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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

In this manuscript, Long et al. present a deep graph network-based method DeepST for 1) 

inference of spatial domains, 2) data integration between ST samples or between ST and scRNA-

seq data, 3) deconvolution. The method utilized graph neural network together with self-

contrastive learning techniques. The authors showed better performance than several 

benchmarked methods, and demonstrated its abilities on identifying meaningful spatial domains 

and integrating different samples or data modalities. 

Overall, the topic is important and timely. While this method has strong potential in application, 

the manuscript lacks clarity on the details of the method, and it is unclear what unique advantages 

the method has compared with other existing methods in terms of its performance. Here are 

several specific major points in addition to multiple minor point for improving the work. Below are 

detailed comments: 

Major concerns: 

1. Lines 123-124, “To our knowledge, few existing methods use self-supervised contrastive 

learning on spatial transcriptomics”. While the work may be new in using self-supervised 

contrastive learning on spatial transcriptomics, there are some papers that use such kind of 

methods to address similar questions. For example, 

1) Ren, H., Walker, B.L., Cang, Z. et al. Identifying multicellular spatiotemporal organization of 

cells with SpaceFlow. Nat Commun 13, 4076 (2022). https://doi.org/10.1038/s41467-022-31739-

w 

2) conST: an interpretable multi-modal contrastive learning framework for spatial 

transcriptomics.Yongshuo Zong, Tingyang Yu, Xuesong Wang, Yixuan Wang, Zhihang Hu, Yu Li 

bioRxiv 2022.01.14.476408; doi: https://doi.org/10.1101/2022.01.14.476408. 

What is the novelty of the proposed method compared to those two methods? 

2. I tried to test and reproduce results shown in this manuscript using the provided links in the 

manuscript (https://deepst-tutorials.readthedocs.io/), and observed the following problem: 

a. DeepST/utils.py:121, in refine_label(adata, radius, key) 

120 for j in range(1, n_neigh+1): 

--> 121 neigh_type.append(old_type[index[j]]) 

IndexError: index 3602 is out of bounds for axis 0 with size 3583 

Basically, in the clustering step (In refine_label function), the shape of old_type and index are 

inconsistent, which might be caused by the inconsistent size between the dimensions from adata 

and distance matrix. As a result, I couldn’t reproduce the results shown in the paper. See the 

attached ` DeepST_test.ipynb` for details. 

3. Regarding to the method, especially the contrastive learning component, both the formula and 

the ideas are very similar to Deep Graph Infomax (DGI) (Veličković et al. 2018). What are the 

novel elements and major differences between current method and DGI? This needs to be 

addressed. 

4. What are the meaning and motivation of formula (5), line 734? It’s important to show the 

performance difference with and without adding this term by experiment, because DGI only 

contains (4) instead of (5). Does this term actually improve the performance? 

5. The reason of using reconstructed expression data to cluster instead of using the latent 

embedding need to be justified. Moreover, why choosing mclust over graph-based methods such 

as Leiden, Louvain? It’s important to justify such choices in terms of data analysis and results. 

6. In line 684, do the authors augment data through creating corrupted graph by randomly adding 

or dropping edges? What is the effect of such procedure on the overall performance of the method. 

7. Regarding the data integration performance shown in Figure 4, why did the authors not 

compare many other methods designed for nonspatial scRNA-seq data, such as scVI (Lopez et al. 

2018) and Harmony (Korsunsky et al. 2019), because those classical methods have been well 

demonstrated for good performance for single-cell data. 

8. It’s important to show the STAGATE results that similar to Fig 4E to better demonstrate the data 



integration performance. 

Minor points 

9. To better support the manual annotation result in Fig 6A, the spatial expression distribution of 

several marker genes for each panels in Fig 6A need to be added. 

10. In line 836, the author mentioned the first loss term indicates contrastive loss, why is there 

only one instead of two terms? What is the meaning of the first term? 

11. In line 712, which norm is used? L1 or L2 or others? 

12. In Fig 3C, the titles of panels Mesenchyme and Dermomyotome seem misplaced. 

13. All color bars need to be explained for their meanings. 

14. Many typos and grammar errors in the manuscript, e.g., in line 28, “has” should be “have”; in 

line 59, “K-means” should be “k-means” 

15. Lines 124-126, “Using self-supervised contrastive learning improves performance in learning 

relevant latent features and has the additional benefit of removing batch effects”. This sentence 

occurs without any supporting evidence. It needs to be fixed. 

16. In lines 158-162, the authors introduced “self-reconstruction loss” and “contrastive loss” and 

their effects. It’s important to show what the two losses are in the context of biology. 

17. It’s unclear how the neighbor graph is constructed. In the caption of Fig. 1 (lines 1034-1035), 

the authors wrote “…neighbor graph constructed using spot coordinates (x,y) of that fall within a 

distance threshold”. However, in the method section in lines 665-675, the authors wrote “Finally, 

we select the top k-nearest spots as its neighbors”. It’s unclear whether the authors used a 

distance threshold or a threshold for k. 

18. Regarding the method (lines 655-659), the descriptions seem to be for the spatial 

transcriptomics data. However, this is not clear from the description, as two kinds of datasets 

(spatial transcriptomics data and scRNA-seq data) are mentioned in this paper. 

19. In lines 684-688, “…while keeping the original graph structure unchanged”: was the corrupted 

neighbor graph G’ the same as the original G? 

