The interactions of monomeric acridines and unsymmetrical bisacridines (UAs) with DNA duplexes – an insight provided by NMR and MD studies

Tomasz Laskowski^{1,*}, Michał Kosno¹, Witold Andrałojć², Joanna E. Frackowiak¹, Julia Borzyszkowska-Bukowska¹, Paweł Szczeblewski¹, Nikola Radoń¹, Maria Świerżewska¹, Anna Woźny³, Ewa Paluszkiewicz¹, Zofia Mazerska¹

¹ Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Gabriela Narutowicza Str. 11/12, 80-233, Poland ² Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Zygmunta Noskowskiego Str. 12/14, 61-704, Poland

³ Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Gabriela Narutowicza Str. 11/12, 80-233, Poland

* tomasz.laskowski@pg.edu.pl

SUPPLEMENTARY DATA

CONTENTS:

Figure S1. The H6/H8-H1' NOESY-walks for the A and B strands of dsDNA duplex, traced for the	
d(CGATATCG) ₂ :C-1311 complex (D2L).	3
Figure S2. The H6/H8-H1' NOESY-walks for the A and B strands of dsDNA duplex, traced for the	
d(CCCTAGGG) ₂ :C-1311 complex (D3L)	4
Figure S3. The H6/H8-H1' NOESY-walks for the A and B strands of dsDNA duplex, traced for the	
d(CGCTAGCG) ₂ :C-1305 complex (B2L).	5
Figure S4. Codenames assigned to the protons of C-1311 (Symadex) and C-1305	6
Table S1 . ¹ H NMR chemical shifts (δ [ppm], referenced to TSP residual signal set to 0.000 ppm) of the protons of the ligands, as well as the protons of the DNA duplexes forming the d(CGATATCG) ₂ :C-1311	
(D2L), d(CCCTAGGG) ₂ :C-1311 (D3L) and d(CGCTAGCG) ₂ :C-1305 (B2L) complexes	6
Table S2 . ¹ H NMR chemical shifts (δ [ppm], referenced to TSP residual signal set to 0.000 ppm) of the protons of the free d(CGCTAGCG) ₂ DNA duplex	8
<i>Figure S5.</i> UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: spectra	Ŭ
resulting from titration.	9
<i>Figure S6.</i> A comparison of the UV-VIS spectra of the free monoacridines, i.e. C-1305 and C-1311, and bound to a dsDNA sequence with 1:1 mol/mol stoichiometry	9
Figure S7. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: spectra of	
the principal components1	0
Figure S8. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: molar	
fractions1	0
Figure S9. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: Scatchard plots	1
Table S3. Interactions of unsymmetrical bisacridines (UAs), i.e. C-2028, C-2041, C-2045, and C-2053, with dsDNA duplexes	ה 1
Table S4 The definition of distance restraints used in molecular dynamics simulations 1	1
Figure S10. Titration experiments, performed for Nitracrine and C-1748, using d(CGATATCG) ₂ (D2)	'
dsDNA hosting duplex	2

Figure S1. The H6/H8-H1' NOESY-walks for the A and B strands of dsDNA duplex, traced for the d(CGATATCG)₂:C-1311 complex (D2L).

Figure S2. The H6/H8-H1' NOESY-walks for the A and B strands of dsDNA duplex, traced for the d(CCCTAGGG)₂:C-1311 complex (D3L).

Figure S3. The H6/H8-H1' NOESY-walks for the A and B strands of dsDNA duplex, traced for the d(CGCTAGCG)₂:C-1305 complex (B2L).

Figure S4. Codenames assigned to the protons of C-1311 (Symadex) and C-1305.

Table S1. ¹H NMR chemical shifts (δ [ppm], referenced to TSP residual signal set to 0.000 ppm) of the protons of the ligands, as well as the protons of the DNA duplexes forming the d(CGATATCG)₂:C-1311 (**D2L**), d(CCCTAGGG)₂:C-1311 (**D3L**) and d(CGCTAGCG)₂:C-1305 (**B2L**) complexes. Deoxyribose protons H4', H5' and H5'' were not listed due to severe superpositions of proton resonances. Chemical shifts of the protons of the free **D2** and **D3** duplexes were given in the Reference 11 (see the main manuscript); chemical shifts of the protons of the free **B2** duplex were listed in Table S2.

