Structural details of a Class B GPCR - arrestin complex revealed by genetically encoded crosslinkers in living cells

Authors

Yasmin Aydin^{#1}, Thore Böttke^{#1}, Jordy Homing Lam^{#2}, Stefan Ernicke¹, Anna Fortmann¹, Maik Tretbar⁴, Barbara Zarzycka⁵, Vsevolod V. Gurevich⁶, Vsevolod Katritch^{*2,3} and Irene Coin^{*1}

¹ Faculty of Life Science, Institute of Biochemistry, Leipzig University, Bruederstr. 34, 04103 Leipzig, Germany.

² Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.

³ Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

⁴ Medical Faculty, Institute for Drug Discovery, Leipzig University, Bruederstr. 34, 04103 Leipzig, Germany.

⁵ Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.

⁶ Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-0146, USA.

[#]These authors contributed equally to the work *To whom correspondence shall be addressed: katritch@usc.edu; irene.coin@uni-leipzig.de

Supplementary Figures and Tables

Supplementary Fig. 1: Structural overview of arr2 (PDBID: $1g4m^1$). N-terminus in blue, C-terminus in red. All β -strands and α -helices are consecutively numbered, following the chain. Regions mentioned in the text are indicated by dotted circles. The N-domain includes the α -helix I and the 160-loop. The gate loop and the C-edge are part of the C-domain. The "central crest" comprises three loops: the finger loop, the middle loop and the C-loop.

u	ß-strand I	ß-strand II ß-s	trand III B-s	strand IV
Bpa replaces: kDa 250- 130- 100- 70- 55-	7332 <u>7</u> 55788755573	223 225 225 225 225 225 225 225 225 225	F27 F27 F28 F28 F28 F28 F28 F28 F28 F28 F28 F28	G39 G39 G39 G39 G39 G39 G39 G39 G39 G39
kDa 250- 130- 100- 70- 55-	β-strand V 12 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Finger loop	β-strand VI 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F87 P88 P89 P89 P89 P89 C91 C93 C93 C93 C95 F96 T98
kDa 250- 130- 100- 70- 55-	L 1000	H H H H H H H H H H H H H H H H H H H	imIIV bnst-θ [123 [123] [1	β-strand Qdle loop β-strand IX 2138 1138 2138
kDa 250- 130- 100- 70- 55-	A 160-loo A 20-001 A 20-000 A 20-000 A 20-000 A 20-000 A 20-000 A 20-000 A 20-000 A 20-000 A	p β-strand X β-strand X 990 991 992 995 995 995 995 995 995 995	V171 0172 1173 A174 A174 A174 A174 A177 P178 C179 C179 C179 C179 C180 P182	β-strand XI 88 88 88 88 88 88 88 88 88 88 88 88 88
kDa 250- 130- 100- 70- 55-	ع <u>IX bestrand XII - 138</u> 2003 - 2003 - 2003 - 2003 2003 - 2003 - 2003 - 2003 - 2003 - 2005 2005 -	207 18 213 218 219 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 214 218 218 218 218 218 218 218 218 218 218	H219 H219 X220 X220 X221 X223 X226 X226 X226 X226 X226 X226 X226 X226 X226 X226 X226 X226 X226 X226 X227 X226 X227 X228 X227 X228 X229 X220 X20 X	β-strand XV K232 K233 C233 R236 C242 C242 C242
kDa 250- 130- 100- 70- 55-	VX puest-θ P-243 V248 V248 V249 V249 V249 V250 V251	M255 E256 E256 E257 A258 D260 D260 D260 D260 C260 A263 A263 S265 S265 S265	№ IIIX Mark 1267 7267 7208 7208 7273 7273 7273 7273 7273 7273 7274 7273 7273 7275 7273 7273 7274 7273 7273 7275 7273 7273 7274 7273 7273 7275 7273 7273 7274 7273 7273 7274 7273 7274 7275 7274 7274 7274 7274 7274 7275 7274 7274 7276 7274 7274 7276 7274 7274 7276 7274 7274 7276 7274 7274 7277 7274 7274 7277 7274 7274 7277 7274 7274 7278 7274 7274 7274 7274 7274	A279 A279 N280 N281 N281 R283 R285 R285 R285 R285 R285 R285 R286 R286 R286 R286 R286 R286 R286 R286
kDa 250- 130- 100- 70- 55-	Gate loop (2291) (2293)	2303 2303 2303 2304 2305 2306 2306 2306 2307 2317 2312 2306 2306 2307 2307 2307 2307 2307 2307 2307 2307	k loop β-strand XVIII β-strand XVIII 9:20 2:342 2:353 2:353 2:353 2:354 2:354 2:355 2:354 2:355	L327 L327 L328 C333 C333 C333 C333 C333 C333 C333 C
kDa 250- 130- 100- 70- 55-	A339 A334 A344 A344 A344 A344 A344 A344	L351 L351 H353 H353 F354 F355 F355 F355 F356 F356 F360 F361 F361 F361 F361 F361 F361 F361 F361	R363 E364 F365 F366 F366 F366 F366 F367 F370 F371 F371 F371 F373 F373 F373 F374	N375 1377 1377 1377 1377 1377 1379 1379 1379
kDa 250- 130- 100- 70- 55-	β- <u>strand XX</u> 3383 2333 2333 2333 2333 2333 2333 233	M399 M399 K400 D401 E405 E405 E405 E406 E406 C409 C409 C409	6411 8412 8413 8414 8414 8414 8415 8418 8418	

