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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Reviewer comment : 

This paper presents novel machine-learning approach for prediction of transition state structure 

optimization for non-periodic molecular reactions. And this outperforms previously suggested models 
which is quite promising. However there are several points which should be addressed prior to 

publication. 

1. This work exploits extensive reaction dataset of Grambow et al. which contains 10k reactions with 
atomic indices already mapped between reactant and product. If I understood correctly, in Pair 
sequence interface layer process, permutation-invariance and size-extensivity are preserved in 

transformer encoder but it seems correct atom mapping of reactant and product seem to be assumed 
in “Bidirectional GRU” step. However in other many cases, outside of this dataset, this correct atom 

mapping between reactant and product is not guaranteed to exist and itself is not a trivial problem. 
Although this model exhibits excellent performance within current dataset as training input, the author 
may need to address its applicability toward general molecular reactions. Please clarify in the 

manuscript if this model can be also generally applicable to any elementary reaction or it requires the 
atom-mapping process as preliminary step. 

2. As this is being machine learning approach, its performance/accuracy scales with the size of the 
training set. Although dataset of Grambow et al. has vast number of reactions, real applications 

always involve building up their own reaction data and this is even more stipulated by the failure case 
given in this manuscript. In this work training-validation-test set as splited into 8-1-1 ratio, but would 

be interesting to present performance improvement with respect to number of training set (learning 
curve). Then readers might be able to expect approximated accuracy when trained with this model. 

3. Fig 2. should be improved with better visualization. Font is too small and color should be more 
differentiable. 

4. It’s hard to follow what actually “test-time augmentation (TTA)” means in current manuscript without 

reading the references cited. The author might want to elaborate further in the manuscript regarding 
this part. 

5. In Fig. 4. There are success after/before optimization. If author meant success as convergence of 
saddle-point optimization, how can you confirm its success even before optimization? Also success is 

ambiguous terminology which can be better expressed with “converged”. 

6. In Fig.4, there are obviously four colors contained in histogram but only three of them are 

explained. What are yellow bars? Also (c) contains three colors and only two of them are labeled. 
Generally font size of the graph label should be larger. Here color should be more contrasting to make 

it differentiable. 

7. In page 10, “challenging but demanding work” is awkward expression. 

8. Regarding saddle-point optimization, author should clarify which specific algorithm has been used 

in Qchem and which convergence criteria has been imposed in this work. (e.g. Minimum force) 

9. Author indicates rotational and translation entropy have been used to encode reaction property, but 
its notations are wrong. I.e. S_vib and S_rot, which are vibrational and rotational entropy. Also author 
needs elaboration why only two components of entropy are used instead of three (e.g. vibrational, 

rotational and translational entropy) 

10. There are several typos throughout the manuscript and these have to be revised before 



publication. 

Reviewer #2 (Remarks to the Author): 

Thank you for the opportunity to review the manuscript by Choi regarding the automated identification 

of transition state (TS) structures using machine learning (ML). 

In the interests of transparency, I'm happy to reveal my identity to the author as Prof. Jason Pearson 

of the University of Prince Edward Island. This is particularly relevant in this case since I am the 
corresponding author of a paper that was extensively cited in this manuscript. In particular, my group 

and I have developed parallel technology for identifying TS structures by ML and Choi has rigorously 
tested our methodology alongside their own. 

Overall I find the work to be a compelling case for the use of ML technology in the typical workflow of 
a computational chemist interested in elucidating mechanistic and kinetic detail of chemical reactions. 

Though I must admit that I have not checked out the authors freely available code from their GitHub 
repository, I have read the paper with interest and studied their methodology carefully. Based on this 
assessment I can say that the work has been soundly prepared and I see no reason to contrast any of 

the authors conclusions. Furthermore, the prediction of TS structures is an incredibly challenging 
endeavour (evidenced by a long history of widely varying methods for doing so) yet is critical for a 

thorough understanding of virtually any chemical process. As such I must recommend that the 
manuscript be published. 

That being said, I am not without a series of more specific comments (both positive and negative), 
several of which I would require the author to address in a revised manuscript. 

1. It is unclear to me how the author plans to handle chirality with their proposed model. As they state 

(in many places) most clearly on page 16, "... the ML model predicts only interatomic distances". It is, 
of course, an inconvenient truth that a stereogenic carbon with 4 unique substituents will produce an 
equivalent distance matrix of all enantiomers. I cannot interpret how the authors subsequent non-

linear optimization step would correct this oversight. So, I ask the author to address this. Specifically, 
can the model succeed in stereochemical TS predictions? And if so, how? 

2. Unfortunately the grammar of the manuscript needs a lot of work. I trust that the Springer/Nature 
editorial team can work with the author to revise. I spotted no less than 20 errors. 

3. I was particularly impressed with the authors ensemble approach, which endows the model with the 

ability to find multiple TS structures between a particular pair of RC and PC. This is a particularly 
clever solution to the problem of PES complexity. 

4. I found it peculiar that exactly 1196 "test molecules" were selected from the Grambow database for 
further analysis by optimization (page 8). However, the database contains 11961 reactions (page 13). 

Is this just a strange coincidence or a typo? If only a coincidence, can the author clarify how the 1196 
test molecules were selected from the larger 11961 set? 

5. Again, I was confused about the statement on page 9 regarding the error in absolute energy of the 
optimized structures. It isn't clear to me how one measures this error. I understand that a TS is 

predicted from the ML model and that is a "predicted" structure. Subsequently a user can optimize 
that predicted structure using a traditional saddle point optimization from first principles. Therefore an 

"error" can be determined from the difference in energies of these two structures. However, What 
structure does one compare to if they wish to assess the error of the "optimized" TS structure? Even 
the reference database used the same theoretical technique (namely, ωB97X-D3/def2-TZVP). I would 

ask that the author please elaborate on their explanation of "error" for optimized structures. 



6. I am not particularly in favour of the authors TTA approach. In this approach, the authors use both 

the forward and reverse directions of a reaction to essentially generate "more" data in a somewhat 
artificial way. The result may be that the prediction becomes directionally invariant but I believe there 

is a significant risk of overfitting in doing so. My preference would be for directional invariance to be 
"baked in" to the model. I am not, however, asking the author to develop a new model but I would 
demand to see more training statistics. A training curve is an important element of any ML paper that 

is sorely lacking in this work. 

I look forward to reviewing a revised edition of this manuscript and I thank both the editor and author 
for the opportunity to be involved. 

Best wishes, 
Jason 

Reviewer #3 (Remarks to the Author): 

The present work by Choi presents a neural model for the prediction of transition state initial guess 
geometries for use in subsequent geometry optimization. These models address a key bottleneck in 

automated kinetic workflows, as traditional methods to generate TS geometries are both time 
consuming and failure-prone. Choi builds a model using transformer layers and gated recurrent units 
and proficiently takes advantage of model ensembles to predict the TS interatomic distance matrix. 