20. In lines 708-709, “W_d and b_d represent the trainable weight matrix and bias vector, 

respectively, which are shared by all nodes in the graph”. Please justify why W_d and b_d need to 

be shared by all nodes in the graph. Besides, is this the same case for W_e and b_e? 

Reference 

Korsunsky, Ilya, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy 

Baglaenko, Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. 2019. “Fast, Sensitive and 

Accurate Integration of Single-Cell Data with Harmony.” Nature Methods 16 (12): 1289–96. 

Lopez, Romain, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. 2018. “Deep 

Generative Modeling for Single-Cell Transcriptomics.” Nature Methods 15 (12): 1053–58. 

Veličković, Petar, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon 

Hjelm. 2018. “Deep Graph Infomax.” ArXiv [Stat.ML]. arXiv. http://arxiv.org/abs/1809.10341. 

Reviewer #2: 

Remarks to the Author: 

In the manuscript ”DeepST: A novel graph ….” by Long and coworkers the authors develop a new 

method for better describing spatial transcriptomics data and being able to integrate multiple 

studies. The method is based on graph neural networks and contrastive learning, which makes it 

possible to combine scRNA-seq of better resolution and spatial transcriptomics. The method is 

logically sound and makes a lot of sense. Moreover, authors show that it empirically identifies 

more relevant clusters and allows data integration for higher power. Although, I am not an expert 

in spatial transcriptomics these problems seem of great importance and authors spend good effort 

to show that it works a planned. 

Having said that my expertise is in neural networks and translational bioinformatics I believe that 

the paper would be a good contribution to the spatial transcriptomics field. From my side, I have 

no concerns of the paper and like to see it published. 



Response to comments for paper NCOMMS-22-35863B “Spatially informed clustering, 1 
integration, and deconvolution of spatial transcriptomics with GraphST” 2 

 3 

Response to Reviewer #1 4 

 5 
Summary: In this manuscript, Long et al. present a deep graph network-based method GraphST for 1) 6 
inference of spatial domains, 2) data integration between ST samples or between ST and scRNA-seq 7 
data, 3) deconvolution. The method utilized graph neural network together with self-contrastive learning 8 
techniques. The authors showed better performance than several benchmarked methods, and 9 
demonstrated its abilities on identifying meaningful spatial domains and integrating different samples or 10 
data modalities. 11 

 12 
Overall, the topic is important and timely. While this method has strong potential in application, the 13 
manuscript lacks clarity on the details of the method, and it is unclear what unique advantages the 14 
method has compared with other existing methods in terms of its performance. Here are several specific 15 
major points in addition to multiple minor point for improving the work. Below are detailed comments: 16 

Response: We thank the reviewer for the positive comments. We summarize Graph ST’s technological 17 
novelty and advantages over existing methods in the following paragraphs. We have carefully 18 
addressed all the comments and suggestions when preparing this revision of the manuscript. Please 19 
let us know if you have additional comments. 20 

With rapid technological advances in spatial transcriptomics, it is now widely applied towards studying 21 
tissue complexity and cell-cell communications. However, the current bottleneck still lies in data 22 
analysis. Although multiple methods have been developed for spatial transcriptomics, there is still a 23 
great need for developing novel tools that offer greater accuracy, robustness, and generalizability 24 
towards a wide range of application on different tissue types and technology platforms. Furthermore, 25 
the analysis pipeline for spatial transcriptomic data comprises three key tasks, namely spatial clustering, 26 
multi-sample integration, and cell type deconvolution. However, there is no comprehensive tool that can 27 
perform all these three tasks. To overcome this limitation, we developed GraphST, the first of its kind 28 
that integrates these tasks into a streamlined process. Most importantly, GraphST outperforms existing 29 
methods in each task. We achieved this by adopting and tailoring graph self-supervised contrastive 30 
learning for spatial transcriptomics analysis.  31 
In the spatial clustering task, we achieved higher accuracy and robustness with an average of 10% 32 
improvement over the best of existing methods in a variety of datasets. Our GraphST clusters revealed 33 
finer tissue structures and niches in complex tissues such as the brain, olfactory bulb, and embryo. 34 
Although existing methods conST and SpaceFlow also adopted graph contrastive learning for spatial 35 
clustering, there are major technical differences and performance advantages when comparing 36 
GraphST to conST and SpaceFlow. Briefly, GraphST is different from DGI, conST and SpaceFlow in 37 
three aspects: A) definition of positive/negative pairs, B) objective function and contrastive loss, and C) 38 
training procedure. These differences enable GraphST to outperform the other methods in the spatial 39 
clustering task. Furthermore, we have conducted several ablation studies to confirm that each of these 40 
differences improves the effective integration of gene expression and spatial context to obtain 41 
informative and discriminative latent representations. Please kindly refer to Response 1.1 for details of 42 
comparison between GraphST and conST, SpaceFlow. 43 

