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Supplementary Figure 1. Outline of project with comparison of different prediction tasks. 
Initially, we assessed if deep learning models could make accurate inferences about simulations 
based on starting structures in task 1. We also compared different deep learning architectures 
(i.e., GVP-GNN vs. 3D-CNN). For task 1, validation and testing were performed with molecular 
dynamics-derived labels (see Methods). Next, we assessed if models trained with simulation 
labels could accurately predict where ligand-binding cryptic pockets are found in experimental 
structures. We used a validation set to evaluate different labeling schemes. Finally, we tested on 
a collection of experimental structures that included ligand-free experimental structures known 
to rearrange into cryptic pockets upon ligand binding as well as negative examples (see 
Methods). 
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Supplementary Figure 2. Featurization of TEM-1 β-lactamase. Featurization repeatedly 
identifies residues of both the horn site and omega loop pockets as cryptic sites without 
identifying residues in most other areas of the protein. Residues with negative featurization 



labels are colored blue while those with positive labels are colored red. Labels from 5 rounds 
(columns) of FAST with 10 parallel simulations each (rows) are shown projected onto the apo 
crystal structure used as a starting structure, with subsequent rounds running from left to right. 

 

 

 

Supplementary Figure 3. Label consistency in independent simulations. We determined the 
fraction of times that each residue participates in a cryptic pocket opening across independent 40 
ns-long simulations launched from the same starting structure. Values of 0 and 1 indicate perfect 
consistency (either opening in no simulations or opening in all simulations). The two peaks at 0 
and 1 indicate that our labeling scheme produces consistent labels across independent 
simulations launched from the same structure. However, among positive labels, a positive 
example was more likely to only open in a minority of independent simulations, indicating that 
many pocket opening events are rare on the timescales analyzed (40 ns). 

 

 



 

Supplementary Figure 4. RMSD distributions for the new protein set compiled in this work 
and for physiological monomers in the CryptoSite set without large gaps. Medians are 
shown in red. 



 

Supplementary Figure 5. Ligands binding carbonic anhydrase. The carbonic anhydrase cluster 
centroid (PDB ID 1YDA) is shown as a ribbon. Residues which are within 5Å of a valid MOAD 
ligand in any centroid are shown in red, while the remainder, which were used as negative true 
labels for testing and validation, are shown in white. A subset of ligands which are collectively 
within 5Å of every nonnegative residue are shown as cyan sticks. 

 

  



 
Supplementary Figure 6. Negative examples were curated from hyper-rigid proteins and 
common drug targets. We ran simulations of both kinds of proteins to determine if any pockets 
formed during these simulations. Any residues that were adjacent to a pocket in simulation were 
excluded from the test set. For common drug targets, any residues that bind a ligand were also 
excluded from the test set. 
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Supplementary Figure 7. Structural alignments of high-sequence-identity pairs of proteins 
used in this paper, using PyMol’s cealign function (see Supplementary Table 2).  
A. SARS-CoV-2 nsp12 (cyan) and PDB ID 1IGD (green). 1IGD is ~1/10th the length of nsp12. It 
aligns reasonably well to one area of nsp12, but the beta strand polarity and topology of the loops 
connecting the beta strands does not match.  
B. PDB ID 1IGD and SARS-CoV-2 nsp13 (blue). Once again, 1IGD aligns reasonably well to 
one area of the much larger nsp13, but the beta strand polarity and topology of the loops 
connecting the beta strands does not match.  
C. PDB ID 2FD7 (black) and PDB ID 2OHG (red), showing no meaningful structural 
homology.  
D. PDB ID 1IGD and PDB ID 1KMO (purple), showing no meaningful structural homology. 
E. SARS-CoV-2 nsp12 and SARS-CoV-2 nsp7 (magenta), showing no meaningful structural 
homology. 
F. PDB ID 5NZM (grey) and SARS-CoV-2 nsp7, showing no meaningful structural homology. 