d(CGATATCG) ₂ (D	:C-1311 complex 2L)	-1311 complex d(CCCTAGGG)₂:C-1311 co L) (D3L)		d(CGCTAGCG)₂:C-1305 complex (B2L)	
proton	δ (ppm)	proton	δ (ppm)	proton	δ (ppm)
ligand	(C-1311)	ligand	(C-1311)	ligand (C-1305)
L-H1	8.403	L-H1	8.497	L-H3	6.953
L-H3	6.596	L-H3	6.670	L-H4	6.146
L-H4	5.738	L-H4	5.772	L-H7	6.494
L-H7	6.257	L-H7	6.417	L-H9	7.134
L-H9	6.942	L-H9	7.026	L-H10	7.950
L-H10	7.593	L-H10	7.742	L-H15	3.418
L-H15	3.611	L-H15	3.576	L-H16	3.273
L-H16	3.458	L-H16	3.450	L-H17	3.273
L-H17	3.365	L-H17	3.323	L-H18	2.947
L-H18	1.426	L-H18	1.360		
		DNA	duplex		
A-C1H1'	5.671	A-C1H1'	5.940	A-C1H1'	5.740
A-C1H2"	2.390	A-C1H2'	2.214	A-C1H2'	2.012
A-C1H2'	2.378	A-C1H2"	2.242	A-C1H2"	2.434
A-C1H3'	4.684	A-C1H3'	4.653	A-C1H3'	4.716
A-C1H5	5.859	A-C1H5	5.912	A-C1H5	5.859
A-C1H6	7.653	A-C1H6	7.830	A-C1H6	7.646
B-C1H1'	5.671	B-C1H1'	5.949	B-C1H1'	5.741
B-C1H2"	2.390	B-C1H2'	2.210	B-C1H2'	2.004
B-C1H2'	2.378	B-C1H2"	2.235	B-C1H2"	2.424
B-C1H3'	4.684	B-C1H3'	4.658	B-C1H3'	4.716
B-C1H5	5.859	B-C1H5	5.912	B-C1H5	5.863
B-C1H6	7.653	B-C1H6	7.833	B-C1H6	7.648
A-G2H1'	5.619	A-C2H1'	5.962	A-G2H1'	5.914
A-G2H2"	2.742	A-C2H2	2.313	A-G2H2	2.664
A-G2H2'	2.722	A-C2H2"	2.466	A-G2H2"	2.705
A-G2H3'	4.990	A-C2H3	4.834	A-G2H3'	4.979
A-G2H8	7.933	A-C2H6	7.659	A-G2H8	7.948