The predicted distance matrix is then used in a nonlinear optimization to recover the TS Cartesian 
coordinates. Evaluating the model on a dataset of general, small molecule organic reactions, the 

model achieves good convergence with guesses optimized at a high success rate and shows superior 
performance compared to existing ML models. My primary concerns with the manuscript are 

regarding clarity of the methods and analysis along with a broader discussing highlighting the 
limitations of the model. Hence, I recommend minor revisions to this manuscript before publication. 

1. Kinetic modeling is a visual science, but the reader sees very few examples of the model’s 
predictions. I recommend an additional figure, either in the main text or the supplement, showing 

examples of the model’s predictions--both good and poor. Including both unimolecular and 
bimolecular reactions would be nice. This will help the reader gain confidence in the model’s ability 
and may highlight areas for improvement. 

2. I especially like the modeling choice to predict a multiplier to the ratio of the interpolated distance 

matrix and the TS distance matrix. Did you test predicting the distance value directly? I’m curious to 
know if this makes a substantial difference (not a necessary experiment). 

3. I’m not sure that TTA is worth highlighting, since according to Fig. 2, it does not improve model 
performance much. 

4. I appreciate the information Fig. 3b is trying to convey, but it’s difficult to read, especially with all the 

different colored histograms in the background. At the very least, I suggest making this figure much 
larger, but I would try to improve its readability. 

5. While it is nice that ~94% of the optimizations converged, one should perform frequency 
calculations and verify the presence of exactly one imaginary frequency to correctly characterize the 

saddle point. I highly recommend that this analysis be performed for all of the successful 
optimizations. They should definitely be performed for the 126 cases with energies differences higher 
than 0.1 kcal/mol. Without a proper frequency analysis, it is uncertain whether the structures are true 

TS structures (even if they were verified by IRC). 

6. There are few key limitations the author should highlight. First, that the reactant and product 



geometries used to generate TS guesses in this study were obtained from the Grambow dataset and 
are hence QM-optimized reactants and products. Thus, the model still requires QM-optimized 

reactants and products as input, which should be clearly stated in the manuscript. Second and more 
importantly, for any bimolecular reactions, the reactants and products need to be aligned in a reacting 

configuration, which is inherently the case in the Grambow dataset because the data were generated 
using the growing string method. A typical workflow performs opt+freq calculations on each species 
independently as traditional TST calculations expect partitions functions for each species rather than 

for the VDW complex that is found in the Grambow dataset. For reactions that have 2 or 3 products, 
which represent about 30% of this dataset, it would normally require another step to align these 

species to create the complex that was used to train the model presented here. Without a robust 
alignment scheme, it is unclear whether or not the presented model can be successfully applied to 

bimolecular reactions. This limitation should also be clearly stated in the paper. 

7. To train the TS model, Choi uses random splits on the Grambow dataset. However, several recent 

publications have noted the issues with using random splits on this dataset (see ref. 1 and 2). While 
the dataset contains ~12k unique reactions, it only contains ~1-2k unique reactants. So, when using a 

random split, some of the reactants may be duplicated in the test set. For TS geometry prediction, this 
is not a severe issue, but I suggest reproducing Fig. 2 using reactant-based scaffold splits (see ref. 2 
for additional details). There’s no need to redo the QM optimization section. 

8. I didn’t quite understand the model loss functions for the reactant and product readout layers. 

These layers are predicting the energy and entropy of the reactants and products? This description 
(pg. 14) could be clarified. Further, while I understand the motivation for these readout layers (i.e. 
benefits of multitask training), it is not demonstrated whether this strategy is actually useful. 

Experiments ablating these readout layers would be helpful. 

9. The statement at the beginning of section 4.5 is not exactly true. First, the model from ref. 3 does in 
fact predict an interatomic distance matrix, but it reconstructs Cartesian coordinates from the 

predicted distance matrix in an end-to-end fashion. So the statement that “previous studies...directly 
infer the 3D atomic positions” isn’t strictly true. In fact, the nonlinear optimization used here is nearly 
identical to the one used in ref. 3, aside from the fact that ref. 3 used learned weights (w_ij). Second, 

an important work which was missed in the citations (ref. 4), uses a related approach of predicting a 
Columb matrix intermediate and obtaining the Cartesian coordinates through an optimization. 

10. The choice of 90 models for the ensemble seems a bit excessive and may negatively impact 
downstream usage (i.e. longer runtimes). It would be nice to include some analysis on how many 

models are truly necessary as the choice of 90 seems arbitrary. 

[1].Heid, E., & Green, W. H. (2021). Machine learning of reaction properties via learned 
representations of the condensed graph of reaction. Journal of chemical information and modeling. 
[2].Spiekermann, Kevin A., Lagnajit Pattanaik, and William H. Green. "Fast Predictions of Reaction 

Barrier Heights: Toward Coupled-Cluster Accuracy." The Journal of Physical Chemistry A 126.25 
(2022): 3976-3986. 

[3].Pattanaik, L., Ingraham, J. B., Grambow, C. A., & Green, W. H. (2020). Generating transition 
states of isomerization reactions with deep learning. Physical Chemistry Chemical Physics, 22(41), 

23618-23626. 
[4].Makoś, M. Z., Verma, N., Larson, E. C., Freindorf, M., & Kraka, E. (2021). Generative adversarial 
networks for transition state geometry prediction. The Journal of Chemical Physics, 155(2), 024116. 



Reviewer #1 (Remarks to the Author): 

This paper presents novel machine-learning approach for prediction of 

transition state structure optimization for non-periodic molecular reactions. And 

this outperforms previously suggested models which is quite promising. 

However there are several points which should be addressed prior to 

publication. 

1. This work exploits extensive reaction dataset of Grambow et al. which 

contains 10k reactions with atomic indices already mapped between reactant 

and product. If I understood correctly, in Pair sequence interface layer process, 

permutation-invariance and size-extensivity are preserved in transformer 

encoder but it seems correct atom mapping of reactant and product seem to 

be assumed in “Bidirectional GRU” step. However in other many cases, 

outside of this dataset, this correct atom mapping between reactant and 

product is not guaranteed to exist and itself is not a trivial problem. Although 

this model exhibits excellent performance within current dataset as training 

input, the author may need to address its applicability toward general molecular 

reactions. Please clarify in the manuscript if this model can be also generally 

applicable to any elementary reaction or it requires the atom-mapping process 

as preliminary step. 

 As the reviewer correctly pointed out, the pair sequence interaction layer 

requires atomic mapping information due to GRU operations which 

update pair features by adopting features of the same atomic pairs on 

different structures.  

For a reaction database, because the structures undergo changes of 

connectivity, it is difficult to derive a quick solution of the atom-mapping 

problem. However, thanks to several advances in graph theory and linear 

programming methods, for small and medium size of molecules, 

solutions of atom mapping in reaction become more accessible. (Ref. 

40&41 in the revised manuscript) Therefore, I hope this model will be 

able to be utilized for the reaction data that does not contain the atom 

mapping information. Regardless of my expectation, the limit of the 

model should be clearly described in the manuscript. Thus, to note this 

fact, I revised the 3rd paragraph of Section 4.2 as follows: 

“Initially, the PSI layer updates pair features by reflecting other pairs in 

the same structure.  This procedure utilizes a transformer encoder, 

which is a permutation-invariant and size-extensive operation. This first 

update is not affected by the pair features of other structures. 