b _{Bpa}				_
replaces: kDa 250- 130-	D3 65 76 75 75 75 74 74 74 74 74 74 74 74 74 74 74 74 74	N15 616 616 719 719 719 721 728 728 728 726 728 726 726 726 726 726 726 726 726 727 726 727 727	F27 V28 V28 V34 V37 V37 V37 V37 V37 V37 V37 V37 V37 V37	G36 V40 V41 V41 V42 V42 V43 V43 V43 V43 V43 V43 V43 V43 V43 V43
100- 70-	87.888.488.488.488.8	5 7 5 8 5 8 8 0 - 2 o 7 o 7	8884885798987389	
kDa 250- 130- 100-		7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ENGULES 42808	88888888888888888888888888888888888888
70-	89 100 100 100 100 100 100 100 100 100 10	1112 1114 1116 1117 1118 1118 1118 1118 1118 1118	123 124 126 126 126 126 128 128 133 133 133 133 133 133	135 136 136 137 138 141 141 142 145 145 145 145
kDa 250- 130- 100-	₩-9₩₩-2£779₩	14>0		
70-	K147 A148 A148 A151 A151 A151 L154 E155 E155 E155 E155 K157 K157	H159 K160 N162 S163 S163 S163 S163 S163 R164 K166 K170 K170	V171 0172 0172 0173 0173 0173 P173 P173 P178 0181 0181 P182	T183 A184 E185 E185 A184 A188 A189 A189 A191 A191 A192 B192 B192 B192 B192 B192 B192 B192 B
250- 130- 100- 70		0202 40====g=		
kDa	K195 P196 L197 L199 E200 A201 S202 S202 S203 C203 K205 K205 E206	1207 Y208 Y209 G211 G211 E213 P213 S215 V216 V216 V218 V218	H219 Y220 N222 N223 N225 N225 N226 N226 N226 K229 K229 K229 K229	231 K232 S234 S235 R235 R235 R235 Q237 V238 R236 C242 C242 C242
250- 130- 100- 70-				
kDa 250-	L243 F244 N245 N246 7246 A247 A246 Y249 Y249 Y250 C251 P253 Y253 A254	M255 E256 E257 E257 E257 A258 T261 T261 T261 T261 T261 T263 S265 S265 S265 S265	T267 F268 C269 C269 K270 K270 V271 T273 T273 T273 F276 F276 F277 F277 F277	A279 N280 N281 N281 N281 R282 R285 R285 G286 G286 C286 L289 L289 D290
130- 100- 70-				******
kDa 250- 130-	G291 K292 K292 K294 K294 K296 F296 F296 F296 F296 R299 R299 R209 S301 S301 S302	S303 T304 L305 L305 R306 S309 S309 S309 S309 S309 S309 S309 S311 R311 S313 S313 S313 S313 S313 S313	L315 G316 G316 B317 V319 V319 V319 V320 K322 K322 K322 K322 K326	L327 V328 V328 S330 S333 C333 C333 C333 C333 C333 C333
100- 70-				
kDa 250- 130-	A339 S341 S341 S341 S343 S343 S343 S347 L347 L347 L347 F348 F348 F348 F348 F348 F348 F348	L351 M352 M355 M355 F356 F356 F356 F356 F361 F361 F361 F361 F361 F361 F361 F36	R365 E364 P366 E364 E366 E366 E366 P371 P377 P371 7373 7373 7374	N375 1377 1377 1378 1379 1377 1387 1387 1386 1386 1386 1386
100- 70-	*************************************		5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
kDa 250- 130- 100-	22822222222	₩¥¥88888888888888888888888888888888888	<u> </u>	
70-				