In the multi-sample integration task, GraphST can better correct batch effects when integrating serial 44 
tissue slices than existing methods that have been developed for spatial (e.g., STAGATE) or non-spatial 45 
batch integration (e.g., scVI and Harmony). Moreover, for the horizontal integration of mouse anterior 46 
and posterior brain slices, GraphST outperformed SpaGCN and STAGATE in that GraphST could 47 
assign the common cortical layers that aligned well across the shared edge and also reveal the dorsal 48 
and ventral horns of the hippocampus regions.  49 
In the final task, GraphST produced more accurate cell type deconvolution with simulation data than 50 
existing methods, including cell2location that was recognized as the top performing method in a recent 51 
benchmark. Moreover, when applied to 10x Visium acquired human lymph node data, GraphST’s 52 



deconvolution was able to better capture the germinal centers and mapped the B cell subpopulations 53 
with higher spatial coherence. Lastly, application on human breast cancer 10x Visium data revealed 54 
immune cell distributions across healthy, tumor edge, invasive ductal carcinoma (IDC), and ductal 55 
carcinoma in situ (DCIS) regions. In particular, the T cells enriched in the IDC regions showed 56 
upregulation of known exhaustion markers including LAG3, TIGIT, PD1, TIM3, and CTLA4, suggesting 57 
a tumor induced immune suppressive environment. 58 
 59 
Major concerns: 60 

Comment 1.1. Lines 123-124, “To our knowledge, few existing methods use self-supervised contrastive 61 
learning on spatial transcriptomics”. While the work may be new in using self-supervised contrastive 62 
learning on spatial transcriptomics, there are some papers that use such kind of methods to address 63 
similar questions. For example,  64 

1) Ren, H., Walker, B.L., Cang, Z. et al. Identifying multicellular spatiotemporal organization of cells with 65 
SpaceFlow. Nat Commun 13, 4076 (2022). https://doi.org/10.1038/s41467-022-31739-w 66 

2) conST: an interpretable multi-modal contrastive learning framework for spatial 67 
transcriptomics.Yongshuo Zong, Tingyang Yu, Xuesong Wang, Yixuan Wang, Zhihang Hu, Yu Li 68 
bioRxiv 2022.01.14.476408; doi: https://doi.org/10.1101/2022.01.14.476408.  69 

What is the novelty of the proposed method compared to those two methods? 70 

Response 1.1: Thank you very much for raising this critical issue. Indeed, GraphST bears much 71 
similarity to conST and SpaceFlow with the use of graph contrastive learning for spatial clustering. 72 
However, there are several major differences between GraphST and the other two methods. 73 

First, and most importantly, both conST and SpaceFlow were mainly developed for spatial clustering 74 
only. In addition to spatial clustering, GraphST can be also applied to two other important ST data 75 
analysis tasks, multi-sample integration and cell type deconvolution of ST. GraphST comprises three 76 
modules with different network architectures tailored for each of the three tasks respectively. 77 

Secondly, even for the spatial clustering task, there are also major differences when comparing 78 
GraphST to conST and SpaceFlow, despite all three methods adopting graph contrastive learning 79 
similar to DGI. Here we elaborate on their differences in three aspects: A) definition of positive/negative 80 
pairs, B) objective function and contrastive loss, and C) training procedure.  81 

A) GraphST’s contrastive learning is different from DGI, conST, and SpaceFlow in terms of their 82 
definition of positive/negative pairs. DGI, conST, and SpaceFlow construct positive/negative pairs 83 
by pairing spot embedding ℎ/ℎᇱ from the original/corrupted graph with a global summary vector 84 ݏ (as shown in Figure R1 (a)). Therefore, the spot embedding learned by DGI, conST, and 85 
SpaceFlow captures more of the global structure information but less spot-specific local 86 
neighbourhood information. Such contrastive learning may result in feature overfitting and reduced 87 
spot-to-spot variability. To deal with this issue, GraphST improves over DGI’s contrastive learning 88 
by re-defining the positive/negative pairs. Specifically, motivated by the assumption that different 89 
spots in a tissue sample have different local spatial contexts, we define positive/negative pairs by 90 
pairing spot embedding ℎ/ℎᇱ with its local summary vector ݏ (as shown in Figure R1(b)) instead 91 
of the global summary vector. With the local summary vector, the model can better preserve local 92 
context information and spot-to-spot variability. We demonstrate the effectiveness of local context 93 
with an ablation study describe in Figure R4. 94 



 95 
  96 

Figure R1. Illustrations of local and global summary vectors. 97 

B) GraphST is also different from SpaceFlow, conST, and DGI in terms of the objective function and 98 
contrastive loss formulations. The objective function of GraphST includes contrastive loss and 99 
reconstruction loss, while DGI’s objective function includes only contrastive loss. The objective 100 
function of SpaceFlow includes both contrastive loss and a spatial consistency penalty term. 101 
Addition of the penalty term helps SpaceFlow bring spatially adjacent spots closer in the latent 102 
embedding. However, the lack of reconstruction loss in DGI and SpaceFlow may lead to insufficient 103 
preservation of the original gene expression information. In contrast, GraphST adds reconstruction 104 
loss to its objection function to ensure that the latent embedding preserves the original gene 105 
expression information effectively. Furthermore, the contrastive loss functions are also different 106 
between GraphST, DGI, and SpaceFlow. GraphST adopts symmetric contrastive loss (formulas (4) 107 
and (5)) for model training while conST and SpaceFlow use single contrastive loss like DGI. 108 
Symmetric contrastive loss can help stabilize the model and learn a better representation as 109 
illustrated in Figure R5. 110 
 111 

C) Lastly, although conST’s objective function also contains contrastive loss and reconstruction loss 112 
like GraphST, GraphST’s training procedure is different from that of conST. conST splits the training 113 
into pre-training and major training stages, where the model is trained with reconstruction loss in 114 
the pre-training stage and contrastive loss in the major training stage. This two-stage training 115 
procedure lacks mutual constraints on the contrastive and reconstructive loss, thus may fail to 116 
identify the optimal combination of the two loss functions. In contrast, GraphST trains the model in 117 
a single step by jointly optimizing for the reconstruction and contrastive losses. During this training, 118 
GraphST can adaptively adjust the contributions of the different loss functions to achieve better 119 
representation learning. 120 

