatures run on samples that have been in-silico diluted to TFs of  
50%, 20%, 10%, 5% and 1% (coverage 0.5X). 

TF 

(%) CASE 7 CASE 8 CASE 9 CASE 10 CASE 11 CASE 12 AVERAGE 

50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

20 0.93 0.99 0.99 0.97 0.98 0.88 0.96 

10 0.86 0.96 no TF 0.92 0.92 0.48 0.83 

5 0.79 0.85 0.25 0.79 no TF 0.39 0.61 

1 no TF no TF no TF 0.39 no TF no TF 0.39 

no TF: iChorCNA reported TF value =0 and no signature values could be obtained 

Results indicate that, at 1% TFs, ichorCNA may fail to detect tumor profiles in the shWGS 
data (5/6 fails at 1% in-silico TF). According to our data, 5-10% TF has an acceptable 
overall failure rate (<20%). With regards to applying our CNA signatures, we see a good 
correlation between samples >10% TF. 

With regards to the RB-LOH signature, we observe similar results are obtained whenever 
ichorCNA is able to detect tumor fraction. 

Figure S25. RB-LOH signature score in samples that have been in-silico diluted to TFs of 50%, 20%, 
10%, 5% and 1% (coverage 0.5X). 

2) 54 paired samples (tissue vs plasma). Assuming that the DNA-based signatures 
from tissue are the gold-standard, we calculated the proportion of cases/patients 
where the correlation coefficient of each signature score between paired tissue 
versus plasma is above a certain threshold (Table S5). Overall, we observed that 
the vast majority of patients have a correlation coefficient >0.50. Of note, the 
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proportion of cases varied according to the TF, being lower in patients with TF 3-
10% than TF >10%. We have now added a comment in the discussion section, 
limitation paragraph to reflect this limitation. 

Table S5. Proportion of patients with a correlation coefficient above a certain threshold when 150 CNA-based signature 
scores are compared from paired tumor tissue and plasma samples. 

TF >10% TF 3-10% ALL

n=29 n=25 n=54
Cor >0.80 62% 20% 43%

Cor >0.70 72% 36% 56%

Cor >0.60 86% 40% 65%

Cor >0.50 93% 40% 69%

Cor >0.40 97% 56% 78%

Cor >0.30 97% 64% 81%

Cor >0.20 97% 72% 85%

Cor >0.10 97% 76% 87%

Cor <0.10 3% 24% 13%

*, TF: tumor fraction. 

3- Figure 1B does not convey any additional information. The TFs are estimated 
by the copy number events and therefore correlation is clearly expected. Is 
there any correlation between number of CNV events and an orthogonal 
estimate of tumor fraction? Like SNVs? 

We agree with the reviewer, and we have removed Fig. 1B. The current version of Figure 
1 (now Figure 2) betters reflects the comparisons between tissue and plasma. Regarding 
correlation between number of CNV events and an orthogonal estimate of tumor 
fraction, we have shown in a previous comment that the correlation between ichorCNA 
TF estimates (which is based on number of CNV events) has a correlation >0.85 with 
Guardant’s SNV VAF estimates (see comment above). 

4- Figure 2E. This analysis is confusing. Does adjustment for TF mean a 
multivariable analysis with both ‘RB-LOH signature’ and ‘TF’ in the survival 
analysis? Also, given that there are 224 copy number segments contributing to 
that signature, a significance analysis is needed to show that if they randomly 
select 224 copy number segments, the survival stratification would no longer 
exist, or at least not as strong. 

We apologize if this analysis is confusing. We suppose the reviewer refers to Figure 2D 
and not 2E, since 2D is the one showing the adjustment and the survival associations. 
Yes, “adjustment” means that RB-LOH signature was evaluated in a Cox model where TF 
was also included. We have now better clarified this.  

Regarding evaluating what happens if less than 224 DNA segments are evaluated, from a 
prognostic perspective, we have performed the following analysis. We have randomly 
removed 20 DNA segments of the RB-LOH signature (measured in plasma) and 
evaluated its association with PFS. We have repeated this analysis 500 times and 
estimated the average hazard ratio and p-value. We also did the same analysis by 
removing 40, 80 and 160 randomly selected segments of the ctDNA-based RB-LOH 
signature. The results below clearly show that removing features of the RB-LOH 
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signature affects its prognostic ability (i.e., hazard ratio decreases and p-value increases). 
We have now included this result in Supplemental Material. 

Supplementary Figure S26. PFS hazard ratio and p-value according to the random elimination, for 500 times, of 20, 40, 80 
and 160 segments of the 224 segments of the RB-LOH signature. 

5- The subtype predictor to generalize the four clusters from plasma ctDNA to 
tumor DNA is not properly evaluated. Authors should perform cross-validation to 
evaluate the performance of their proposed approach and then apply that as a 
classifier. 

We thank the reviewer for the comment. We used consensus clustering, which is a 
robust approach that relies on multiple iterations of the chosen clustering method on 
sub-samples of the dataset. We trained the model in 178 plasma samples with TF>3% of 
Plasma-1 cohort using consensus clustering and validated the model in 193 plasma 
samples with TF>3% of Plasma-2 cohort. We also evaluate the predictor in tissue-based 
NGS data such as METABRIC and MSKCC cohorts, showing that the clusters 1-4 are 
identified and have a similar clinical behavior as in the training/plasma dataset. In the 
current submission, we have included the R Script to run this predictor. In the results, we 
state: “Four main clusters/groups of samples were identified using consensus clustering 
plus (Supplementary Fig. S16) and then validated in an independent cohort of 357 plasma 
samples, including 193 with a TF>3% (Supplementary Fig. S17);” 

6- An analysis comparing CNV events in tumor vs plasma cfDNA is needed; 
perhaps similar to the one in Herberts et al (Nat 2022- Fig 3d). 