Supplementary Fig. 2: Photocrosslinking map of the arr2-PTH1R complex. Indicated arr2 positions were exchanged for Bpa and combined with the PTH1R. After agonist stimulation, cells were irradiated with UV-light (365 nm). Whole cell lysates (n=1) were resolved on Tris-glycine gels and analyzed by immunostaining. Arr2 was detected by an α -HA antibody (a), the PTH1R (b) using an α -PTH1R antibody. Arrestin runs at approximately ~55 kDa, PTH1R runs at an apparent molecular weight of ~70-100 kDa, the crosslinked PTH1R-arr2-complex at ~200 kDa. Uncropped blots are provided as a Source Data file.

Supplementary Fig. 4: Chemical crosslinking, unbiased search. (a) Cartoon representation of receptorbound rat arr2 (PDBID: $4jqi^2$). 24 photo-crosslinking hits sampling the whole footprint of PTH1R were chosen for pairwise chemical crosslinking (shown as red stick models). (b) Cartoon representation of active PTH1R as seen from the intracellular side (PDBID: 6nbf³). Naturally occurring Cys residues are shown in yellow. C217 is in ICL1, C397 in ICL3, C460 and C462 are in the hinge between helix VII and helix VIII. (c) Western blot of cell lysates (n=1) stained with an α -HA antibody. Residues of arrestin replaced with BrEtY are indicated in the upper row, mutations at the PTH1R are indicated on the left side. A crosslinking signal that vanishes upon Cys to Ser substitution (red boxes) reveals which PTH1R Cys was captured by the corresponding BrEtY-arrestin. Uncropped blots are provided as a Source Data file.

Supplementary Fig. 5: Activation and arrestin recruitment at Ser-PTH₁R variants. (a) Activation of PTH1R and mutants by PTH(1-34) (G_s activation). The assay measures cAMP accumulation in live HEK293T cells stimulated with indicated concentrations of PTH(1-34) based on CRE-controlled expression of a luciferase reporter. Raw luminescence data of the reporter luciferase were normalized to the transfection control and set to 100% activation for each receptor variant. Plot shows means ± SEM of n=1 representative experiment. The table shows the geometric mean of the EC₅₀ values of n=4 independent experiments with the 95% confidence interval (CI). (b) Concentration-response curves for recruitment of Venus-arr2 to PTH₁R-Nluc as measured by BRET. Plot shows means ± SEM of n=3 independent experiments. The table shows the geometric mean of the speciment experiments. The table shows the geometric mean of the speciment experiment. The table shows means ± SEM of n=3 independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 6: Chemical crosslinking, informed search. Representative western blots of cell lysates stained with an α -HA antibody. Residues of arr2 exchanged with BrEtY are indicated above groups of lanes, Cys mutations in the PTH1R are indicated on top of each lane. For each PTH1R region, BrEtY-arrestin positions giving crosslinking are visualized as red sticks in the active arr2 structure (PDBID: 4jqi). All tested combinations are shown. Experiments with detectable crosslinking were performed three times; signals were quantified by densitometry and used for the statistical analysis. Uncropped blots are provided as a Source Data file.