Based your comments, we compared the performance of conST, SpaceFlow, and GraphST in the 121 
spatial clustering task with the DLPFC dataset. Figure R2 (A) shows the median ARI scores of the 122 
different methods. We can see that GraphST achieves a much higher median ARI score of 0.60 over 123 
conST (0.41) and SpaceFlow (0.41). Figure R2 (C) shows the results of SpaceFlow, conST, and 124 
GraphST on slice #151673. Visually, SpaceFlow has the poorest performance among the three 125 
methods. The domains identified by SpaceFlow are irregular though it can accurately recover the WM 126 
domain and layer 1. conST performs slightly better than SpaceFlow with each identified domain being 127 
continuous. However, most of the domains do not match the manual annotation well. In contrast, 128 
GraphST’s clusters are more continuous than conST and SpaceFlow, and are more consistent with the 129 
manual annotation. Quantitatively, GraphST achieves the highest ARI score of 0.64 among the three 130 
methods. Overall, GraphST outperforms conST and SpaceFlow in spatial clustering. The results of all 131 
12 DPLFC slices are shown in Figure R3, which again illustrates GraphST’s advantages over conST 132 
and SpaceFlow. We have added these results to Figure 2 in the revised manuscript and Supplementary 133 
Figure S1. 134 



To evaluate the effectiveness of local context over global context, we conducted an ablation study by 135 
comparing GraphST with a variant that uses a global summary vector instead of local summary vectors. 136 
We ran GraphST and the variant on the 12 DLPFC slices and evaluated their performance using their 137 
median ARI scores. Figure R4 shows that GraphST outperforms the variant (median ARI score of 0.51) 138 
with a significantly higher median ARI score of 0.60. This ablation study demonstrated that local context 139 
does help GraphST perform better than with the global context. We have added these results to 140 
Supplementary Figure S14A in the revised manuscript. 141 

To demonstrate the advantage of symmetric contrastive loss over single contrastive loss, we conducted 142 
another ablation study to compare GraphST with a variant that does not use the contrastive corrupted 143 
loss (formula (5) in the manuscript). We tested GraphST and this variant on the 12 DLPFC samples 144 
and evaluated their performance with the ARI metric. Figure R5 shows that GraphST achieved much 145 
better performance than the variant, showing that the contrastive corrupted loss contributes to better 146 
embedding learning. We have added these results to Supplementary Figure S14B of the revised 147 
manuscript. 148 

 149 
Figure R2. Comparison between SpaceFlow, conST and GraphST on DLPFC. 150 



 151 



 152 
Figure R3. Comparison between SpaceFlow, conST, and GraphST on DLPFC. 153 

 154 
Figure R4. Comparison analysis between GraphST and the variant that uses a global summary vector 155 
on DLPFC. 156 



 157 
Figure R5. Comparison analysis between GraphST and its variant GraphST without contrastive 158 
corrupted loss on DLPFC. 159 

 160 
Comment 1.2. I tried to test and reproduce results shown in this manuscript using the provided links in 161 
the manuscript (https://GraphST-tutorials.readthedocs.io/), and observed the following problem: 162 
a. GraphST/utils.py:121, in refine_label(adata, radius, key) 163 

120 for j in range(1, n_neigh+1): 164 

--> 121 neigh_type.append(old_type[index[j]]) 165 

IndexError: index 3602 is out of bounds for axis 0 with size 3583 166 

Basically, in the clustering step (In refine_label function), the shape of old_type and index are 167 
inconsistent, which might be caused by the inconsistent size between the dimensions from adata and 168 
distance matrix. As a result, I couldn’t reproduce the results shown in the paper. See the attached ` 169 
GraphST_test.ipynb` for details.  170 

Response 1.2: We are sorry for this error. We have revised and updated our codes that are openly 171 
accessible (https://github.com/JinmiaoChenLab/GraphST). Furthermore, we provide a detailed tutorial 172 
to guide users on using our tool. The tutorial is available at https://deepst-173 
tutorials.readthedocs.io/en/latest/. We welcome you to test our codes again according to the tutorial. 174 

 175 
Comment 1.3. Regarding to the method, especially the contrastive learning component, both the 176 
formula and the ideas are very similar to Deep Graph Infomax (DGI) (Veličković et al. 2018). What are 177 
the novel elements and major differences between current method and DGI? This needs to be 178 
addressed.  179 

Response 1.3: Thank you for the comments. As discussed above, the main differences between 180 
GraphST and DGI include the definition of positive/negative pairs and the contrastive loss functions, 181 
which we elaborate in the following paragraphs. In addition to the contrastive loss, GraphST employs 182 
reconstruction loss to preserve the original gene expressions in the latent embedding. DGI in contrast 183 
only uses contrastive loss.  184 

