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Comparing the clustering performance of GraphST and existing methods on the mouse brain 

10x Visium data.  

In this comparison, we tested GraphST and existing methods on a 10x Visium dataset of mouse brain 

anterior tissue, with 2,695 spots and 32,285 genes. This dataset has more complex tissue structures 

than the DLPFC dataset, posing a greater challenge. We manually annotated the spatial domains of 

this dataset using the Allen mouse brain reference atlas and set the number of clusters to 52 

(Supplementary Figure S2). Similar to the DLPFC example, most of Seurat’s clusters were fragmented, 

as were Giotto’s and conST’s. In the cortex region, all methods captured the layered structure with 

varying degrees of accuracy. Giotto, BayesSpace, SpaceFlow, and STAGATE produced more layers 

than expected based on the physiological annotation, while SpaGCN produced an abnormally thick 

cluster 1. In GraphST’s output, the thickness of the different layers was closer to the annotation. The 

olfactory bulb also anatomically possessed a layered outer structure. Among the tested methods, 

SpaGCN was unable to capture this. In contrast, Giotto, BayesSpace, SpaceFlow, STAGATE, and 

GraphST captured more layers, with STAGATE and GraphST’s results being the most similar. The 

computed clusters significantly overlapped across the methods, especially between BayesSpace, 

STAGATE, and GraphST. The caudoputamen (CPu) was another prominent structure that was divided 

into sub-regions. BayesSpace and STAGATE depicted it as two halves while GraphST captured a more 

layered structure. Overall, the results suggested that GraphST was more sensitive to the transcriptomic 

differences within the substructures. 

Comparing the deconvolution performance of GraphST and cell2location on the mouse brain 

10x Visium data.  

We tested GraphST and cell2location for cell type deconvolution with the mouse brain 10x Visium data. 

A mouse scRNA-seq dataset encompassing the brain cortex and hippocampus was used as reference 

for deconvolution. The scRNA-seq data contains the single-cell transcriptomes of 1.1 million cells with 

22,764 genes captured. The scRNA-seq data was annotated by the Allen Brain Map team to give 42 

cell types. To reduce the computational burden, we downsampled the scRNA-seq data to 10%. We 

tested two approaches, random downsampling while retaining the same number of cell types, and 

proportional downsampling according to cell types, and found no performance difference. We first 

extracted the overlapping 1,099 genes in the scRNA-seq and ST data for training GraphST to map the 

single cell transcriptomes onto the spatial map. We then examined the mapped cell types found in the 

cerebral cortex by visualizing the scRNA-seq data cell types mapped onto specific spatial spots 

(Supplementary Figure S9). Both GraphST and cell2location correctly mapped the relevant cell types 

in the scRNA-seq data onto the ST positions of each cerebral cortex layer with GraphST’s mapping 

showing sharper edges across all layers. In contrast, cell2location’s mappings were more diffused, 

especially for the L4 RSP-ACA and L5 IT CTX cell types. GraphST and cell2location also mapped 

oligodendrocytes to the thalamus and mid brain with GraphST’s mapping showing higher densities and 

sharper boundaries. The full results with all 42 cell types are given in the Supplementary Figures S10 

and S11 for GraphST and cell2location, respectively.  

GraphST’s technical novelties and advantages over existing graph contrastive learning 

Existing methods conST and SpaceFlow also adopted graph contrastive learning similar to DGI for 

spatial transcriptomics analysis, but they were mainly developed for spatial clustering only. In addition 

to spatial clustering, GraphST can be also applied to two other important ST data analysis tasks, multi-

sample integration and cell type deconvolution of ST. GraphST comprises three modules with different 

network architectures tailored for each of the three tasks respectively. 

Even for the spatial clustering task, there are major technical differences and performance advantages 

when comparing GraphST to conST and SpaceFlow. Briefly, GraphST is different from DGI, conST, 

and SpaceFlow in three aspects: A) definition of positive/negative pairs, B) objective function and 

contrastive loss, and C) training procedure. These differences enable GraphST to outperform the other 

methods in the spatial clustering task. Furthermore, we have conducted several ablation studies to 

confirm that each of these differences improves effective integration of gene expression and spatial 

context to obtain informative and discriminative spot representations. 