Subsequently, atomic features are updated again to reflect the 

information from other structures. Because this second update proceeds 



only on atomic pairs sharing the same index, the permutation invariance 

and size extensivity of the first dimension are still preserved. For the 

second update, a bidireactional GRU is used. Because a GRU layer must 

update the features of the same atomic pairs in three structures, atom 

mapping information is required to implement PSI layers. In this work, 

the atom mapping information contained in the databases was utilized. 

To apply PSI layers to data that do not have atom mapping information, 

such data must be obtained preliminary using various atom mapping 

methods.[40, 41]”

2. As this is being machine learning approach, its performance/accuracy scales 

with the size of the training set. Although dataset of Grambow et al. has vast 

number of reactions, real applications always involve building up their own 

reaction data and this is even more stipulated by the failure case given in this 

manuscript. In this work training-validation-test set as splited into 8-1-1 ratio, 

but would be interesting to present performance improvement with respect to 

number of training set (learning curve). Then readers might be able to expect 

approximated accuracy when trained with this model. 

 I agree that the performance dependency of ML model on the number of 

training data is important information for the potential user. The 

performance measurements with a different number of train datasets are 

performed and their results are presented in Figure S3 of the revised 

supporting information. The ensemble consisted of the model trained 

with 25% of the original training set (2392 reactions) yields 4.00% and 

12.2pm for molecular MAPE and molecular MAE, respectively. Those 

errors are still much lower than the comparison models’ errors. For 

authors who have the interest to apply the proposed model to an 

extremely small and focused database, the results of SN2 reaction 

database which has 48 and 5 reactions for training and validation may 

be a reasonable reference. To convey additional test results, I revised 

the last paragraph of the 7th page as follows: 

“To investigate the applicability of the proposed approach to a small 

database, model performances trained with SN2 reaction database and 

reduced Grambow's database are measured. The SN2 reaction database 

was published by the authors of TSNet.[25] For SN2 reactions, the 

proposed ensemble approach yielded a molecular MAPE of 1.738% and 

molecular MAE of 4.54 pm. The best-reported MAE for the TSNet model 

is 18.31 pm.[25] The definition of error in the TSNet model study is 

slightly different from the molecular MAE. If the same definition to the 

TSNet results is applied, then the error of the ensemble prediction is 4.97 

pm. These results indicate that the proposed model is more than three 



times as accurate as TSNet. Although the SN2 database contains only 48 

training data, the proposed ML approach still yields high accuracy. 

Additionally, for the tests based on the reduced training set of 

Grambow's reaction database, the proposed model achieved high 

accuracy. The accuracy of ML prediction according to the size of 

training set is presented in Figure S3 of the supporting information. The 

proposed model trained with only 25% of randomly sampled reactions 

from the training set outperforms the comparison models trained with the 

entire training set. These test results verify that the proposed ML 

architecture can learn the interatomic distances of TS structures 

efficiently, even with a small number of reaction data.” 

3. Fig 2. should be improved with better visualization. Font is too small and 

color should be more differentiable. 

 I updated Figure 2 with a larger font size and different colors in the 

revised manuscript and revised the corresponding caption.  

4. It’s hard to follow what actually “test-time augmentation (TTA)” means in 

current manuscript without reading the references cited. The author might want 

to elaborate further in the manuscript regarding this part. 

 To convey the concept of TTA to a potential reader who is not familiar 

with ML, I supplemented the explanation by introducing a primary 

example of TTA (image cases). Additionally, related to the comment 

raised by the 2nd and 3rd reviewers, the fact that my TTA implementation 

is free from potential issues of data augmentations is further explained in 

the first paragraph of the 5th page as the following: 

“For the test subset, the molecular MAPEs of the single model and 

ensemble were measured as 3.681% and 3.407%, respectively. The 

corresponding molecular MAE values are 11.56 pm and 10.70 pm. The 

error is reduced further by test-time augmentation (TTA), which utilizes 

the results of inferences of augmented test inputs to mitigate the 

variance of test inferences. For image data, flipped, rotated, and 

translated test images were used to enhance the quality of predictions. 

TTA can be implemented in many different ways depending on the 

methods used to augment data and merge inferences.[29,30] In this 

study, augmented data were obtained by reversing the directions of 

chemical reactions and the predicted interatomic distances from both 

original (forward) and reversed (backward) reactions are averaged. This 

not only enhances accuracy, but also eliminates the directional 



dependence of TS structures, which is an important invariance. Because 

this augmentation was not applied during training, no problems 

associated with artificial data such as reduced generalization were 

introduced.”

5. In Fig. 4. There are success after/before optimization. If author meant 

success as convergence of saddle-point optimization, how can you confirm its 

success even before optimization? Also success is ambiguous terminology 

which can be better expressed with “converged”. 

 The goal of Figure 4 (a) is to represent the results of saddle point 

optimization whose initial structure is from the ML inference. As the 

reviewer expected, “Success” means the convergence of saddle point 

optimization. The legend entries in Figure 4 (a) are updated as 

Converged (After Opt.), Converged (After Opt.), and Failed. I thank you 

for the kind suggestion to improve the clarity of the legend. 

 Although the present ML model yield a highly accurate TS structure, the 

remained question - how can we confirm the convergence of TS 

optimization without performing simulation? – is not covered by the 

current status of my work. There are some uncertainty quantification 

methods to measure how much the prediction results are reliable. 

However, in my opinion, those approaches cannot be direct solutions to 

the reviewer’s question because the convergence of saddle-point 

optimization is not solely determined by an initial TS structure. Many 

conditions of saddle-point optimization (e.g. convergence criteria and 

the maximum number of iterations) may affect the convergence. Here, I 

used the same method and parameters for saddle-point optimizations to 

reference calculations but there might be saddle-point optimization 

conditions to yield a higher convergence ratio than mine. Even though 

the convergence ratio is not the ultimate factor to describe the quality of 

ML predictions, I address the numbers because it could be practical 

guidance for a potential reader to roughly estimate how frequently 

manual processes are required when this ML model results are used for 

initial structures of saddle-point calculations. To convey the meaning of 

convergence ratio, I supplement the meaning of quantum chemical 

validation in the first paragraph of Section 2.2 as follows: 

“To validate prediction quality, saddle point optimizations were 

conducted using the predicted TS structures as initial structures. Among 

the 1196 test molecules, 1122 (93.8%) of the molecular structures 

successfully converged. Among the failed saddle-point optimizations, 60 

failed because the maximum number of iterations for geometry relaxation 



was exceeded, six failed because the self-consistent field failed to 

converge, and eight failed for other reasons. Unlike the reference 

calculations, the saddle-point calculations performed in this work used 

ML inferences as initial structures. Without any manual processing of 

initial structures, a high convergence ratio for saddle point optimizations 

was still obtained. Additionally, it does not necessarily indicate that the 

ML model failed if the initial structures from the model do not converge 

because convergence is affected not only by initial structures but also by 

various parameters and methods of optimization. In this study, the same 

conditions for saddle-point optimization used in the reference 

calculations were adopted (detailed descriptions of calculation 

parameters are provided in Section 4.1.)” 