		arr2	63	65	99	67	20	1	75	78	81	136	147	155	157	198	245	247	249	312	313	14	315
	PTH1		×	Ř	ŭ	õ	>	2	E.	ò	Ÿ	È-	¥	ù	¥	Ι	Ż	¥	Ÿ	Ŕ	Ш	13	Ľ
	ICL1	5217		-	25		-					60						00	45				
		F311																23	15				
		M312																23	44				
	CL2	A313																44	57				
	-	F314																37	54				
		F315																30	37				
		S316						_										46	31				
		V382																					
		R383																		1	6		3
		V384																		2	9		4
		L385																		2	7		3
		A386																		3	2		4
		T387																		2	8		10
		K388																		3	8		10
		L389																		3	8		6
		R390																		2	6		3
		E391							43	46	37				51					12	38		58
	CL3	T392							46	54	37		21		60					12	27		41
	≌	N393							35	52	41		38		55					6	18		24
		A394							31	63	48		35		41					7	19		30
		G395							37	67	48		31		51								
		R396							30	67	30		25		67								
		C397							36	55	22		16	42	68								
		D398							49	57	33		15		69								
		T399							28	25	17		6		55								
		R400							36	24	14		4		52								
		Q401							28	16	16		3		66								
		Q402							23	7	16		3		39								
		Y403											3										
		Y459	3	8		13	9	7															
		C460	13	19		24	16	17															
		F461	6	9		15	15	13															
		C462	6	7		15	23	10															
		N463	11	12		36	40	31															
		G464	9	8		15	13	14							19								
		E465													13								
		V466													18								
		Q467													21								
	H8	A468													48								
	- əf	E469													23								
	hinç	1470													21								
	- 7M	K471													18								
	F	K472													41								
		S473													27								
		W474													21								
		S475													26								
		R476													10								
		W477													16								
		T478													15								
		L479													20								
		A480													16								
		L481													12								

b	PTH1F	arr2	R7	K11	P14	N15	K17	R51	Y63	R65	D67	V70	L71	P96	R99	R103	K107	K138	C150	E155	E156	K157	H159	K160	S163	R165	N225	K294
		K486			12	32	5	3											2	8	3	27	34	18	5	9		
		A487			26	33	9	4											6	7	12	38	55	26	7	13		
		R488			47	50	21	13											9	18	13	47	58	33	15	17		
		S489			42	43	22	20											17	16	15	40	47	29	15	16		
		G490			49	52	31	20											18	14	15	39	44	28	16	19		
		S491			55	54	37	22											24	15	11	32	45	35	16	22		
		S492			51	54	28	11											25	17	5	44	44	40	25	18		
		S493			51	57	27	6											20	15	6	44	32	36	24	17		
		Y494			67	73	26	8											17	10	6	46	34	35	25	19		
		S495			69	67	20	4											10	16	4	42	30	39	19	22		
		Y496			63	67	17	3											6	18	6	46	32	53	20	25		
		G497			66	77	11	3											3	16	7	34	23	53	18	28		
		P498	2		50																			65				
		M499	4		51																			70				
		V500	3		33																			69				28
		S501	3		47																			74				11
		H502	4		27											12								38				13
		T503	10		24											44								51				43
		S504	4		20										7	18	5							29				7
		V505	20		23										19	14	18							30				28
		T506	7		20										25	51	50											
		N507	28		15										16	35	29											
		V508	42		19										59	63	38											
		G509	6		14									10	70	60	71											