A) GraphST’s contrastive learning is different from DGI, conST, and SpaceFlow in terms of their 

definition of positive/negative pairs. DGI, conST, and SpaceFlow construct positive/negative pairs 

by pairing each spot embedding ℎ𝑖/ℎ𝑖
′ from the original/corrupted graph with a global summary 

vector 𝑠𝑔𝑙𝑜𝑏𝑎𝑙 (i.e., the mean of all spots’ embeddings). Therefore, the spot embedding learned by 

DGI, conST, and SpaceFlow captures more of the global structure information but less spot-specific 

local neighbourhood information. Such contrastive learning may result in feature overfitting and 

reduced spot-to-spot variability. To deal with this issue, GraphST improves over DGI’s contrastive 

learning by re-defining the positive/negative pairs. Specifically, motivated by the assumption that 

different spots in a tissue sample have different local spatial contexts, we define positive/negative 

pairs by pairing each spot embedding ℎ𝑖/ℎ𝑖
′ with its local summary vector 𝑠𝑙𝑜𝑐𝑎𝑙 (i.e., the mean of its 

one-hop neighbouring spots’ embeddings) instead of the global summary vector. With the local 

summary vector, the model can better preserve local context information and spot-to-spot variability. 

We demonstrate the effectiveness of local context with an ablation study describe below and the 

results are shown in the Supplementary Figure S14A. 

 

B) GraphST is also different from SpaceFlow, conST, and DGI in terms of the objective function and 

constructive loss formulations. The objective function of GraphST includes contrastive loss and 

reconstruction loss, while DGI’s objective function includes only contrastive loss. The objective 

function of SpaceFlow includes contrastive loss and a spatial consistency penalty term. Addition of 

the penalty term helps SpaceFlow bring spatially adjacent spots closer in the latent embedding. 

However, the lack of reconstruction loss in DGI and SpaceFlow may lead to insufficient preservation 

of the original gene expression information. In contrast, GraphST adds reconstruction loss to its 

objection function to ensure that the latent embedding preserves the original gene expression 

information effectively. Furthermore, the contrastive loss functions are also different between 

GraphST, DGI, and SpaceFlow. GraphST adopts symmetric contrastive loss for model training 

while conST and SpaceFlow use single contrastive loss like DGI. Symmetric contrastive loss can 

help stabilize the model and learn a better representation as illustrated in the Supplementary Figure 

S14B and S14E. 

 

C) Lastly, although conST’s objective function also contains contrastive loss and reconstruction loss 

like GraphST, GraphST’s training procedure is different from that of conST. conST splits the training 

into pre-training and major training stages, where the model is trained with reconstruction loss in 

the pre-training stage and contrastive loss in the major training stage. This two-stage training 

procedure lacks mutual constraints on the contrastive and reconstructive loss, thus may fail to 

identify the optimal combination of the two loss functions. In contrast, GraphST trains the model in 

a single step by jointly optimizing the reconstruction and contrastive losses. During this training, 

GraphST can adaptively adjust the contributions of the different loss functions to achieve better 

representation learning. 

Ablation study 

For the spatial clustering module of GraphST, we define positive/negative pairs using local context 

instead of global context and employ symmetric contrastive loss instead of single contrastive loss. For 

spatial clustering, we use the reconstructed gene expression instead of the latent representation. Here 

we conducted ablation studies to evaluate their contributions to GraphST’s performance. 

Firstly, to evaluate the effectiveness of local context over global context, we conducted an ablation 

study by comparing GraphST with a variant that uses a global summary vector instead of local summary 

vectors. We ran GraphST and the variant on the 12 DLPFC slices and evaluated their performance 

using their median ARI scores. Supplementary Figure S14A shows that GraphST outperformed the 

variant with a significantly higher median ARI score of 0.60 than the variant (0.51). This study 

demonstrated that local context does help GraphST perform better than with the global context. 

Secondly, to demonstrate the advantage of symmetric contrastive loss over single contrastive loss, we 

conducted an ablation study to compare GraphST with a variant that does not use contrastive corrupted 

loss. We tested GraphST and this variant on the 12 DLPFC samples and evaluated their performance 

with the ARI metric. Supplementary Figure S14B shows that GraphST achieved much better 



performance than the variant, illustrating that the contrastive corrupted loss contributes to better 

embedding learning. Furthermore, when employing contrastive learning with only a single contrastive 

loss, we found that the loss curve was unstable during model training (Supplementary Figure S14E). 