6. In Fig.4, there are obviously four colors contained in histogram but only three 

of them are explained. What are yellow bars? Also (c) contains three colors and 

only two of them are labeled. Generally font size of the graph label should be 

larger. Here color should be more contrasting to make it differentiable. 

 The bars in Figure 4 of the original manuscript have some transparency 

to precisely exhibit the changes of other bars in overlapped ranges. I 

think the yellow bars that the reviewer mentioned are the overlapped 

region of green and orange bars. Similarly, in Fig. 4 (c), two types of 

bars and their overlap are presented. To avoid this confusion, I replotted 

Figure 4 (a) and (c) in the revised manuscript.  

7. In page 10, “challenging but demanding work” is awkward expression. 

 Sorry for the awkward expression. I rephrase the last paragraph of the 

10th page as follows: 

“Multiple TSs for a chemical reaction are frequently observed in general 

polyatomic systems. In a strict sense, it is extremely difficult to target the 

most stable TS structure precisely. However, practically, the most stable 

TS structure can be found by exploring multiple TSs. Therefore, the 

generation of multiple reaction pathways is essential for determining the 

most favorable reaction pathways. Furthermore, to design catalysts or 

retrosynthetic pathways, the exploration of many competitive reactions is 

frequently required.[31-33] To tackle this problem, the generation of 

multiple TS structures using fast and accurate ML inference is 

demonstrated with the aid of reactant and product sampling.” 



8. Regarding saddle-point optimization, author should clarify which specific 

algorithm has been used in Qchem and which convergence criteria has been 

imposed in this work. (e.g. Minimum force) 

 The maximum number of SCF cycles and optimization are both 100. 

Tolerances for gradient, displacement and energy of optimization are 10-

4, 4×10-4 and 3.3×10-7, respectively. This values are identical to the 

conditions of reference calculations published by Grambow et al.. To 

clarify this computation options, I added the following explanation in the 

last paragraph of 4.1 section. 

“For both Pysisphus and the Psi4 package, default options were 

employed. The saddle point calculations using the QChem package were 

performed with the same options used to derive the original database 

results. The maximum number of SCF cycles and optimization operations 

were both 100. The tolerances for the gradients, displacement, and 

energy of optimization were 10-4, 4 ×10-4, and 3.3 ×10-7, respectively.” 

9. Author indicates rotational and translation entropy have been used to encode 

reaction property, but its notations are wrong. I.e. S_vib and S_rot, which are 

vibrational and rotational entropy. Also author needs elaboration why only two 

components of entropy are used instead of three (e.g. vibrational, rotational 

and translational entropy) 

 Sorry for the typo. In this work, only rotational and vibrational entropies 

are used. (not translational entropy) Generally speaking, the translational 

entropy of gas molecules is not much different according to the 

chemical structures. Therefore, in many studies, vibrational and 

rotational entropies are used for the descriptor of chemicals. In the 

revised manuscript, the typo is corrected as follow: 

“The second readout layer computes the contribution of each atom to 

total energy, vibrational entropy, and rotational entropy. (Ei, S(vib,i), 

S(rot,i))”

10. There are several typos throughout the manuscript and these have to be 

revised before publication. 

 Thanks for your comment. I additionally performed proofreading of the 

submitted manuscript.  



Reviewer #2 (Remarks to the Author): 

Thank you for the opportunity to review the manuscript by Choi regarding the 

automated identification of transition state (TS) structures using machine 

learning (ML). 

 In the interests of transparency, I'm happy to reveal my identity to the author 

as Prof. Jason Pearson of the University of Prince Edward Island. This is 

particularly relevant in this case since I am the corresponding author of a paper 

that was extensively cited in this manuscript. In particular, my group and I have 

developed parallel technology for identifying TS structures by ML and Choi has 

rigorously tested our methodology alongside their own. 

 Overall I find the work to be a compelling case for the use of ML technology in 

the typical workflow of a computational chemist interested in elucidating 

mechanistic and kinetic detail of chemical reactions. Though I must admit that I 

have not checked out the authors freely available code from their GitHub 

repository, I have read the paper with interest and studied their methodology 

carefully. Based on this assessment I can say that the work has been soundly 

prepared and I see no reason to contrast any of the authors conclusions. 

Furthermore, the prediction of TS structures is an incredibly challenging 

endeavour (evidenced by a long history of widely varying methods for doing so) 

yet is critical for a thorough understanding of virtually any chemical process. As 

such I must recommend that the manuscript be published.  

 That being said, I am not without a series of more specific comments (both 

positive and negative), several of which I would require the author to address in 

a revised manuscript. 

1. It is unclear to me how the author plans to handle chirality with their 

proposed model. As they state (in many places) most clearly on page 16, "... 

the ML model predicts only interatomic distances". It is, of course, an 

inconvenient truth that a stereogenic carbon with 4 unique substituents will 

produce an equivalent distance matrix of all enantiomers. I cannot interpret how 

the authors subsequent non-linear optimization step would correct this 

oversight. So, I ask the author to address this. Specifically, can the model 

succeed in stereochemical TS predictions? And if so, how? 

 Predicting the chirality of a molecule is a challenging topic in structure 

predictions. The ML model that predicts interatomic distances, including 

mine, cannot systematically handle optical isomerism. In the non-linear 

optimization step, atomic positions are updated to have a close distance 

matrix to the predicted one without any special consideration of chirality. 



Therefore, in the process of nonlinear optimization, the chirality is 

determined based on the initial structure, the linear-interpolated 

structure in this work. Even if a linear-interpolated structure is used, the 

correct chirality of TS structure is not guaranteed. Therefore, in my 

study, chirality predictions are not statistically studied. In the visualized 

reactions of the revised manuscript and supporting information, both 

valid and invalid predictions of chirality are observed. Figure 5 (b) shows 

the case that the chirality is well obtained, however, Figure S1 (a) shows 

the opposite case. To convey this limit of the distance-based TS 

structure prediction model, I added the explanations for chirality 

predictions in the last paragraph of 5th page as follows: 

“The interatomic distances obtained from ML inferences are highly 

accurate. However, they do not directly correspond to reliable 3D TS 

structures. Fortunately, based on nonlinear optimization using the results 

of inferences, accurate molecular geometries whose errors in terms of 

interatomic distances are less than those of both single-model and 

ensemble results can be obtained. This indicates that the remaining error 

in the predicted distances can be mitigated by constraining the set of 

interatomic distances to satisfy the Euclidean condition. Despite highly 

accurate results using nonlinear optimization, because enantiomers are 

not distinguishable in terms of interatomic distances, nonlinear 

optimization cannot guarantee the correct chirality of TS structures. The 

incorrect prediction of chirality is not considered by the error metrics 

adopted in this study. Therefore, incorrect chirality prediction is observed 

even in the lowest-error case (0.88% molecular MAPE and 2.28 pm 

molecular MAE) shown in Figure S1, which plots few best and worst 

prediction results. This chirality issue is a common limitation of the ML 

model based on interatomic distance.[24]” 

2. Unfortunately the grammar of the manuscript needs a lot of work. I trust that 

the Springer/Nature editorial team can work with the author to revise. I spotted 

no less than 20 errors. 