B-G2H1'	5.480	B-C2H1'	5.985	B-G2H1'	5.904
B-G2H2"	2.742	B-C2H2'	2.232	B-G2H2'	2.666
B-G2H2'	2,722	B-C2H2"	2.472	B-G2H2"	2,704
B-G2H3'	4 990	B-C2H3'	4 853	B-G2H3'	4 974
B-G2H8	7 933	B-C2H6	7 634	B-G2H8	7 937
Δ-Δ3Η1'	6 186	A-C3H1'	5 815	A-C3H1'	5 905
Δ_Δ3Η2"	2 833	A-C3H2'	2 040	A-C3H2'	2 459
A-A3H2	2.000	A-03H2	2.040	A-03H2	2.400
A-A3H2 A_A2H2'	2.337		2.433	A-C3H2	2.702
	4.940		4.701		4.705
А-АЗПО В АЗНИ	0.100		7.527		3.242
B-A3H1	0.214	B-C3H1	5.884		7.354
B-A3HZ"	2.902	B-C3H2	2.019	B-C3H1	5.887
B-A3H2	2.586	B-C3H2"	2.450	B-C3H2	2.428
B-A3H3	5.039	B-C3H3	4.794	B-C3H2"	2.691
B-A3H8	8.208	B-C3H6	7.525	B-C3H3'	4.658
A-T4CH3	1.190	A-T4CH3	1.489	B-C3H5	5.214
A-T4H1'	6.013	A-T4H1'	6.108	B-C3H6	7.299
A-T4H2"	2.538	A-T4H2'	2.592	A-T4CH3	1.641
A-T4H2'	2.491	A-T4H2"	2.606	A-T4H1'	5.942
A-T4H3'	4.972	A-T4H3'	4.998	A-T4H2'	2.487
A-T4H6	7.151	A-T4H6	7.408	A-T4H2"	2.617
B-T4CH3	1.388	B-T4CH3	1.644	A-T4H3'	5.018
B-T4H1'	5.798	B-T4H1'	5.880	A-T4H6	7.418
B-T4H2"	2.386	B-T4H2'	2.473	B-T4CH3	1.465
B-T4H2'	2.328	B-T4H2"	2.488	B-T4H1'	6.125
B-T4H3'	4.990	B-T4H3'	5.007	B-T4H2'	2.477
B-T4H6	7.132	B-T4H6	7.399	B-T4H2"	2.615
A-A5H1'	6.273	A-A5H1'	5.842	B-T4H3'	5.018
A-A5H2"	2,952	A-A5H2'	2.770	B-T4H6	7.419
A-A5H2'	2 815	A-A5H2"	2 806	A-A5H1'	5 798
A-A5H3'	4 993	A-A5H3'	4 979	A-A5H2'	2 783
A-A5H8	8 398	A-A5H8	8 249	A-A5H2"	2 802
B-A5H1'	6 171	B-A5H1'	5 799	A-A5H3'	4 963
B-A5H2"	2 935	B-A5H2'	2 712	A-A5H8	8.352
B-45H2'	2.000	B-45H2"	2 793	B-45H1'	5 904
B-45H3'	4 938	B-Δ5H3'	4 917	B-45H2'	2 809
B-A5H8	8 300	B-A5H8	8 285	B-A5H2"	2.000
	1 188	Δ-G6H1'	5 308	B-A5H3'	5 001
Δ-Τ6Η1'	5.946	A-G6H2'	2.547	B-A5H8	8 302
A-T6H2"	2 /15	A-0012	2.547	A-C6H1'	5 720
A-T6H2'	2.415	A-00112	4 054	A-C6H2'	2.556
A-10112 A-T6H3'	2.000	A-G6H8	7 605	A-G6H2"	2.550
	4.009		7.095		2.374
	1.241		0.572		4.970
	1.240 5.950		2.347		7.700
	0.009		2.372		0.720
	2.407		4.944		2.007
	2.028		7.003	B-G0H2	2.574
B-10H3	4.817	A-G/HT	5.793	B-G6H3	4.975
	7.174	A-G/H2	2.584	B-G0H8	7.739
A-C/H1	5.719	A-G/H2"	2.743		5.812
	2.400	A-G7H3	4.981		2.371
A-C/H2	2.322	A-G/H8	7.695	A-C/H2"	2.569
A-C7H3'	4.825	B-G7H1'	5.830	A-C7H3'	4.853
A-C7H5	5.579	B-G7H2'	2.579	A-C7H5	5.345
A-C7H6	/.4/0	B-G7H2"	2.763	A-C7H6	7.358
B-C7H1'	5.730	B-G7H3'	4.981	B-C7H1'	5.766
B-C7H2"	2.400	B-G7H8	7.683	B-C7H2'	2.359
B-C7H2'	2.322	A-G8H1'	6.109	B-C7H2"	2.569
B-C7H3'	4.825	A-G8H2'	2.495	B-C7H3'	4.835
B-C7H5	5.579	A-G8H2"	2.330	B-C7H5	5.333
B-C7H6	7.470	A-G8H3'	4.646	B-C7H6	7.342

A-G8H1'	6.095	A-G8H8	7.742	A-G8H1'	6.136
A-G8H2"	2.337	B-G8H1'	6.111	A-G8H2'	2.656
A-G8H2'	2.672	B-G8H2'	2.505	A-G8H2"	2.363
A-G8H3'	4.691	B-G8H2"	2.337	A-G8H3'	4.687
A-G8H8	7.893	B-G8H3'	4.646	A-G8H8	7.948
B-G8H1'	6.095	B-G8H8	7.730	B-G8H1'	6.141
B-G8H2"	2.337			B-G8H2'	2.645
B-G8H2'	2.672			B-G8H2"	2.357
B-G8H3'	4.691			B-G8H3'	4.687
B-G8H8	7.893			B-G8H8	7.948

Table S2. ¹H NMR chemical shifts (δ [ppm], referenced to TSP residual signal set to 0.000 ppm) of the protons of the free d(CGCTAGCG)₂ DNA duplex.