Motivated by the fact that the original and corrupted graphs are structurally identical, we added the 

symmetric (corrupted) contrastive loss function to make the model training more stable and robust. As 

we can see in the Supplementary Figure S14E, the model-training curve was stabilized with the use of 

symmetric contrastive loss.  

Thirdly, to demonstrate the contribution of self-supervised contrastive learning, we conducted an 

ablation study by comparing GraphST with a variant of GraphST without contrastive loss on the DLPFC 

dataset. Without contrastive loss, the performance of GraphST was significantly reduced by 15% 

(Supplementary Figure S14C), indicating that contrastive loss contributes to the performance 

improvement of our GraphST model. 

Finally, we compared the clustering performance of using the latent representation and the 

reconstructed expression on the 12 DLPFC samples. The results (Supplementary Figure S14D) show 

that GraphST achieved a much higher median ARI score when using the reconstructed expression for 

clustering than the latent representation, suggesting that the former contains more useful information 

than the latter. 

Comparing Leiden, Louvain, and mclust clustering on GraphST outputs 

In GraphST, we chose mclust as the default clustering method because our assessment showed that 

mclust performs better than Leiden and Louvain in most cases. Here, we compared the clustering 

results on the 12 DLPFC samples using Leiden, Louvain, and mclust (Supplementary Figure S15A). 

mclust consistently outperformed Leiden and Louvain on all 12 samples in terms of the ARI metric, with 

a much higher median ARI score (Supplementary Figure S15B). Visually, the clusters identified by 

mclust are more continuous. Nevertheless, we also include Leiden and Louvain in GraphST as 

alternative clustering methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures  

Figure S1. Manual annotations and comparison of spatial domains identified by Seurat, Giotto, 

SpaGCN, SpaceFlow, conST, BayesSpace, STAGATE, and GraphST on the 12 slices of DLPFC 

dataset. 

Figure S2. Comparison of spatial domains identified by Seurat, Giotto, SpaGCN, SpaceFlow, conST, 

BayesSpace, STAGATE, and GraphST on the mouse brain anterior dataset. A. H&E image and manual 

annotation. B. Visualization of spatial domains identified by different methods. 

Figure S3. Spatial clustering on the E9.5 mouse embryo Stereo-seq dataset. A. Tissue domain 

annotations obtained from the original Stereo-seq study. B. Spatial domains identified by GraphST. C. 

Visualization of spatial domains identified by GraphST. D. Visualization of marker genes supporting the 

identified domains. 

Figure S4. Spatial clustering on the E14.5 mouse embryo Stereo-seq dataset. A. Tissue domain 

annotations obtained from the original Stereo-seq study. B. Spatial domains identified by GraphST 

when specified for 16 clusters. C. Visualization of spatial domains identified by the original Stereo-seq 

study and GraphST with 16 clusters. D. Spatial domains identified by GraphST when specified for 20 

clusters. E. Gene set enrichment analysis on the cluster osteoblasts. 

Figure S5. GraphST predicted spatial distributions of all 34 cell types in the human lymph node dataset. 

Figure S6. cell2location predicted spatial distributions of all 34 cell types in the human lymph node 

dataset. 

Figure S7. GraphST predicted spatial distributions of all 33 cell types in the 151673 slice of the DLPFC 

dataset. 

Figure S8. cell2location predicted spatial distributions of all 33 cell types in the 151673 slice of the 

DLPFC dataset. 

Figure S9. Comparison between cell2location and GraphST of spatial distributions of selected cell 

types in the mouse brain anterior dataset. 

Figure S10. GraphST predicted spatial distributions of all 42 cell types in the mouse brain anterior 

dataset. 

Figure S11. cell2location predicted spatial distributions of all 42 cell types in the mouse brain anterior 

dataset. 

Figure S12. Comparison of spatial domains identified by Seurat, Giotto, SpaGCN, SpaceFlow, conST, 

BayesSpace, STAGATE, and GraphST on the human breast cancer data, and visualization of predicted 

spatial distribution of sample types. A. H&E image and manual annotation. B. Visualization of spatial 

domains identified by different methods. C. Violin plot of predicted probability of adjacent normal and 

solid tumor domains. 

Figure S13. Spatial expression distribution of reported breast cancer markers. 