We agree with the reviewer, and to further demonstrate that CNA-based data from 
plasma allows the identification of true biological states, we have calculated the intra-
patient correlation coefficients of the CNA-based signals obtained from 514 DNA 
segments across 54 paired samples (tumor tissue versus plasma). Overall, 57% of patients 
had a correlation coefficient >0.50, which increased to 83% when 29 patients with a 
plasma TF >10% were evaluated. In these 29 patients with a plasma TF>10%, 59% and 24% 
had a correlation coefficient of >0.70 and >0.80, respectively (table below).  
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In addition, we have calculated the intra-patient correlation coefficients of the 150 DNA 
signature scores across 54 paired samples (tumor tissue versus plasma). Overall, 69% of 
patients had a correlation coefficient >0.50, which increased to 93% when 29 patients with 
a plasma TF >10% were evaluated. In these 29 patients with a plasma TF>10%, 72% and 
24% had a correlation coefficient of >0.70 and >0.80, respectively (table below). 

Overall, these results strongly suggest that plasma ctDNA can reliably capture CNA-
based signals from tumor tissue, although the amount of ctDNA might impact the ability 
to accomplish this. 

This limitation has now been acknowledged better in the discussion section, limitations 

paragraph: “First, 39% of patients had a TF <3%, and ctDNA-signatures could not be 

evaluated. In addition, 30% of patients had a TF of 3-10% and this might limit the detection 
of the ctDNA-based signatures. Further studies evaluating deeper ctDNA sequencing 
strategies and signature detection in patients with very low TF, including those with early-
stage disease, is warranted. For example, expressed genes might be inferred by evaluating 
nucleosome footprints from whole-genome sequencing of plasma DNA (37).” 

Table S5. Proportion of patients with a certain correlation coefficient when 514 DNA signals were compared between 
paired plasma and tissue. 

TF >10% TF 3-10% ALL

n=29 n=25 n=54

Cor >0.80 24% 4% 15%

Cor >0.70 59% 12% 37%

Cor >0.60 62% 20% 43%

Cor >0.50 83% 28% 57%

Cor >0.40 90% 36% 65%

Cor >0.30 97% 44% 72%

Cor >0.20 97% 48% 74%

Cor >0.10 97% 64% 81%

Cor <0.10 3% 36% 19%

*, TF: tumor fraction. 

Figure 2C. Correlation between plasma and tissue of 514 DNA signals in a single patient.  
Correlation coefficient = 0.928. 

Table S5. Proportion of patients with a correlation coefficient above a certain threshold when 150 CNA-based signature 
scores are compared using paired tumor tissue and plasma samples. 

TF >10% TF 3-10% ALL

n=29 n=25 n=54
Cor >0.80 62% 20% 43%

Cor >0.70 72% 36% 56%

Cor >0.60 86% 40% 65%

Cor >0.50 93% 40% 69%

Cor >0.40 97% 56% 78%

Cor >0.30 97% 64% 81%

Cor >0.20 97% 72% 85%

Cor >0.10 97% 76% 87%
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Cor <0.10 3% 24% 13%

*, TF: tumor fraction. 

8- Is the prognostic value of clusters in figure 3 more than TFs? How about total 
genome instability? Figure S15 shows that patients in cluster 1 have the smallest TFs, 
and clusters 3 & 4 have the largest. So, given the data in figure 4, this may indicate 
that this is about genomic instability and not necessarily the clusters found using the 
estimated signatures. It would be great to test this. 

Yes, the prognostic value of clusters 1-4 is independent of TF in a bivariate cox model for 
both PFS and OS. In addition, the prognostic value of clusters 1-4 is independent of 
genome instability (i.e., number of CNV events). We have added both results in the 
legend of the current Figure 4. 

9- Why are overall survivals so different between figure 3 & 4? In fact, patients in 
clusters 3 & 4 have very poor outcome in the first two years compared with those in 
the same clusters in figure 4 (HR+/HER2- tumors). 

We apologize if this was not clear. Figure 3 (now Figure 4) refers to a metastatic patient 
population while Figure 4 (now Figure 5) refers to the METABRIC dataset, which is an 
early-stage patient population. Thus, the overall survival outcomes and follow-up are 
radically different, and this explains the differences. 

10- How do expression inference methods, such as those proposed by Ulz et al (2016, 
2019) or Esfahani et al (2022) work here? I would imagine one may group genes to 
estimate the signature activity from shWGS. I see that there is one sentence in the 
discussion about it, however I believe a comparison is needed to justify using CNVs 
and not the epigenetic footprints. 

As pointed out, we make a comment in the discussion about other methods that may 
infer tissue gene expression; however, we believe it is beyond the scope of this study to 
evaluate other methods beyond CNV. Nonetheless, this is work in progress at this point, 
and the fact that others are trying to infer phenotypic features using blood-based 
methods reinforces the importance of our study and findings. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

I have no further comments to the authors. 

The comments of all three reviewers are in my mind well addressed. 

The new figures well supplement the text. 

My wish is that the methodology is described in the best possible way, so that the method is 

implemented in as many as possible laboratories as son as possible. 

Reviewer #2 (Remarks to the Author): 

I commend the authors for the significant revision and thorough response to my previous 

comments. I have no additional comments. 