 

Supplementary Figure 8. PocketMiner predictions on the test set. Proteins are shown as 
ribbons, colored from blue to red as predictions range from negative to positive. Ligand-lining 
residues (positive true labels) are shown as sticks. Residues in proteins believed to lack cryptic 
pockets which did not line pockets in simulation and residues in well-studied proteins which 
were neither adjacent to drug-like ligands nor lined pockets in simulations (negative true labels) 
are shown in spheres. Protein-bound ions are shown as spheres and colored according to their 
respective elements. Ligands binding in cryptic pockets are shown in cyan sticks (and cyan 
spheres for the two iron ions which comprise part of PDB ID 1KMO’s cryptic ligand 
assembly). Proteins are ordered left to right and then top to bottom, with cryptic pocket examples 
first in order of decreasing difference between the mean distance between ligand-lining residues 
in holo and apo (see attached SI spreadsheet tab validation_and_test_sets, columns O-R). 
Forward pockets are listed first, followed by ones involving a mixture of forward and reverse 
motions, followed by reverse pockets. 2FJY is listed out of order and placed next to the 
functionally related protein 1KX9 because the large number of apo residues which become 
unresolved in holo render the assignment of pocket direction unreliable. After the cryptic pocket 



examples are three proteins believed to be highly rigid, followed by proteins with many holo 
crystal structures. 

 
Supplementary Figure 9. PocketMiner predicts a cryptic pocket in Wnt2 that opens in 
simulation. A) Wnt2 is part of the Wnt2 signal transduction pathway that regulates apoptosis 
and has been identified as a cancer target. B) PocketMiner predicts a cryptic pocket will form 
based on the AlphaFold-predicted structure of Wnt2. In simulation, a cryptic pocket forms as a 
result of an interdomain closure. 
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Supplementary Figure 10. Schematic depicting 3D grid featurization for 3D-convolutional 
neural networks. There are four separate channels, one for each of the elements shown above. 
 
  



 
 
Supplementary Figure 11. 3D convolutional neural network training and validation PR-AUC 
as a function of epoch (x-axis) demonstrate convergence around 10 epochs. 
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Supplementary Table 1: Performance comparison between GVP-GNN and 3D-CNN on 
task 1 test sets (predicting pocket volume changes in simulation from starting structure). 
We used 5-fold cross-validation where the overall dataset was split into 5 groups by protein. 3 
folds were used for training; 1 fold was used for validation; and 1 fold was used for testing. We 
optimized hyperparameters (i.e., batch size, class balancing scheme, network parameters like 
dropout) separately for each split using the validation set (see Tables S2-5). 

Split GVP-GNN Test PR-AUC 3D-CNN Test PR-AUC 

0 0.32 0.36 

1 0.40 0.36 

2 0.48 0.45 

3 0.64 0.49 

4 0.38 0.39 

 

Supplementary Table 2: GVP-GNN model parameter scan results for a task 1 (predicting 
pocket volume changes in simulations based on starting structures) validation set show 
sensitivity to the choice of learning rate. This scan was performed using a single validation 
fold (fold 1), and the optuna library was used to select parameters across a range of options. We 
set a low learning rate (2e-5) and kept the default GVP-GNN parameters from the original 
publication for all subsequent experiments. 
 
 



Learning Rate Dropout 
GVP hidden scalar 
dimension Validation PR-AUC 

8.00E-05 0.07 50 0.288 
6.00E-05 0.06 75 0.245 
2.20E-04 0.06 100 0.238 
9.00E-05 0.12 50 0.205 
8.00E-05 0.27 100 0.204 
5.30E-04 0.06 50 0.192 
3.80E-04 0.12 75 0.144 
8.70E-04 0.20 50 0.067 
4.50E-04 0.20 100 0.066 
7.80E-04 0.09 50 0.065 

 

Supplementary Table 3: Comparison of GVP-GNN performance across different class 
balancing schemes and batch sizes on task 1 validation sets. We used 5-fold cross-validation 
where the overall dataset was split into 5 groups by protein (3 folds for training, 1 for validation, 
1 for testing). In the table below, we compare performance for different training parameters (i.e., 
batch size and class balancing scheme) separately for each split using the validation set. 
Generally, smaller batch sizes contributed to better performance. Bolding is used to indicate the 
best training setup for each split. 