 Sorry for the incorrect expression. I performed additional proofreading of 

the submitted manuscript.  

3. I was particularly impressed with the authors ensemble approach, which 

endows the model with the ability to find multiple TS structures between a 

particular pair of RC and PC. This is a particularly clever solution to the problem 

of PES complexity. 



 Thanks for your compliment.  

4. I found it peculiar that exactly 1196 "test molecules" were selected from the 

Grambow database for further analysis by optimization (page 8). However, the 

database contains 11961 reactions (page 13). Is this just a strange coincidence 

or a typo? If only a coincidence, can the author clarify how the 1196 test 

molecules were selected from the larger 11961 set? 

 The total size of the reaction database is 11961 and I used 80-10-10 

random splitting. Hence, the size of the test set is 1196. It is explained in 

the first paragraph of the method section.  

5. Again, I was confused about the statement on page 9 regarding the error in 

absolute energy of the optimized structures. It isn't clear to me how one 

measures this error. I understand that a TS is predicted from the ML model and 

that is a "predicted" structure. Subsequently a user can optimize that predicted 

structure using a traditional saddle point optimization from first principles. 

Therefore an "error" can be determined from the difference in energies of these 

two structures. However, What structure does one compare to if they wish to 

assess the error of the "optimized" TS structure? Even the reference database 

used the same theoretical technique (namely, ωB97X-D3/def2-TZVP). I would 

ask that the author please elaborate on their explanation of "error" for optimized 

structures. 

 The energy errors of the optimized structures are measured by the 

comparisons of the energy of optimized structures to the corresponding 

reference value. In this study, saddle point optimization is performed 

with the identical options used to compute reference results. The reason 

why the difference between the reference and my calculations happen is 

the initial structures of the saddle point optimization. The reference 

optimization calculations were performed with the initial structures 

computed from low-level quantum chemical calculations which are still 

much more expensive than ML inferences. If my calculation and the 

reference calculation capture the same TS structure, no energy 

difference would not be observed. In most optimization results, only a 

chemically meaningless amount of differences remain. Those small 

errors may be originated from the tolerance of optimization. On the other 

hand, more than 0.1 kcal/mol errors are observed in some cases and 

those differences may be induced by the different optimized structures. I 

further investigate the chemical validity of those cases. To clarify the 

potential difference between the optimized structure to the reference 



structure, I added explanations in the first paragraph of Section 2.2 as 

follows: 

“To validate prediction quality, saddle point optimizations were 

conducted using the predicted TS structures as initial structures. Among 

the 1196 test molecules, 1122 (93.8%) of the molecular structures 

successfully converged. Among the failed saddle point optimizations, 60 

failed because the maximum number of iterations for geometry relaxation 

was exceeded, six failed because the self-consistent field failed to 

converge, and eight failed for other reasons. Unlike the reference 

calculations, the saddle point calculations performed in this work used 

ML inferences as initial structures. Although all options of saddle point 

optimization except for the initial structure used the same values as the 

reference options, saddle point calculation may fail to converge or 

converge to the different structure to the reference one. (detailed 

options for quantum chemical calculation parameters are provided in 

Section 4.1.) Without any manual processing of initial structures, a high 

convergence ratio for saddle point optimizations was still obtained. 

Additionally, it does not necessarily indicate that the ML model failed if 

the initial structures from the model do not converge because 

convergence is affected not only by initial structures but also by various 

parameters and methods of optimization. ” 

6. I am not particularly in favour of the authors TTA approach. In this approach, 

the authors use both the forward and reverse directions of a reaction to 

essentially generate "more" data in a somewhat artificial way. The result may be 

that the prediction becomes directionally invariant but I believe there is a 

significant risk of overfitting in doing so. My preference would be for directional 

invariance to be "baked in" to the model. I am not, however, asking the author 

to develop a new model but I would demand to see more training statistics. A 

training curve is an important element of any ML paper that is sorely lacking in 

this work. 

 I agree with the reviewer’s point that imposing directional invariance on 

ML model would be a better solution than acquiring it through post-

processing of inference results. For that, instead of a conventional 

bidirectional GRU layer, a recurrent neural network that can conserve 

directional symmetry would be an alternative. (This is my suggestion and 

I haven't implemented it yet.)  

Despite the limitation of the current model, TTA can be an attractive 

solution to preserve directional symmetry because, unlike conventional 

data augmentation methods, TTA is free from overfitting. The augmented 



data are used in only test time which means no artificially generated 

reaction data is used in training. Furthermore, reversing the direction of 

reactions does not induce any noise of output results because a TS 

structure of the backward reaction is identical to the forward one. To 

adopt the reviewer’s comment as well as other TTA-related comments 

from other reviewers, I revised explanation for TTA 

“For the test subset, the molecular MAPEs of the single model and 

ensemble were measured as 3.681% and 3.407%, respectively. The 

corresponding molecular MAE values are 11.56 pm and 10.70 pm. The 

error is reduced further by test-time augmentation (TTA), which utilizes 

the results of inferences of augmented test inputs to mitigate the 

variance of test inferences. For image data, flipped, rotated, and 

translated test images were used to enhance the quality of predictions. 

TTA can be implemented in many different ways depending on the 

methods used to augment data and merge inferences.[29,30] In this 

study, augmented data were obtained by reversing the directions of 

chemical reactions and the predicted interatomic distances from both 

original (forward) and reversed (backward) reactions are averaged. This 

not only enhances accuracy, but also eliminates the directional 

dependence of TS structures, which is an important invariance. Because 

this augmentation was not applied during training, no problems 

associated with artificial data such as reduced generalization were 

introduced.”



Reviewer #3 (Remarks to the Author): 

The present work by Choi presents a neural model for the prediction of 

transition state initial guess geometries for use in subsequent geometry 

optimization. These models address a key bottleneck in automated kinetic 

workflows, as traditional methods to generate TS geometries are both time 

consuming and failure-prone. Choi builds a model using transformer layers and 

gated recurrent units and proficiently takes advantage of model ensembles to 

predict the TS interatomic distance matrix. The predicted distance matrix is then 

used in a nonlinear optimization to recover the TS Cartesian coordinates. 

Evaluating the model on a dataset of general, small molecule organic reactions, 

the model achieves good convergence with guesses optimized at a high 

success rate and shows superior performance compared to existing ML 

models. My primary concerns with the manuscript are regarding clarity of the 

methods and analysis along with a broader discussing highlighting the 

limitations of the model. 

Hence, I recommend minor revisions to this manuscript before publication. 

1. Kinetic modeling is a visual science, but the reader sees very few examples 

of the model’s predictions. I recommend an additional figure, either in the main 

text or the supplement, showing examples of the model’s predictions--both 

good and poor. Including both unimolecular and bimolecular reactions would 

be nice. This will help the reader gain confidence in the model’s ability and may 

highlight areas for improvement. 

 To visualize more ML results, two types of extreme cases according to 

molecular MAPE and activation energy differences are additionally 

presented in the revised supporting information. The added visual 

contents cover both unimolecular and bimolecular reactions. Figure S1 

plots three best and worst prediction cases in terms of molecular MAPE. 