proton	δ (ppm)	proton	δ (ppm)
C1H1'	5.634	A5H1'	5.891
C1H2'	1.904	A5H2	7.188
C1H2"	2.324	A5H2'	2.610
C1H3'	4.581	A5H2"	2.751
C1H4'	3.934	A5H3'	4.910
C1H5	5.785	A5H4'	4.275
C1H5'	3.585	A5H5'	3.928
C1H5"	3.594	A5H5"	4.000
C1H6	7.536	A5H8	8.110
G2H1'	5.820	G6H1'	5.573
G2H2'	2.590	G6H2'	2.365
G2H2"	2.622	G6H2"	2.469
G2H3'	4.860	G6H3'	4.820
G2H4'	4.244	G6H4'	4.236
G2H5'	3.869	G6H5'	4.040
G2H5"	3.976	G6H5"	4.057
G2H8	7.874	G6H8	7.591
C3H1'	5.847	C7H1'	5.580
C3H2'	1.941	C7H2'	1.746
C3H2"	2.376	C7H2"	2.195
C3H3'	4.644	C7H3'	4.657
C3H4'	4.114	C7H4'	4.000
C3H5	5.237	C7H5	5.192
C3H5'	4.037	C7H5'	3.946
C3H5"	4.049	C7H5"	3.960
C3H6	7.331	C7H6	7.171
T4H1'	5.429	G8H1'	6.020
T4H2'	2.035	G8H2'	2.478
T4H2"	2.331	G8H2"	2.195
T4H3'	4.737	G8H3'	4.527
T4H4'	4.006	G8H4'	4.035
T4H5'	3.925	G8H5'	3.907
T4H5"	3.959	G8H5"	3.919
T4H6	7.308	G8H8	7.812

Figure S5. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: spectra resulting from titration.

Figure S6. A comparison of the UV-VIS spectra of the free monoacridines, i.e. C-1305 and C-1311 (red line), and bound to a dsDNA sequence with 1:1 mol/mol stoichiometry (blue line).

Figure S7. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: spectra of the principal components.

Figure S8. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: molar fractions.

Figure S9. UV-VIS and chemometric analysis of C-1305 and C-1311 binding to DNA duplexes: Scatchard plots.

Table S3. Interactions of unsymmetrical bisacridines (UAs), i.e. C-2028, C-2041, C-2045, and C-2053, with dsDNA duplexes.

Oligonucleotide codename	Sequence 5'-3'	Binding site in the case of C- 2028	Binding site in the case of C- 2041	Binding site in the case of C- 2045	Binding site in the case of C- 2053
U1	CGATGCATCG	-	-	-	-
U2	CGTAGCTACG	-	-	-	-
U3	CTGACGTCAG	-	-	-	-
U4	CTAGCGCTAG	-	-	-	-

Table S4. The definition of distance restraints used in molecular dynamics simulations. When the distance between two protons fits between 'down' and 'up1' values: no potential is being used to bring the respective protons closer; when the distance fits between 'up1' and 'up2' or its value is lower than 'down': a quadratic potential is being added; when the distance exceeds 'up2' limit: the potential becomes linear.

Distance restraint definition:	down [nm]	up1 [nm]	up2 [nm]		
dsDNA/ligand intermolecular contact					
strong	0.2000	0.3250	0.4250		
medium	0.2500	0.4500	0.5500		
weak	0.3000	0.6000	0.7000		
Watson-Crick hydrogen bonds					
A=T hydrogen bond: AN1-TH3	0.1760	0.2160	0.3160		
A=T hydrogen bond: AH6-TO4	0.1850	0.2250	0.3250		
G≡C hydrogen bond: GH2-CO2	0.1680	0.2080	0.3080		
G≡C hydrogen bond:GH1-CN3	0.1800	0.2200	0.3200		
G≡C hydrogen bond: GO6-CH4	0.1800	0.2200	0.3200		

Figure S10. Titration experiments, performed for Nitracrine (panel A) and C-1748 (panel B), using d(CGATATCG)₂ (D2) dsDNA hosting duplex. Protons of the DNA, which were most notably affected by a ligand's presence, i.e. imino protons T4 & T6 and unexchangeable protons A3H2, A5H2, T4H6, T6H6, T4CH₃ and T6CH₃ were marked with red asterisks (*).