~	arr2 PTH1R		4	4	9	6	6	03	07	18	76	77	81	13	44	55	60
С			K2	33	ЪЗ	Б	R9	ĸ	¥	Ш	Ш	Ł	δ	P2	A3	¥3	БЗ
	P510		7		5	14	77	65	76								
		R511	17		9	16	73	69	68								
		V512	15		12	8	65	68	65								
		G513	28		18	10	63	61	65								
		L514	29		29	23	60	63	56								
		G515	29		40	33	50	53	52								
		L516	58		65	23	81	75								18	
		P517	50		50	21	68	55								9	
		L518	33		35	41	66	62								5	
		S519	77		54	34	76	55								32	
		P520	41		33	21	64	58								8	
		R521	11		26		45	51								5	
		L522					25	48									
		L523					35	41									
		P524					33	45									
		T525					44	31									
		A526					30										
		T527					27										
		T528															
		N529															
	s	G530															
	min	H531															
	c-ter	P532															
		Q533															
		L534															
		P535															
		G536															
		H537															
		A538															
		K539															
		P540															
		G541															
		T542															
		P543															
		A544															
		L545															
		E546															
		T547															
		L548															
		E549															
		T550															
		T551															
		P552															
		P553															

Supplementary Fig. 7: Chemical crosslinking matrix. Average crosslinking yield in percent of total expressed arr2 derived from densitometric analysis of at least three independent experiments is shown (see Supplementary Data 2). Squares are colored according to crosslinking yield (color code in Fig. 2). Combinations with significant signal over control background noise $(n \ge 3)$ are in bold. Combinations that did not yield crosslinking signal are shown in light blue. Other numbers indicate crosslinking signals not significantly different from control background noise (see Supplementary Fig. 8). Experiments without crosslinking signal were not quantified and are shown in light blue. Cysteine mutants of PTH1R positions in (a) the ICL1, ICL2, ICL3 and helix VIII, (b) the proximal, and (c) the distal Cterminus were combined with indicated BrEtY-arr2.

Supplementary Fig. 8: Chemical crosslinking background. Western blots of cell lysates stained with the antibodies indicated on the left of each panel are shown. Each of the 37 arrestin mutants giving crosslinking signals when combined with Cys-PTH1R mutants (screening results reported in Supplementary Fig. 6) were combined with either wt PTH1R or C397S-PTH1R, which gives the background for each combination. The background for BrEtY-arrestin that crosslinked wt-PTH1R was obtained by removing the involved Cys from the receptor (see Supplementary Figure 4), i.e. E66- and T136BrEtY-arr2 were combined with C217S-PTH1R; E155- and K160BrEtY-arr2 were combined with C397S-PTH1R. Arrestin mutants that crosslink with endogenous Cys in PTH1R are marked with a red asterisk. The combination of R99BrEtY-arr2 with L516C-PTH1R was included in each experiment as a positive control. When BrEtY was incorporated in the N-domain of arr2, the Cys150 of arr2 was mutated to Ser to avoid intramolecular quenching of BrEtY. Experiments were performed three times, signals were quantified by densitometry and used for the statistical analysis. Uncropped blots are provided as a Source Data file.

Supplementary Fig. 9. Crosslinking Experiments with arr2 variants lacking the finger loop.

Bpa was incorporated at the indicated positions in an arr2 variant where residues Y63 to K77 (finger loop) were deleted (Δ FLR-arr2). Bpa was incorporated at positions that gave chemical crosslinking with the C-tail of the PTH1R (Supplementary Fig. 6 and 7). These positions are located in the loop between β -strands I and II, and in the 160-loop of arr2. Cells co-expressing wt PTH1R and either Δ FLR-arr2 or full-length arr2 were treated with PTH(1-34) and irradiated with UV light (365 nm). We show the western blots analysis of the cell lysates (n=2) stained with an α -HA antibody. The numbering of arrestin positions is identical to wt.