DGI constructs positive/negative pairs by pairing each spot embedding ℎ/ℎᇱ from the original/corrupted 185 
graph with a global summary vector ݏ (as shown in Figure R1 (a)). Therefore, the spot embedding 186 
learned by DGI captures more of the global structure information but less spot-specific local 187 
neighbourhood information. Such contrastive learning may result in feature overfitting and reduced 188 
spot-to-spot variability. To deal with this issue, GraphST improves over DGI’s contrastive learning by 189 
re-defining the positive/negative pairs. Specifically, motivated by the assumption that different spots in 190 
a tissue sample have different local spatial contexts, we define positive/negative pairs by pairing each 191 
spot embedding ℎ/ℎᇱ with its local summary vector ݏ (as shown in Figure R1(b)) instead of the 192 
global summary vector. With local summary vectors, the model can better preserve local context 193 
information and spot-to-spot variability. To evaluate the effectiveness of using local context over the 194 
global context, we conducted an ablation study by comparing GraphST with a variant that uses the 195 



global summary vector instead of local summary vectors. We ran GraphST and the variant on the 12 196 
DLPFC slices and evaluated their performance with their median ARI scores. Figure R4 shows that 197 
GraphST outperformed the variant (median ARI score of 0.51) with a significantly higher median ARI 198 
score of 0.60. This demonstrated that using local context does help GraphST perform better than with 199 
the global context. We have added these results to Supplementary Figure S14A in the revised 200 
manuscript. 201 

Moreover, GraphST is also different from DGI in their contrastive loss functions. DGI uses single 202 
contrastive loss, while GraphST employs symmetric contrastive loss by adding a contrastive corrupted 203 
loss term (formula (5)). Symmetric contrastive loss can help stabilize the model and learn a better 204 
representation. To demonstrate the advantage of symmetric contrastive loss over single contrastive 205 
loss, we conducted an ablation study to compare GraphST with a variant that does not include 206 
contrastive corrupted loss. We tested GraphST and the variant on the 12 DLPFC samples and 207 
evaluated their performance with the ARI metric. Figure R5 shows that GraphST achieved a median 208 
ARI score of 0.60, an improvement of 28% compared to the variant (median ARI score of 0.47). Thus, 209 
we conclude that symmetric contrastive loss does improve the model’s performance. We have added 210 
the results in Supplementary Figure S14B of the revised manuscript. 211 

Comment 1.4. What are the meaning and motivation of formula (5), line 734? It’s important to show the 212 
performance difference with and without adding this term by experiment, because DGI only contains (4) 213 
instead of (5). Does this term actually improve the performance? 214 

Response 1.4: Thank you very much for your question and suggestion. Formula (5) is a contrastive 215 
corrupted loss function that is symmetric to formula (4). The combination of loss functions (4) and (5) 216 
forms a symmetric contrastive loss that can make GraphST’s model training more stable and robust, 217 
thus improving the spatial clustering performance. 218 

As shown in our GraphST workflow (Figure R6), we use the original graph as input to create a corrupted 219 
graph by randomly shuffling features across spots while keeping the adjacency matrix of the graph 220 
unchanged. The original and corrupted graphs are thus structurally identical. At first, we followed DGI 221 
in constructing the contrastive learning with only a single contrastive loss (i.e., formula (4) in the revised 222 
manuscript). However, during model training, we found that the loss curve was unstable, as shown in 223 
Figure R7. Motivated by that and the fact that the original and corrupted graphs are structurally 224 
symmetric, we added a symmetric (corrupted) contrastive loss function to make the model training more 225 
stable and robust.  226 

Based on your comments, we conducted an ablation study to validate the effectiveness of symmetric 227 
contrastive loss. We compared GraphST with a variant without contrastive corrupted loss on the 12 228 
DLPFC samples and used the ARI metric for evaluation. The results in Figure R5 show that GraphST 229 
without contrastive corrupted loss achieved a lower median ARI score (0.47) than the original GraphST 230 
(0.60), supporting the idea that symmetric contrastive loss helps our model achieve better performance. 231 
Furthermore, Figure R7 shows that the model training curve is stabilized with symmetric contrastive 232 
loss. These results have been included in Figure S14B in the Supplementary. 233 

  234 
Figure R6. Workflow of GraphST for spatial clustering. 235 



 236 
Figure R7. Training loss curves with and without contrastive corrupted loss on four DLPFC samples. 237 

 238 
Comment 1.5. The reason of using reconstructed expression data to cluster instead of using the latent 239 
embedding need to be justified. Moreover, why choosing mclust over graph-based methods such as 240 
Leiden, Louvain? It’s important to justify such choices in terms of data analysis and results.  241 

Response 1.5: Thank you very much for your very constructive comments. In our framework, the 242 
reconstructed expression is more informative than the latent representation for two reasons. Firstly, as 243 
shown in Figure R6, our GraphST framework consists of a GCN (graph convolutional network)-based 244 
encoder and a GCN-based decoder. The encoder and decoder have symmetrical structures and equal 245 
numbers of GCN layers. In our model, the number of layers for encoder and decoder are set to 1. The 246 
basic principle of GCN is to update the node representation by iteratively aggregating information from 247 
the neighbours. Therefore, as the output of the decoder, the reconstructed expression contains more 248 
information about the local context than the latent representation, as the reconstructed expression 249 
aggregates feature information of two-hop neighbours while the latent representation only aggregates 250 
one-hop neighbours’ feature information. Secondly, compared to the latent representation, the 251 
reconstructed expression captures more topological structure and semantic information. This is 252 
because the reconstructed expression is obtained through two GCN layers, meaning that the adjacency 253 
matrix is used twice.  254 