It clearly shows the characteristics of predictions. (e.g. no systematic 

handling in chirality) Additionally, in Figure S5 and Figure S6, I enumerate 

some positive and negative error cases in terms of activation energy, 

which are the extended version of Fig. 5. The explanations 

corresponding to those additional visual contents are added as follows:  

“The interatomic distances obtained from ML inferences are highly 

accurate. However, they do not directly correspond to reliable 3D TS 

structures. Fortunately, based on nonlinear optimization using the results 

of inferences, accurate molecular geometries whose errors in terms of 

interatomic distances are less than those of both single-model and 

ensemble results can be obtained. This indicates that the remaining error 

in the predicted distances can be mitigated by constraining the set of 



interatomic distances to satisfy the Euclidean condition. Despite highly 

accurate results using nonlinear optimization, because enantiomers are 

not distinguishable in terms of interatomic distances, nonlinear 

optimization cannot guarantee the correct chirality of TS structures. The 

incorrect prediction of chirality is not considered by the error metrics 

adopted in this study. Therefore, incorrect chirality prediction is observed 

even in the lowest-error case (0.88% molecular MAPE and 2.28 pm 

molecular MAE) shown in Figure S1, which plots few best and worst 

prediction results. This chirality issue is a common limitation of the ML 

model based on interatomic distance.[24]”  (The last paragraph in 5th

page) 

“Figure 5 presents two extreme IRC success cases in terms of their 

energy errors. The upper and lower subplots show the reference, 

predicted, and optimized TS structures for the cases with the most 

positive and most negative energy errors, respectively. More examples of 

large positive and negative error cases are plotted in Figure S5 and 

Figure S6, respectively. In Figure 5 as well as Figure S5 and Figure S6,

one can see that the predicted TS structures are not significantly 

changed by saddle point optimization, whereas the reference TS 

structures are noticeably different from both the predicted and optimized 

TS structures. ……” (The second last paragraph on the 10th page) 

2. I especially like the modeling choice to predict a multiplier to the ratio of 

the interpolated distance matrix and the TS distance matrix. Did you test 

predicting the distance value directly? I’m curious to know if this makes a 

substantial difference (not a necessary experiment). 

 I additionally performed the training of the model targeting the 

interatomic distance of TS structure directly. I had never trained such a 

model but I had expected that the change of predicted target degrades 

the performance because the normalization of interatomic distances 

using a linear-interpolated structure significantly reduces the variance of 

target values. Surprisingly, the measured performance of the changed 

model is not much different from that of the proposed model. I did not 

further investigate the results due to the heavy computational cost of the 

quantum chemical validation. However, it can imply that the 

overwhelming performance of the proposed model originates from not 

the normalization of target values but its architecture. In this work, the 

changed model is not addressed in the proposed manuscript. In near 

future, I will prepare the manuscript for a more systematic investigation 



of the normalization effect in TS structure predictions. Thank you for your 

insight. 

3. I’m not sure that TTA is worth highlighting, since according to Fig. 2, it 

does not improve model performance much. 

As the reviewer mentioned, TTA does not induce meaningful 

performance enhancement, especially in the ensemble case but, as I 

explained in the manuscript, TTA can provide invariant results according 

to the directions of reactions, which enhances the chemical justification 

of predictions. Therefore, TTA can generate more chemically reasonable 

results. To properly convey the meaning of TTA in this work and adopt 

comments raised by you and other reviewers (4th comment from 1st

reviewer and 6th comment from 2nd reviewer), I supplement the 

explanation for TTA and its significance as follows:  

“For the test subset, the molecular MAPEs of the single model and 

ensemble were measured as 3.681% and 3.407%, respectively. The 

corresponding molecular MAE values are 11.56 pm and 10.70 pm. The 

error is reduced further by test-time augmentation (TTA), which utilizes 

the results of inferences of augmented test inputs to mitigate the 

variance of test inferences. For image data, flipped, rotated, and 

translated test images were used to enhance the quality of predictions. 

TTA can be implemented in many different ways depending on the 

methods used to augment data and merge inferences.[29,30] In this 

study, augmented data were obtained by reversing the directions of 

chemical reactions and the predicted interatomic distances from both 

original (forward) and reversed (backward) reactions are averaged. This 

not only enhances accuracy, but also eliminates the directional 

dependence of TS structures, which is an important invariance. Because 

this augmentation was not applied during training, no problems 

associated with artificial data such as reduced generalization were 

introduced.”

4. I appreciate the information Fig. 3b is trying to convey, but it’s difficult to 

read, especially with all the different colored histograms in the background. At 

the very least, I suggest making this figure much larger, but I would try to 

improve its readability. 



 Thanks for your kind suggestion on the visual content. To improve the 

readability of Fig. 3(b), bond types whose bonds are rarely distributed in 

the training set are excluded in visualization. In addition to that, the 

figure is slightly extended by the rearrangement of subplots. Instead of 

eliminating the distributions of all types of atomic pairs in the main 

manuscript, I added Figure S3 in the supplementary information to 

visualize the overall distribution. To note these changes, the caption of 

Figure 3 (b) is updated as follows:  

(b) Absolute percentage errors and numbers of atomic pairs with 

different element sets according to interatomic distance. The dotted, 

dashed, and solid lines represent the average errors of TSNet, TSGen 

and the ensemble approach, respectively. The bars represent the 

frequencies of distances in the training set by atomic number. The red 

line represents a value of 156.6 pm, which is the criterion for the 

presence of a chemical bond. For clarity, only the distributions of 

selected atomic pairs are visualized. The distributions of the atomic pairs 

that are not visualized are plotted in Figure S2 in the supplementary 

information.

5. While it is nice that ~94% of the optimizations converged, one should 

perform frequency calculations and verify the presence of exactly one 

imaginary frequency to correctly characterize the saddle point. I highly 

recommend that this analysis be performed for all of the successful 

optimizations. They should definitely be performed for the 126 cases with 

energies differences higher than 0.1 kcal/mol. Without a proper frequency 

analysis, it is uncertain whether the structures are true TS structures (even if 

they were verified by IRC). 

 As the reviewer mentioned, a TS structure has one single negative 

(imaginary) frequency. In the previous manuscript, the number of 

imaginary frequencies of the converged structures was not addressed. 

To convey the results of frequency calculations, I added one paragraph 

to explain the frequency calculation results of all the optimized structures 

and the implication of a high success ratio in Section 2.2 of the revised 

manuscript as follows: 

“For the converged structures, frequency calculations were performed 

and it was observed that 956 structures (80% of the 1196 test set data) 

had one negative frequency. The high success ratio is not direct 

evidence of high accuracy of the ML inferences but considering the fact 

that Grambow's reaction database includes many non-trivial reactions, 



an 80% success ratio without any manual handling is a noteworthy 

achievement that reflects the fidelity of ML inferences as initial structures 

for saddle point calculations.  