Supplementary Fig. 10: Recruitment of arr2 by truncated variants of PTH1R. Dose-response curves. PTH1R was successively truncated in 12-residue steps and the C-terminus was directly fused to Nluc without a spacer. HEK293T cells expressing PTH1R-Nluc variants and VE-arr2 were stimulated with indicated concentrations of PTH(1-34). Luminescence and fluorescence were measured after 11 min. NetBRET values (fluorescence/luminescence) were normalized to the maximal netBRET of wt PTH1R. Plots show means ± SEM of at least four independent experiments (PTH1R(1-497) n=4, PTH1R(1-569) and PTH1R(1-545) n=5, PTH1R(1-557) and PTH1R(1-533) n=6, PTH1R(1-521) and PTH1R(1-509) n=7, and PTH1R(1-593) n=12), each performed in quadruplicates, the table shows the geometric mean of the BRET₅₀ values with 95% confidence intervals. Source data are provided as a Source Data file.

The intensity of the netBRET signal is inversely proportional to the distance between donor and acceptor. The gradual increase of netBRET with shortening of the receptor tail indicates a decreased distance between the luciferase and Venus. Note that when the phosphorylation site at S519 is removed as in PTH1R(1-509), arrestin recruitment is not affected. In contrast, when the distal phosphorylation cluster is deleted, as in PTH1R(1-497)/del96), arrestin recruitment is impaired, as reflected in the drastic drop of the BRET_{max} from 207% to 38% of wild type signal. These results confirm the key role of the distal phosphorylation cluster and do not exclude an accessory role of the single phosphorylation site at S519.

Supplementary Fig. 11: Performance of optimized models from each template. (a) Initial models superimposed at the receptor (b) Final models superimposed at the receptor. The conformational sampling converged to M_2R -arr2-like orientations of arrestin for all five templates (panel b). This holds true also for the two NTS₁R-arr2 templates, although in those initial structures the arrestin engages NTS₁R in an almost perpendicular orientation compared to its pose in the other three complexes as shown in panel (a).

(c) The cumulative distribution of intermolecular C β -C β distances in amino acids pairs that yielded pairwise crosslinks measured in different models. Dashed lines show the distribution of distances in initial models, solid lines show the distribution of distances after optimization. In the initial models, crosslinks involving C-termini (res. 483-525) in PTH1R are excluded as they are not covered by structural templates. These results show that, while the initial models vary in their quality, the five final models showed very similar improved distributions with the M₂R-arr2–based model showing the best fit to the experimental data.

Supplementary Fig. 12: Plot of pairwise C β -C β distances against chemical crosslinking yield in an optimized PTH1R-arr2 model after flexible optimization starting from a M₂R-arr2 (PDBID: 6u1n) template; when glycine is present, C α was used instead. Color code corresponds with PTH1R residue index. The horizontal dashed line at 10.2 Å marks the estimated (C β -C β) distance for BrEtY-Cys crosslinking, whereas the dotted line at 15.0 Å represents the maximal crosslinking distance when considering the flexibility of the complex. The vertical line marks 30% crosslinking yield. The data presented here are the same as Figure 3a in the main text; we include this for completeness.

Supplementary Fig. 13: Plot of pairwise C β -C β distances against chemical crosslinking yield in an optimized PTH1R-arr2 model after flexible optimization starting from a β_1 -AR-arr2 (PDBID: 6tko) template; in case when glycine is present, C α is used instead. Color code corresponds with PTH1R residue index. The horizontal dashed line at 10.2 Å marks the estimated (C β -C β) distance for BrEtY-Cys crosslinking, whereas the dotted line at 15.0 Å represents the maximal crosslinking distance when considering the flexibility of the complex. The vertical line marks 30% crosslinking yield.