In response to your comments, we compared the clustering performance of using the latent 255 
representation and the reconstructed expression on the 12 DLPFC samples. The results in Figure R8 256 
show that GraphST achieved much a higher median ARI score when using the reconstructed 257 
expression for clustering than the latent representation, suggesting that the former contains more useful 258 
information than the latter. These results have been included in Supplementary Figure S14D. 259 

 260 
Figure R8. Comparison analysis between latent representation and reconstructed expression on 261 
DLPFC. 262 



We chose mclust as the default clustering method because our assessment showed that mclust 263 
performs better than Leiden and Louvain in most cases. Figure R9 shows the clustering results on the 264 
12 DLPFC samples using Leiden, Louvain, and mclust. mclust consistently outperformed Leiden and 265 
Louvain on all 12 samples in terms of the ARI metric, with a much higher median ARI score (Figure 266 
R10). Visually, the clusters identified by mclust are more continuous. These results have been included 267 
in Supplementary Figure S15. Here, we would like to mention that several previously published spatial 268 
clustering methods such as BayesSpace (Zhao et al., 2021) and STAGATE (Dong and Zhang, 2022) 269 
also use mclust. Nevertheless, we have now added Leiden and Louvain to GraphST as alternative 270 
options.  271 

Reference 272 

Zhao et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nature Biotechnology, 273 
39(11), 1375-1384. 274 

Kangning Dong and Shihua Zhang. Deciphering spatial domains from spatially resolved transcriptomics 275 
with an adaptive graph attention auto-encoder. Nature Communications. 2022. 276 

 277 

 278 
Figure R9. Comparison analysis between Leiden, Louvain, and mclust with the output of GraphST as 279 
input on DLPFC. 280 



 281 
Figure R10. Boxplots of clustering accuracy of Leiden, Louvain, and mclust with the output of GraphST 282 
as input on DLPFC in terms of ARI. 283 

Comment 1.6. In line 684, do the authors augment data through creating corrupted graph by randomly 284 
adding or dropping edges? What is the effect of such procedure on the overall performance of the 285 
method. 286 

Response 1.6: We are sorry for the confusion. In our framework, instead of randomly adding or 287 
dropping edges, we create a corrupted graph by randomly shuffling gene expression vectors between 288 
spots while leaving the adjacency matrix of the graph unchanged. In contrastive learning, data 289 
augmentation aims to increase the diversity of training data and thus enhance the model’s learning 290 
capability. Therefore, the data augmentation procedure plays an important role in contrastive learning. 291 
During data augmentation, the distribution of the augmented data should be distinguishable from the 292 
original data. Otherwise, it can easily cause the model to overfit. Therefore, we adopted random feature 293 
swapping to perturb the original data as much as possible, such that the model can learn more useful 294 
information from the spatial data.  295 

 296 
Comment 1.7. Regarding the data integration performance shown in Figure 4, why did the authors not 297 
compare many other methods designed for nonspatial scRNA-seq data, such as scVI (Lopez et al. 2018) 298 
and Harmony (Korsunsky et al. 2019), because those classical methods have been well demonstrated 299 
for good performance for single-cell data. 300 

Response 1.7: Thank you for your insightful comments. Following your comments, we added scVI and 301 
Harmony to our tests on the two mouse breast cancer datasets for vertical integration (Figure R11). 302 
Both scVI and Harmony were able to mix the two slices, but some batch differences were still visible 303 
post integration (Figure R11B). In comparison, GraphST evenly mixed the two slices, achieving better 304 
batch mixing than scVI and Harmony. We also quantitatively evaluated batch mixing with the iLISI metric 305 
where the higher iLISI score, the better the batch mixing. GraphST achieved a much higher iLISI score 306 
than Harmony and scVI (Figure R11C), confirming our visual observations. In the post-integration 307 
clustering, Harmony failed to align clusters across the two slices. scVI performed better than Harmony 308 
but some clusters were still not accurately mapped, such as clusters 1, 5, and 10. In contrast, GraphST’s 309 
clusters highly overlapped between the two slices.  310 

We also tested scVI and Harmony on one more mouse breast cancer sample (Figure R11D-F). Batch 311 
differences remained visible on the Harmony UMAP plot (Figure R11E). Comparatively, scVI removed 312 
the batch effects much better than Harmony. GraphST performed the best by evenly mixing the two 313 
slices. In terms of iLISI, Harmony significantly underperformed GraphST while scVI was comparable to 314 
GraphST (Figure R11F). Most of Harmony’s clusters did not match across the two slices. While scVI 315 
generated clusters that were more consistent than Harmony, some clusters were fragmented, 316 
especially in section 2. GraphST again identified clusters that were spatially coherent and aligned well 317 
across the two slices. These results have been added to Figure 4 of the revised manuscript.  318 



 319 
Figure R11. Vertical integration results of different methods on the two mouse breast cancer datasets. 320 

 321 
Comment 1.8. It’s important to show the STAGATE results that similar to Fig 4E to better demonstrate 322 
the data integration performance. 323 

Response 1.8: Thank you for your great suggestions. Following your suggestions, we tested the 324 
performance of STAGATE on the two mouse brain samples. For fair comparison, we set the same 325 
number of clusters for all methods, i.e., 26 clusters. As shown in Figure R12, both GraphST and 326 
STAGATE produced continuous clusters that match the Allen brain reference well. Most importantly, 327 
like GraphST, the STAGATE’s clusters were aligned along the edges of the anterior and posterior 328 
sections. However, some key brain regions were not represented in STAGATE’s clusters. For example, 329 
STAGATE failed to identify the dorsal (top) and ventral (bottom) horn of the hippocampus regions 330 
highlighted with white boxes on the H&E images. In contrast, GraphST was able to reveal these regions. 331 
Overall, compared with STAGATE, GraphST performed slightly better in the horizontal integration task. 332 
We have added STAGATE’s results to Figure 4 of the revised manuscript.    333 