Because positive label fraction across all labels is 0.1, the following weighting and class 
balancing schemes were used: 

• none 
• weighting: loss was weighted by the inverse proportion of negative and positive examples 

in each batch 
• oversampling: minor class (usually positives) was oversampled in each batch 
• undersampling: major class (usually negatives) was undersampled in each batch 
• constant size balancing: the same number of positive and negative examples was used for 

each batch in a 1:1 ratio 
 

Intermediate labels were those with volume changes between 116 and 20 LIGSITE grid points. 

Parameters PR-AUC on task 1 validation set 

intermediate 
labels included as 
negatives 

training label 
weighting or 
sampling scheme 

number of 
residues 
drawn 

Batch 
size 

Split 

0 1 2 3 4 

no none n/a 1 prot 0.398 0.348 0.285 0.270 0.247 



yes none n/a 1 prot 0.224 0.457 0.599 0.362 0.252 

no undersampling n/a 1 prot 0.322 0.368 0.319 0.275 0.325 

yes undersampling n/a 1 prot 0.352 0.377 0.587 0.357 0.321 

no oversampling n/a 1 prot 0.428 0.487 0.281 0.372 0.344 

yes oversampling n/a 1 prot 0.316 0.337 0.279 0.307 0.221 

no weighting n/a 1 prot 0.335 0.240 0.459 0.257 0.271 

yes weighting n/a 1 prot 0.406 0.318 0.422 0.267 0.215 

no none n/a 32 resis 0.373 0.378 0.481 0.280 0.333 

yes none n/a 32 resis 0.308 0.334 0.425 0.274 0.337 

no weighting n/a 32 resis 0.203 0.458 0.587 0.394 0.279 

yes weighting n/a 32 resis 0.388 0.385 0.635 0.410 0.263 

no constant size balancing 160 32 resis 0.355 0.386 0.488 0.243 0.312 

yes constant size balancing n/a 32 resis 0.284 0.378 0.523 0.368 0.246 

no none n/a 4 resis 0.480 0.399 0.555 0.398 0.355 

no constant size balancing n/a 4 resis 0.464 0.467 0.497 0.381 0.359 

yes constant size balancing n/a 4 resis 0.316 0.473 0.579 0.377 0.338 

no none n/a 4 resis 0.458 0.361 0.582 0.360 0.322 

yes none 160 4 resis 0.353 0.487 0.648 0.491 0.315 

yes none n/a 4 resis* 0.331 0.396 0.621 0.406 0.284 

yes none 160 4 resis 0.394 0.426 0.530 0.358 0.298 

yes constant size balancing 160 4 resis 0.410 0.437 0.496 0.420 0.348 

 

*4 residues were drawn from 4 different proteins randomly in this training setup. Otherwise, 4 
residues were drawn from a single protein. 

  



Supplementary Table 4: Comparison of 3D-CNN performance across different 
hyperparameters on task 1 validation sets. 

Network 
changes 
(if any) 

Class-
balancing 

Batch-
size* 

Learning-
rate 

Drop-
out 

prob. 

  Validation AUC-PR 

  
Split 

0 1 2 3 4 
  1:1 32 0.0001 0.7   0.288 0.253 0.500 0.472 0.313 
  1:2 32 0.0001 0.7   0.297 0.250 0.500 0.482 0.310 
  None 32 0.0001 0.7   0.230 0.233 0.424 0.433 0.277 
                      
  1:1 64 0.0001 0.7   0.212 0.235 0.472 0.466 0.271 
  1:2 64 0.0001 0.7   0.295 0.242 0.417 0.477 0.266 
                      