 Additionally, in the discussion of IRC analysis, I noted the number of IRC 

success structures having one imaginary frequency. Also, I added Figure 

S4 that shows distributions of structures having different numbers of 

imaginary frequencies To note that, I revised the manuscript as follows:  

“In addition to frequency calculations, intrinsic reaction coordination 

(IRC) calculations were performed to investigate the validity of the 

optimized TS structures. The structures with errors greater than 0.1 

kcal/mol (shown on the right side of the red line in Figure 4(b)) were 

selected for testing (126 cases). In principle, a TS structure has a single 

negative frequency and an IRC calculation beginning from a TS structure 

provides target reactants and products. However, among the 126 

converged TS structures, there were only 45 structures that satisfied 

both conditions (8 and 58 structures did not satisfy the negative 

frequency and IRC conditions, respectively, and 15 structures failed on 

both criteria). If the reference reactant and product structures were 

obtained by IRC calculations, then the cases were classified into the IRC 

success group. Otherwise, they were classified into the IRC failure 

group. The overall distributions of both groups according to the energy 

error (|���� − ����|) are represented in Figure 4(c). Additionally, each 

distribution of structures having a different number of negative 

frequencies is plotted in Figure S4.” 

6. There are few key limitations the author should highlight. First, that the 

reactant and product geometries used to generate TS guesses in this study 

were obtained from the Grambow dataset and are hence QM-optimized 

reactants and products. Thus, the model still requires QM-optimized reactants 

and products as input, which should be clearly stated in the manuscript. 

Second and more importantly, for any bimolecular reactions, the reactants and 

products need to be aligned in a reacting configuration, which is inherently the 

case in the Grambow dataset because the data were generated using the 

growing string method. A typical workflow performs opt+freq calculations on 

each species independently as traditional TST calculations expect partitions 

functions for each species rather than for the VDW complex that is found in the 

Grambow dataset. For reactions that have 2 or 3 products, which represent 

about 30% of this dataset, it would normally require another step to align these 

species to create the complex that was used to train the model presented here. 

Without a robust alignment scheme, it is unclear whether or not the presented 



model can be successfully applied to bimolecular reactions. This limitation 

should also be clearly stated in the paper. 

 I agree that it is necessary to clearly state the limitations of the proposed 

idea. As the reviewer pointed out, the proposed ML model relies on the 

results of quantum chemical calculations because all data used in this 

study are from QM optimizations. Therefore, the proposed model does 

not include the sampling procedure of conformations for reactants and 

products. One example that I present in this manuscript is that the 

trained model can work with off-equilibrium geometries. However, it still 

requires opt+freq calculations because the sampling is performed based 

on normal mode sampling. For bi- and tri-molecular reactions, the 

proper selection of VDW complexes is not simply achieved by a single 

optimization. Therefore, typical sampling method and quantum chemical 

calculations are still unavoidable in the process of predicting TS 

structures despite the overwhelming performance of ML predictions. To 

convey this limitation of the current ML model and the need for sampling 

methods based on quantum chemical calculations, I revised the last 

paragraph of Section 3 as follows: 

“To demonstrate the potential usage of the proposed model for 

searching multiple reaction paths, an autonomous reaction path finder 

was implemented and tested on a polyatomic reaction. By performing 

ML inference on the off-equilibrium conformations of reactants and 

products, and further refinement through saddle point calculations, 

various chemically meaningful TS structures were identified. This 

automated TS finder has huge potential to leverage ML applications for 

chemical reactions because it can be directly utilized for not only 

chemical applications (e.g., design of synthetic routes and catalysts), 

but also various ML applications related to chemical reactions (e.g., 

active learning). Although off-equilibrium conformations are utilized to 

predict TS structures, they are still sampled from well-optimized and 

aligned structures, which are obtained from quantum chemical 

calculations. This process is not trivial, particularly for bimolecular and 

trimolecular reactions, because the initial relative pose of molecules is a 

critical factor in determining reaction profiles. Therefore, to develop a 

more rigorous and realistic strategy for TS structure prediction, 

combinations of various ML approaches presented in this work (e.g., 

TTA and ensemble), as well as high-end quantum chemical calculation 

methods for configuration sampling are required.” 



7. To train the TS model, Choi uses random splits on the Grambow dataset. 

However, several recent publications have noted the issues with using random 

splits on this dataset (see ref. 1 and 2). While the dataset contains ~12k unique 

reactions, it only contains ~1-2k unique reactants. So, when using a random 

split, some of the reactants may be duplicated in the test set. For TS geometry 

prediction, this is not a severe issue, but I suggest reproducing Fig. 2 using 

reactant-based scaffold splits (see ref. 2 for additional details). There’s no 

need to redo the QM optimization section.  

 I trained the same ML model with the data from reactant-based scaffold 

splitting and summarized the results in Table S1 in the revised supporting 

information. In both MAPE and MAE metrics, the scaffold splitting results 

slightly outperform the random splitting results. It indicates that 

duplicates of the reactant’s scaffold are not critical in learning TS 

structure as the reviewer mentioned. I added discussion in Section 4.1of 

the revised manuscript as follows: 

“Random sampling is the simplest method for splitting a database into 

train, validation, and test subsets. However, in a reaction database, 

random sampling may lead to the same structures being included in both 

the training and test sets because reactions sharing a reactant or 

product are treated as different reactions in a reaction database. To 

avoid duplicates of structures, in some ML applications for chemical 

reactions, reactant-based scaffold splitting, which assigns reactants 

having the same scaffold to the same subset, is employed.[35,36] Table 

S1 summarizes the accuracy of ensemble predictions trained using 

Grambow's database with two different sampling methods. The results 

indicate that the proposed model provides reliable  accuracy, regardless 

of the splitting method. Therefore, only random sampling was used for 

further quantum chemical validations.”

8. I didn’t quite understand the model loss functions for the reactant and 

product readout layers. These layers are predicting the energy and entropy of 

the reactants and products? This description (pg. 14) could be clarified. 

Further, while I understand the motivation for these readout layers (i.e. benefits 

of multitask training), it is not demonstrated whether this strategy is actually 

useful. Experiments ablating these readout layers would be helpful. 

 The second readout layer of the proposed model illustrated as pink 

boxes in Figure 1 predicts atomic contributions of energy, and two 

entropy values. The predicted properties are used to evaluate the second 

part of loss, L2 in Equation 5. It is originally designed to impose 

Hammond’s postulate on the model. In the original manuscript, I showed 

the prediction accuracy of model trained with two different c’ values (0 

and 1). If c’ is zero, L2 and L3 are not minimized during the training, 



which means multi-label learning is not used. In the original supporting 

information, the accuracy of all models belonging to the ensemble is 

enumerated but it did not well convey the effect of multi-label learning. 

Therefore, the table in the supporting (Table S3 in the revised one) is 

added and related discussion is added in the second last paragraph of 

Section 4.2 as follows: 

“……The predicted values from the second readout layers are utilized for 

multi-label learning, which is frequently used to improve the quality of 

ML inferences by deriving desired information from related information.[

 42,43] However, in this study, additional labels reduced the accuracy of 

the ML model (see Table S3 in the supporting information.) A detailed 

description of the loss function design is provided in Section 4.4.” 