Figure S14. Ablation study and comparison of training loss curves. A. Comparison analysis between 

GraphST and its variant using global context instead of local context. B. Comparison analysis between 

GraphST and its variant, i.e., GraphST without contrastive corrupted loss. C. Comparison analysis 

between GraphST and its variant, i.e., GraphST without contrastive loss. D. Comparison analysis 

between GraphST and its variant using latent representation for clustering instead of reconstructed 

expression. E. Training loss curves with and without contrastive corrupted loss on four DLPFC samples. 

Figure S15. Comparison analysis between Leiden, Louvain, and mclust with the output of GraphST as 

input with the DLPFC dataset. A. Visualization of clustering results from Leiden, Louvain, and mclust 

on 12 DLPFC slices. B. Boxplots of clustering accuracy of Leiden, Louvain, and mclust on 12 DLPFC 

slices. 

 

 

 

 

 

 

 



Supplementary Tables  

Table S1. Description of all ST datasets used in this study. 

Table S2. Description of all single-cell reference datasets used for ST cell composition deconvolution 

in this study. 
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Figure S1. Manual annotations and comparison of spatial domains identified by Seurat, Giotto, 
SpaGCN, SpaceFlow, conST, BayesSpace, STAGATE, and GraphST on the 12 slices of DLPFC 
dataset.
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Figure S2. Comparison of spatial domains identified by Seurat, Giotto, SpaGCN, SpaceFlow, conST, 
BayesSpace, STAGATE, and GraphST on the mouse brain anterior dataset. A. H&E image and 
manual annotation. B. Visualization of spatial domains identified by different methods.
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Figure S3. Spatial clustering on the E9.5 mouse embryo Stereo-seq dataset. A. Tissue domain annota-
tions obtained from the original Stereo-seq study. B. Spatial domains identified by GraphST. C. Visu-
alization of spatial domains identified by GraphST. D. Visualization of marker genes supporting the 
identified domains. 
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Figure S4. Spatial clustering on the E14.5 mouse embryo Stereo-seq dataset. A. Tissue domain anno-
tations obtained from the original Stereo-seq study. B. Spatial domains identified by GraphST when 
specified for 16 clusters. C. Visualization of spatial domains identified by the original Stereo-seq 
study and GraphST with 16 clusters. D. Spatial domains identified by GraphST when specified for 20 
clusters. E. Gene set enrichment analysis on the cluster osteoblasts. 
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Figure S5. GraphST predicted spatial distributions of all 34 cell types in the human lymph 
node dataset. 



Figure S6. cell2location predicted spatial distributions of all 34 cell types in the human lymph 
node dataset. 
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Figure S7. GraphST predicted spatial distributions of all 33 cell types in the 151673 slice of 
the DLPFC dataset. 
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Figure S8. cell2location predicted spatial distributions of all 33 cell types in the 151673 slice 
of the DLPFC dataset. 
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Figure S9. Comparison between cell2location and GraphST of spatial distributions of selected 
cell types in the mouse brain anterior dataset. 