  1:2 32 0.001 0.7    0.172         
  1:2 32 0.01 0.7    0.277         
                      
  1:1 32 0.0001 0.1   0.091 0.104 0.303 0.274 0.101 
  1:2 32 0.0001 0.1   0.091 0.100       
  1:2 32 0.0001 0.5   0.225 0.185       
  1:2 32 0.0001 0.3   0.147 0.149       
                      
  1:1 128 0.001 0.7   0.231         
  None 128 1.00E-05 0.7   0.171         
4 
layers 1:2 128 1.00E-05 0.7   0.219         
4 
layers 1:2 128 0.001 0.7   0.219         
  1:2 128 0.0001 0.1   0.071         
  1:2 128 1.00E-05 0.1   0.090         
  1:2 128 1.00E-05 0.3   0.135         
                      

  None 
1 

protein 1.00E-05 0.7   0.146         

  1:2 
1 

protein 1.00E-05 0.7   0.234         

  1:2 
1 

protein 0.001 0.7   0.208         
*units of residues unless explicitly labeled 

  



Supplementary Table 5: Highest sequence identities among proteins in this work. Apo PDB 
IDs are given where applicable, and the PBD IDs of SARS and MERS protein structures (or 
those used for homology modeling) can be found in the training_5_fold_cv tab of the attached SI 
spreadsheet. The complete list of sequence identities between proteins used in this study 
exceeding 40% can be found in the sequence_identity tab of the same spreadsheet. 

Protein 1 Protein 2 Percent identity Notes 

SARS-1-nsp16 SARS-2-nsp16 93.493 

All in the same 5-fold cross validation fold 

MERS-nsp16 SARS-2-nsp16 65.870 

MERS-nsp16 SARS-1-nsp16 64.726 

1IGD SARS-2-nsp12 59.016 See fig S6A 

1IGD SARS-2-nsp13 57.377 See fig S6B 

2FD7 2OHG 54.348 See fig S6C 

1IGD 1KMO 52.459 See fig S6D 

2FD7 SARS-2-nsp12 52.174 - 

SARS-2-nsp12 SARS-2-nsp7 50.633 See fig S6E 

2FD7 SARS-2-nsp13 50.000 - 

1IGD 2GG4 49.180 - 

1JEJ 2FD7 47.826 - 

1V2N 2FD7 47.826 - 

5NZM SARS-2-nsp7 46.835 See fig S6F 
 
 

Supplementary Table 6: Featurization performance. Performance of the featurization scheme 
used to generate training labels from the simulations above on the same 12 CryptoSite proteins 
on which it was optimized. Residues within 5Å of the cryptic site ligand in the holo crystal 
structure were used as positive true labels. 

 PR AUC ROC AUC class split 

4AKE 0.457 0.848 0.136 

1BSQ 0.644 0.908 0.099 

1EX6 0.409 0.838 0.091 

1ALB 0.552 0.898 0.160 

1NEP 0.771 0.903 0.185 



1NI6 0.553 0.900 0.099 

2BLS 0.384 0.908 0.025 

2QFO 0.254 0.738 0.097 

3F74 0.272 0.762 0.111 

1EXM 0.117 0.708 0.074 

1ADE 0.417 0.900 0.056 

1MY0 0.504 0.923 0.070 

mean ± 1 SD 0.445 ± 0.171 0.853 ± 0.072 0.100 ± 0.044 
 
 
Supplementary Table 7: FAST simulations. We ran the FAST adaptive sampling algorithm 
(see methods) on 15 proteins from CryptoSite, 9 highly rigid proteins, and 10 proteins with many 
holo crystal structures in order to generate training data and negative examples for our validation 
and test sets. The number of FAST rounds and RMSD cluster radius used for simulations of each 
protein are given in the table below. FAST was run with 10 40 ns long parallel simulations per 
round for all proteins. 
 