9. The statement at the beginning of section 4.5 is not exactly true. First, the 

model from ref. 3 does in fact predict an interatomic distance matrix, but it 

reconstructs Cartesian coordinates from the predicted distance matrix in an 

end-to-end fashion. So the statement that “previous studies...directly infer the 

3D atomic positions” isn’t strictly true. In fact, the nonlinear optimization used 

here is nearly identical to the one used in ref. 3, aside from the fact that ref. 3 

used learned weights (w_ij). Second, an important work which was missed in 

the citations (ref. 4), uses a related approach of predicting a Columb matrix 

intermediate and obtaining the Cartesian coordinates through an optimization. 

 Sorry for the incorrect description of previous studies. As the reviewer 

correctly described, the ML model in Reference 3 (Ref[24] in the revised 

manuscript.) predicts interatomic distances and subsequently 

reconstructs atomic positions although, unlike my model, nonlinear 

optimization in TSGen is a part of ML predictions and its gradients are 

tracked in the backpropagation procedure. On the other hand, some TS 

prediction models do not rely on subsequent optimization. To clarify why 

some models use it and others do not, the first few sentences of Section 

4.5 is revised as follows:

“An ML model such as TSNet directly outputs atomic positions satisfying 

invariance conditions.[25] However, in some studies, including this 

study, to preserve the constraints of atomic positions, ML models predict 

structure-dependent quantities (e.g., a distance matrix[24] or Coulomb 

matrix[45]) and atomic positions are reconstructed through a 

subsequent nonlinear optimization. In this study, similar to the TSGen 

model, a distance matrix was used as an optimization target. In TSGen, 

nonlinear optimization is a component of ML inference, whereas, in this 

study, nonlinear optimization was performed after the completion of ML 

inference. Therefore, the results of multiple ML models can be used in a 



single nonlinear optimization together. From the initial atomic positions, 

X,  the nonlinear optimization finds optimal positions, X*, to minimize the 

differences relative to the ML predictions as follows:”

10. The choice of 90 models for the ensemble seems a bit excessive and may 

negatively impact downstream usage (i.e. longer runtimes). It would be nice to 

include some analysis on how many models are truly necessary as the choice 

of 90 seems arbitrary. 

 The performance according to ensemble size is important information 

because, as the reviewer mentioned, the elapsed time for inference is 

linearly proportional to the size of the ensemble. To select the optimal 

ensemble size, the accuracy of ensemble predictions according to its 

size is additionally investigated. It is observed that the ensemble with 90 

models is not the best case. In both molecular MAPE and molecular 

MAE, the ensemble with models sharing the best hyperparameters 

(c=2000 and c′=0) shows better performance than the 90 model case. 

To convey the reviewer’s comment and performance of different 

ensemble cases, Table S3 is added in supporting information and the 

last paragraph of Section 4.5 is revised as follows:   

“For ensemble predictions, multiple interatomic distance matrices are 

required prior to nonlinear optimization. Therefore, the computational 

costs of inferences are linearly dependent on the size of the ensemble, 

so the proper selection of an ensemble is important. Sets of models that 

were obtained from training using different seeds, hyperparameters, and 

training epochs were utilized. Six different combinations of 

hyperparameters (c and c′ in Equation 5) are used. For each 

hyperparameter combination, three independent training runs with 

different random seeds were performed. During each training run, the 

model parameters in the epoch yielding the top five molecular MAPE 

values for the validation dataset were saved and used for the ensemble.  

Ensemble predictions attempt to mitigate the variance of single-model 

predictions. However, the participation of low-accuracy models in an 

ensemble may reduce overall ensemble accuracy. The performances of 

all individual models are summarized in Table S4 and Table S3 

summarizes the prediction accuracies of many different ensembles. For 

quantum chemical validation, ensemble predictions from 90 trained 

models were used and one can see that only the ensemble containing 

models trained using the optimal hyperparameter set (c=2000 and c′=0) 

outperforms the ensemble with 90 models.”



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The author has properly addressed reviewer's comment but I'd like to point few things prior to 
publication. 

1. Regarding comment #8, for convergence criteria author should provide corresponding units. Also 
What I asked for was to specify saddle point calculation algorithm (e.g. finite difference Davison 

procedure and associated solver convergence criterion). This is important, in my opinion, for 
reproducibility as there are various algorithms in QChem and author should provide exact information 

required for its potential reproduction. 

Reviewer #2 (Remarks to the Author): 

I have read the attached response letter in detail. Both to assess the authors response to my own 
comments and to review how they have responded to the other referees. 

In all cases, I am satisfied that the manuscript can mow be published. 

Reviewer #3 (Remarks to the Author): 

Thank you for responding to all of my comments and concerns. All of the additional changes to the 
manuscript improve its quality and make it suitable for publication as is. I'm quite impressed with the 

thoroughness of this rebuttal including the many additional experiments, figures appended to the SI, 
and expanded discussions. 80% success on frequency calculations seems a bit low, but the authors 

of the Grambow dataset did not perform IRCs on the dataset, so perhaps some of these failures are 
because of the underlying dataset rather than the model. I was not surprised to see that using 90 
models is not the optimal setting, and using only two models with the best hyperparameters should 

speed up inference. I'm looking forward to the follow-up work! Well done! 



Reviewer #1 (Remarks to the Author): 

The author has properly addressed reviewer's comment but I'd like to point few 

things prior to publication. 

 I deeply thanks to you for thorough review. It was helpful to enhance 

readability of the manuscript. 

1. Regarding comment #8, for convergence criteria author should provide 

corresponding units. Also What I asked for was to specify saddle point 

calculation algorithm (e.g. finite difference Davison procedure and associated 

solver convergence criterion). This is important, in my opinion, for 

reproducibility as there are various algorithms in QChem and author should 

provide exact information required for its potential reproduction. 

 All tolerance values are in atomic unit and the used method for TS 

optimization is finite difference Davidson procedure. I added these 

conditions on the revised manuscript.  

Reviewer #2 (Remarks to the Author): 

I have read the attached response letter in detail. Both to assess the authors 

response to my own comments and to review how they have responded to the 

other referees. In all cases, I am satisfied that the manuscript can mow be 

published. 

 I deeply thanks to you for kind review and revealing yourself. I will 

continue the study on ML-based transition state predictions of chemical 

reactions. Please let me know any collaborations with me if you have 

interests.  

Reviewer #3 (Remarks to the Author): 

Thank you for responding to all of my comments and concerns. All of the 

additional changes to the manuscript improve its quality and make it suitable for 

publication as is. I'm quite impressed with the thoroughness of this rebuttal 

including the many additional experiments, figures appended to the SI, and 

expanded discussions. 80% success on frequency calculations seems a bit 

low, but the authors of the Grambow dataset did not perform IRCs on the 



dataset, so perhaps some of these failures are because of the underlying 

dataset rather than the model. I was not surprised to see that using 90 models 

is not the optimal setting, and using only two models with the best 

hyperparameters should speed up inference. I'm looking forward to the follow-

up work! Well done! 

 I am truly grateful to you for your careful review and encourage. As you 

mentioned, frequency convergence is a bit low. Therefore, I will focus on 

combining other techniques from QM or chemical informatics to my 

model in near future.  