 334 
Figure R12. Horizontal integration results of different methods on two mouse brain samples.   335 

 336 
Minor points: 337 

Comment 1.9. To better support the manual annotation result in Fig 6A, the spatial expression 338 
distribution of several marker genes for each panel in Fig 6A need to be added.  339 

Response 1.9: The breast cancer tissue was ER positive, PR negative, Her2 positive, and diagnosed 340 
with ductal carcinoma in situ, lobular carcinoma in situ, and invasive carcinoma. Our pathologist 341 
collaborator produced the manual annotation based on the H&E image. Morphologically, it is easier 342 
to discern the IDC, DCIS, healthy, and tumour edge regions. As tumours usually harbour high cellular 343 
heterogeneity, it is challenging to find known gene expression markers that can distinguish IDC from 344 
DCIS. Here, we selected several reported marker genes of breast cancer from literature and plotted 345 
their spatial expression to support our manual annotation (Figure R13). We have added the marker 346 
genes to Supplementary Figure S13. 347 

Reference 348 

The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours, 349 
Nature 2012. 350 



351 
Figure R13. Spatial expression distribution of reported breast cancer markers  352 

 353 
Comment 1.10. In line 836, the author mentioned the first loss term indicates contrastive loss, why is 354 
there only one instead of two terms? What is the meaning of the first term?  355 

Response 1.10: Thank you for your comments. Formula (10) is the overall objective function of 356 
GraphST’ third module for cell type deconvolution of ST data. In our framework, we use two different 357 
contrastive learning methods for the first and third modules, respectively. Motivated by Zhang et al. 358 
(2022), we use an augmentation-free contrastive learning method for the third module. Therefore, there 359 
is only one term for contrastive loss. The first term (i.e., contrastive loss) in formula (10) is an InfoNCE 360 
objective function that aims to maximize the similarities of positive pairs and minimize those of negative 361 
pairs. We have added more details in the revised manuscript to describe the contrastive learning 362 
method of the third module.  363 

Reference 364 

Zhang et al. Dual Temperature Helps Contrastive Learning Without Many Negative Samples: 365 

Towards Understanding and Simplifying MoCo. CVPR2022. 366 

 367 
Comment 1.11. In line 712, which norm is used? L1 or L2 or others? 368 

Response 1.11: Thank you for your comments. The norm term in formula (3) is L2-norm. We have 369 
revised formula (3) in the revised manuscript. 370 

 371 
Comment 1.12. In Fig 3C, the titles of panels Mesenchyme and Dermomyotome seem misplaced. 372 

Response 1.12: Thank you very much for pointing out this. We have changed the titles of these two 373 
panels. Please refer to Figure 3C in the revised manuscript. 374 

 375 
Comment 1.13. All color bars need to be explained for their meanings. 376 

Response 1.13: Thank you for your comments. We have added legends to all colour bars in the revised 377 
manuscript. 378 

 379 
Comment 1.14. Many typos and grammar errors in the manuscript, e.g., in line 28, “has” should be 380 
“have”; in line 59, “K-means” should be “k-means”  381 

Response 1.14: Thank you very much for your careful reading. We have carefully gone through our 382 
manuscript and corrected the typographical and grammatical errors.  383 

 384 
Comment 1.15. Lines 124-126, “Using self-supervised contrastive learning improves performance in 385 



learning relevant latent features and has the additional benefit of removing batch effects”. This sentence 386 
occurs without any supporting evidence. It needs to be fixed. 387 

Response 1.15: Thank you very much for pointing out this. We have revised this sentence as follows. 388 

“Using self-supervised contrastive learning improves performance in learning relevant latent features.” 389 

To demonstrate the contribution of self-supervised contrastive learning, we conducted an ablation study 390 
by comparing GraphST with a variant of GraphST without contrastive loss on the DLPFC dataset. 391 
Without contrastive loss, the performance of GraphST is significantly reduced (Figure R14), indicating 392 
that contrastive loss contributes to the performance improvement of our GraphST model. These results 393 
have been added to Supplementary Figure S14C. 394 

 395 
Figure R14. Comparison between GraphST and its variant GraphST without contrastive loss on the 396 
DLPFC dataset. 397 

 398 
Comment 1.16. In lines 158-162, the authors introduced “self-reconstruction loss” and “contrastive loss” 399 
and their effects. It’s important to show what the two losses are in the context of biology.  400 

Response 1.16: Thank you very much for highlighting this point. In our GraphST framework, we take 401 
the gene expression matrix and spatial graph as inputs. The gene expression matrix contains the 402 
feature information of spots while the spatial graph stores the spatial adjacency of spots. Our model is 403 
a GNN-based model that aims to integrate the gene expression of spots with their corresponding spatial 404 
information for spatial clustering. The key feature information is in the gene expression matrix which 405 
should be retained. Therefore, we design the self-reconstruction loss to enforce the preservation of the 406 
original gene expression information in the reconstructed expression.  407 