High

Low

Figure S10. GraphST predicted spatial distributions of all 42 cell types in the mouse brain 
anterior dataset. 
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Figure S11. cell2location predicted spatial distributions of all 42 cell types in the mouse brain 
anterior dataset. 
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Figure S12. Comparison of spatial domains identified by Seurat, Giotto, SpaGCN, SpaceFlow, 
conST, BayesSpace, STAGATE, and GraphST on the human breast cancer data, and visualization 
of predicted spatial distribution of sample types. A. H&E image and manual annotation. B. Visual-
ization of spatial domains identified by different methods. C. Violin plot of predicted probability of 
adjacent normal and solid tumor domains. In the boxplot, the center white point denotes the 
median, box limits denote the upper and lower quartiles, and whiskers denote the 1.5× interquartile 
range. n=3,798 spots. 
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Figure S13. Spatial expression distribution of reported breast cancer markers. 
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Figure S14. Ablation study and comparison of training loss curves. A. Comparison analysis between 
GraphST and its variant using global context instead of local context. In the boxplot, the center line 
denotes the median, box limits denote the upper and lower quartiles, and whiskers denote the 1.5× 
interquartile range. n=12 independent samples. B. Comparison analysis between GraphST and its 
variant, i.e., GraphST without contrastive corrupted loss. In the boxplot, the center line denotes the 
median, box limits denote the upper and lower quartiles, and whiskers denote the 1.5× interquartile 
range. n=12 independent samples. C. Comparison analysis between GraphST and its variant, i.e., 
GraphST without contrastive loss. In the boxplot, the center line denotes the median, box limits 
denote the upper and lower quartiles, and whiskers denote the 1.5× interquartile range. n=12 inde-
pendent samples. D. Comparison analysis between GraphST and its variant using latent representa-
tion for clustering instead of reconstructed expression. In the boxplot, the center line denotes the 
median, box limits denote the upper and lower quartiles, and whiskers denote the 1.5× interquartile 
range. n=12 independent samples. E. Training loss curves with and without contrastive corrupted 
loss on four DLPFC samples.
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Figure S15. Comparison analysis between Leiden, Louvain, and mclust with the output of 
GraphST as input with the DLPFC dataset. A. Visualization of clustering results from Leiden, 
Louvain, and mclust on 12 DLPFC slices. B. Boxplots of clustering accuracy of Leiden, Lou-
vain, and mclust on DLPFC slices. In the boxplot, the center line denotes the median, box limits 
denote the upper and lower quartiles, and whiskers denote the 1.5× interquartile range. n=12 
independent samples. 
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Table S1. Description of all ST datasets used in this study. 

Platform Tissue Section #Spots/Bins Related figures Reference 

10x 
Visium 

Human 
dorsolateral 

prefrontal cortex 
(DLPFC) 

151507 4,226 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

[1] 

151508 4,384 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151509 4,789 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151510 4,634 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151669 3,661 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151670 3,498 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151671 4,110 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151672 4,015 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151673 3,639 
Fig. 2A, C, Fig. 
5F, Fig. S1, S7, 
S8, S14, S15 

151674 3,673 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151675 3,592 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

151676 3,460 
Fig. 2A, Fig. S1, 
Fig. S14, Fig. S15 

Mouse brain 

Mouse Brain Section 
1 (Sagittal-Anterior) 

2,695 
Fig. 4G, Fig. S2, 
Fig. S9, S10, S11 

10x Visium 
demo 

Mouse Brain Section 
1 (Sagittal-Posterior) 

3,355 Fig. 4G 

Mouse Brain Section 
2 (Sagittal-Anterior) 

2,825 Fig. 4G 

Mouse Brain Section 
2 (Sagittal-Posterior) 

3,289 Fig. 4G 

Human breast 
Human Breast Cancer 

Section 1 
3,798 

Fig. 6, Fig. S12, 
S13 

Human lymph 
node 

- 4,035 
Fig. 5B-E, Fig. 
S5, Fig. S6 

Mouse breast 

S1_A1 Untreated breast 
tumor slice #1 from mouse 

NC3 
1,868 Fig. 4A-C 

In-house 
data 

S3_A1 Untreated breast 
tumor slice #2 from mouse 

NC3 
1,950 Fig. 4A-C 

S3_B1 Untreated breast 
tumor slice #1 from mouse 

NC4 
2,825 Fig. 4D-F 

S5_A1 Untreated breast 
tumor slice #2 from mouse 

NC4 
3,042 Fig. 4D-F 

Stereo-
seq 

Mouse olfactory 
bulb 

Puck_200127_15 19,109 Fig. 2D-F [2] 

Mouse embryo 

E9.5 5,913 Fig. 3A-C, Fig. S3 

[2] 

E14.5 92,928 Fig. 3D-G, Fig. S4 

Slide-
seqV2 

Mouse 
hippocampus 

Puck_200115_08 52,869 Fig. 2G-I [3] 



Table S2. Description of all single-cell reference datasets used for ST cell composition deconvolution 

in this study. 

Reference data GEO accession #Cells Related figures Reference 

Combined lymph tissue 
reference 

- 73,260 Fig. 5A-E, Fig. S5, S6 [4] 

Mouse whole cortex and 
hippocampus scRNA-seq 

- 1,100,000 Fig.S9, S10, S11 [5] 

Human post-mortem 
dorsolateral prefrontal 

cortex snRNA-seq 
GSE144136 78,886 Fig. 5F, Fig. S7, S8 [6] 

Human breast scRNA-seq - 476,571 Fig. 6, Fig. S12 [7] 
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