Supplementary Fig. 14: Plot of pairwise C β -C β distances against chemical crosslinking yield in an optimized PTH1R-arr2 model after flexible optimization starting from a Rhodopsin-arr1 (PDBID: 5w0p) template; when glycine was present, C α was used instead. Color code corresponds to PTH1R residue index. The horizontal dashed line at 10.2 Å marks the estimated (C β -C β) distance for BrEtY-Cys crosslinking, whereas the dotted line at 15.0 Å represents the maximal crosslinking distance when considering the flexibility of the complex. The vertical line marks 30% crosslinking yield.

Supplementary Fig. 15: Plot of pairwise C β -C β distances against chemical crosslinking yield in an optimized PTH1R-arr2 model after flexible optimization starting from a NTS₁R-arr2 (PDBID: 6pwc) template; when glycine was present, C α was used instead. Color code corresponds to PTH1R residue index. The horizontal dashed line at 10.2 Å marks the estimated (C β -C β) distance for BrEtY-Cys crosslinking, whereas the dotted line at 15.0 Å represents the maximal crosslinking distance when considering the flexibility of the complex. The vertical line marks 30% crosslinking yield.

Supplementary Fig. 16: Plot of pairwise C β -C β distances against chemical crosslinking yield in an optimized PTH1R-arr2 model after flexible optimization starting from a NTS₁R-arr2 (PDBID: 6up7) template; when glycine was present, C α was used instead. Color code corresponds to PTH1R residue index. The horizontal dashed line at 10.2 Å marks the estimated (C β -C β) distance for BrEtY-Cys crosslinking, whereas the dotted line at 15.0 Å represents the maximal crosslinking distance when considering the flexibility of the complex. The vertical line marks 30% crosslinking yield.

Supplementary Fig. 17: Comparison of the PTH1R conformation in a G protein-bound complex with our optimized model of the PTH1R-arr2 complex. The cryo-EM structure of G_s -bound PTH1R (PDBID: 6nbf) in light grey cartoon is superposed to our model in cyan/green/magenta. (a) Inward adjustment of ~2Å at TM6/ICL3 of PTH1R in our model based on the M₂R-arr2 template after flexible refinement. The interaction between PTH1R and arr2 is supported by various polar/ionic contacts around the region, which also persisted in unbiased MD simulations (see SI fig. 22). The inward movement of TM5/6 in our model is in line with the observation made in other arrestin-bound experimental structures that the TM5/6 are slightly closer (drawn inward to the cleft) compared to the respective G-protein bound complexes. (b) Movement of helix VIII in a network of interaction with the proximal cluster.

Supplementary Fig. 18: Position of proximal cluster in the V₂R on arr2.

a) Crystal structure of arr2 bound to the V₂Rpp (PDBID: 4jqi). Arrestin is shown in grey as cartoon and surface, V₂Rpp as purple sticks with phosphates in orange. The positions of the proximal (³⁴⁷pTPPpS³⁵⁰) and the distal phosphorylation cluster (³⁵⁷pSCpTpTApSpSpS³⁶⁴) of V₂Rpp are indicated. b) Western blots of cell lysates (n=1) from pairwise crosslinking at full-length V₂R, stained with an α -HA antibody. Cys mutations in the proximal cluster of V₂R are indicated on top of each lane. To avoid interference by C142, C358 of V₂R, these were mutated to Ala. Residues of arr2 substituted by BrEtY are indicated below the blot and highlighted in the V₂Rpp (panel a) and in full-length V₂R (panel c) in yellow and green. c) Cryo-EM structure of arr2 bound to the full-length V₂R (PDBID: 7r0c). Arrestin is shown in grey as cartoon and surface, V₂R 7TM is shown as purple cartoon, and V₂R C-terminus is shown as sticks with phosphates in orange. The position of the distal phosphorylation cluster of V₂R is indicated, the proximal cluster is not resolved.