The contrastive loss design is based on the assumption that a spot in the spatial data usually has a cell 408 
type label similar to its local context, e.g., one-hop or two-hop neighbours. As discussed above in the 409 
contrastive learning part, we define positive/negative pairs by pairing spot embedding ℎ/ℎᇱ from the 410 
original/corrupted graph with its local summary vector ݏ. The local summary vector ݏ represents 411 
the local context of a spot and is obtained by a sigmoid of the mean of all its neighbours’ embeddings. 412 
The main goal of contrastive learning is to make spot embedding ℎ close to its local context ݏ from 413 
the original graph. Therefore, trained with contrastive loss, spatially adjacent spots will have similar 414 
embeddings while non-adjacent spots will have dissimilar embeddings.  415 

Based on your comment, we have added more biological contexts when describing self-reconstruction 416 
loss and contrastive loss in the revised manuscript.     417 

 418 
Comment 1.17. It’s unclear how the neighbor graph is constructed. In the caption of Fig. 1 (lines 1034-419 
1035), the authors wrote “…neighbor graph constructed using spot coordinates (x,y) of that fall within a 420 
distance threshold”. However, in the method section in lines 665-675, the authors wrote “Finally, we 421 
select the top k-nearest spots as its neighbors”. It’s unclear whether the authors used a distance 422 
threshold or a threshold for k.  423 



Response 1.17: We are sorry for the confusion. In our framework, we use a threshold for k when 424 
constructing the neighbourhood graph. We have carefully gone through the manuscript and ensured 425 
consistency in the revised manuscript. 426 

 427 
Comment 1.18. Regarding the method (lines 655-659), the descriptions seem to be for the spatial 428 
transcriptomics data. However, this is not clear from the description, as two kinds of datasets (spatial 429 
transcriptomics data and scRNA-seq data) are mentioned in this paper.  430 

Response 1.18: Thank you for your comments. GraphST was developed for three analysis tasks, 431 
spatial clustering, multiple ST data integration, and cell type deconvolution of spatial data. Cell type 432 
deconvolution is achieved by projecting single-cell RNA-seq data onto the spatial data. Therefore, in 433 
addition to spatial data, single cell RNA-seq data is also used in the third module of our framework. 434 

 435 
Comment 1.19. In lines 684-688, “…while keeping the original graph structure unchanged”: was the 436 
corrupted neighbor graph G’ the same as the original G?  437 

Response 1.19: Thank you for your comments. Yes, the adjacency matrix of the corrupted 438 
neighbourhood graph G’ is the same as the original G. When creating the corrupted neighbourhood 439 
graph G’, we only randomly shuffle feature vectors between spots while keeping the graph’s topological 440 
structure unchanged. For example, the entire feature vector of node A is assigned to node B and vice 441 
versa. 442 

 443 
Comment 1.20. In lines 708-709, “W_d and b_d represent the trainable weight matrix and bias vector, 444 
respectively, which are shared by all nodes in the graph”. Please justify why W_d and b_d need to be 445 
shared by all nodes in the graph. Besides, is this the same case for W_e and b_e? 446 

Response 1.20: Thank you very much for your insightful comments. In our model, without loss of 447 
generality, the trainable weight matrices ܹ, ௗܹ and bias vectors ܾ ,ܾௗ are shared by all nodes in the 448 
graph. In the GNN model, the dimensions of the weight matrices and bias vectors are usually very large 449 
depending on the number of nodes of the input graph. For example, in the datasets used in our 450 
manuscript, the smallest (i.e., DLPFC slice #151676) has 3460 spots and the largest (i.e., Mouse 451 
embryo E14.5) has 92,928 bins. If we use a different weight matrix and bias vector for each node, it will 452 
be very challenging to train the model. Sharing the weight and bias significantly reduce the number of 453 
weight and bias terms used, making it easier to train the model. It also helps reduce the running time.   454 

 455 
Reference 456 
Korsunsky, Ilya, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, 457 
Michael Brenner, Po-Ru Loh, and Soumya Raychaudhuri. 2019. “Fast, Sensitive and Accurate 458 
Integration of Single-Cell Data with Harmony.” Nature Methods 16 (12): 1289–96. 459 
Lopez, Romain, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. 2018. “Deep 460 
Generative Modeling for Single-Cell Transcriptomics.” Nature Methods 15 (12): 1053–58. 461 
Veličković, Petar, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon Hjelm. 462 
2018. “Deep Graph Infomax.” ArXiv [Stat.ML]. arXiv. http://arxiv.org/abs/1809.10341. 463 
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 470 
Reviewer #2 (Remarks to the Author): 471 

 472 
In the manuscript ”GraphST: A novel graph ….” by Long and coworkers the authors develop a new 473 
method for better describing spatial transcriptomics data and being able to integrate multiple studies. 474 
The method is based on graph neural networks and contrastive learning, which makes it possible to 475 
combine scRNA-seq of better resolution and spatial transcriptomics. The method is logically sound and 476 
makes a lot of sense. Moreover, authors show that it empirically identifies more relevant clusters and 477 
allows data integration for higher power. Although, I am not an expert in spatial transcriptomics these 478 
problems seem of great importance and authors spend good effort to show that it works a planned.  479 
Having said that my expertise is in neural networks and translational bioinformatics I believe that the 480 
paper would be a good contribution to the spatial transcriptomics field. From my side, I have no concerns 481 
of the paper and like to see it published.  482 

Response: We thank the reviewer for the above positive comments. We welcome you to provide 483 
additional valuable comments. 484 

 485 
 486 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The revision has fully addressed my comments and concerns. Well done. 
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