Protein set PDB ID cluster radius number of rounds of FAST 
Training 1ADE 0.14 5 

1ALB 0.125 5 
1BSQ 0.1 5 

1EX6 0.18 5 
1EXM 0.14 7 
1MY0 0.14 5 
1NEP 0.08 5 

1NI6 0.14 5 
1OFV 0.11 5 
1QYS 0.12 5 

1RHB 0.12 5 
1RTC 0.14 5 
2BLS 0.12 5 
2CM2 0.12 5 

2QFO 0.13 5 
3F74 0.12 5 
4AKE 0.2 5 



5BVL 0.11 5 
Highly rigid proteins 
providing negative 
examples for the test 
set 

1AMM 0.1 3 
1IGD 0.14 3 

2ALP 0.1 3 
2FD7 0.1 3 
4HJK 0.1 3 

4TQL 0.14 3 
Proteins with many 
holo crystal structures 
providing negative 
examples for the test 
set 

1BTP 0.1 3 
1HCL 0.14 3 

2OSS 0.15 3 
2ZHV 0.15 3 
3GZ0 0.12 3 
4APE 0.15 3 

5E4P 0.11 3 
5NZ5 0.13 3 
5UOJ 0.17 3 

5X8U 0.12 3 
Structures from 
AlphaFold 

Cyclin 1A 0.1 3 
PIM2 0.13 3 

WNT2 0.26 3 
 
 
Supplementary Table 8: PocketMiner and CryptoSite performance on individual proteins. 
PocketMiner and CryptoSite were both run on the test set assembled in this work, and the 
accuracy of the predictions on each protein was calculated. The first set of proteins were known 
to form cryptic pockets and hence served as source of positive residues. The second set of 
proteins contained residues which were very unlikely to form cryptic pockets based on 
experimental and simulation data. Hence, this set of proteins, comprised of hyper-rigid proteins 
and proteins with extensive ligand co-crystal structures, was used a source of negative residues. 
 

type apo PDB ID CryptoSite accuracy PocketMiner accuracy 
Cryptic pocket 6hb0 0.667 1.000 

2lao 0.667 0.933 
1urp 0.769 1.000 
6ypk 0.875 0.417 



3ugk 0.762 0.976 
5g1m 0.684 0.789 
5nzm 0.889 0.963 
4v38 0.913 1.000 
2w9t 0.850 0.550 
2hq8 0.760 0.600 
4r72 0.625 0.750 
5za4 0.875 0.875 
2cey 0.611 1.000 
1kmo 0.773 0.909 
5nia 0.963 0.926 
2fjy 0.789 0.421 
3p53 0.688 1.000 
1kx9 0.781 0.000 
1tvq 0.857 1.000 
2zku 0.774 0.903 
3nx1 0.636 0.636 
4i92 0.842 0.947 
3qxw 0.650 0.150 
5h9a 0.955 1.000 

Highly rigid protein 2fd7 1.000 0.978 
4tql 0.572 1.000 
2alp 0.697 0.787 
1amm 0.770 0.865 

Proteins with many 
holo crystal 
structures 

4ape 0.814 0.873 
5uoj 0.755 0.717 
3gz0 0.686 0.863 
1btp 0.802 0.676 
2oss 0.563 0.850 
5zn5 0.754 0.836 
5x8u 0.732 0.813 

 mean 0.766 0.800 
 
 



Supplementary Table 9: PocketMiner sensitivity by protein topology and cryptic pocket type 
for test set proteins. Proteins used as sources of negative examples were not included. One 
protein with no assigned CATH code (PDB ID 6YPK) was excluded from the CATH class 
category and one protein with a large rearrangement (PDB ID 2FJY) was excluded from both the 
Direction and Motion type categories. 
 

Class Mean Standard 
deviation 

CATH class 1 0.492 0.394 
2 0.803 0.315 
3 0.895 0.138 

Direction forward 0.677 0.347 
reverse 0.927 0.089 

Motion type  Secondary structure change 0.653 0.358 
Interdomain motion 0.944 0.079 
Secondary structure element 
motion 

0.632 0.394 

Loop motion 0.818 0.237 
 