Supplementary Fig. 19. Validation of the N-edge path of the C-tail: analysis of a model forcing the interaction of the proximal phosphorylation cluster with the finger loop. To test whether the path of the proximal phosphorylation cluster observed for the V_2R phosphopeptide (V_2Rpp) bound to arr2 (PDBID: 4jqi) is reconcilable with our crosslinking data, we built a V_2Rpp -like PTH1R-arr2 model based on our crosslinking

dataset with 3 additional distance restraints between residues 489-493 of PTH1R (proximal cluster) and residues 74-76 of arr2 (β -strand VI, just downstream of the finger loop), which are meant to force β -strand formation between the proximal cluster and the β -strand VI as observed in PDBID: 4jqi. The restrains are flat-bottomed potentials with walls at 2.5 Å and 5.0 Å and 30 times stronger than a distance restraint at the maximal crosslinking yield $B_{ij} = 1$. This V₂Rpp-like PTH1R-arr2 model was built from the M₂R-arr2 template (PDBID: 6u1n) using the same flexible optimization protocol as all our other models.

Panels a and c are plots of C β -C β distances measured on the models against experimental yields of chemical crosslinking at the represented amino acid pairs. Note that panel c represents the same data as in Supplementary Figure 12, just with different colors. The horizontal dashed line at 10.2 Å marks the estimated (C β -C β) distance for BrEtY-Cys crosslinking, whereas the dotted line at 15.0 Å represents the maximal crosslinking distance when considering the flexibility of the complex. The vertical line marks 30% crosslinking yield. In both panel a and c, crosslinks involving the proximal cluster (res. 487-495) are highlighted in orange.

(a) The V₂Rpp-like model features overall 14 outliers out of the crosslinking range (grey and orange dots above the 15 Å line). Of these, seven involve the stretch 487-494 of PTH1R including the proximal phosphorylation cluster (orange dots). Among the 14 outliers, 11 featured crosslinking yields >0.3 (grey and orange dots right of the vertical line).

(b) A zoom-in on V₂Rpp-like model. The seven crosslinks with >15 Å C β -C β distance involving the proximal cluster are shown as orange lines.

(c) Our best PTH1R-arr2 model features overall 11 outliers out of the crosslinking range (grey and orange dots above the 15 Å line), 6 featuring crosslinking yields >0.3 (grey and orange dots right of the vertical line). Of these, only one involves the stretch 487-494 of PTH1R including the proximal phosphorylation cluster (orange dot).

Overall, these data show that a V_2 Rpp-like conformation has dramatically increased the level of strain in the proximal cluster region (7 vs. 1 outlier) and worsened the quality of the overall model (14 vs. 11 outliers, 11 vs. 6 at high crosslinking yield).

Supplementary Fig. 20 Examples of "crosslinking hubs" in different regions of arr2. BrEtY incorporated at position D78, R103 and K160 of arr2 (green stick representation) show significant pairwise crosslinking with 8, 17 and 12 different Cys-PTH1R mutants respectively. The pairings are indicated by red lines. Apparently not all these pairs can be accommodated concurrently due to steric "overcrowding".

Supplementary Fig. 21: Root-mean-square fluctuation (r.m.s.f.) in MD simulations. Protein structures are color coded, as indicated.

Supplementary Fig. 22: Interactions in MD Simulations. (a) between the proximal cluster of PTH1R and R161 on N-edge of arr2 (b) between finger loop of arr2 and TM6/ICL3 of PTH1R. The percentage of time where residues are within 5 Å is indicated in parenthesis for each trajectory.

Supplementary Fig. 23: Interactions in MD Simulations. Between distal cluster of PTH1R and β -strand I of arr2. The percentage of time where residues are within 5 Å is indicated in parenthesis for each trajectory.

Supplementary Fig. 24: Interactions in MD Simulations. (a) between finger loop of arr2 and TM2 of PTH1R (b) between C-loop of arr2 and ICL2 of PTH1R. The percentage of time where residues are within 5 Å is indicated in parenthesis for each trajectory.

Supplementary Fig. 25: Interactions in MD Simulations. pS519 at the C-terminus of PTH1R and R99 of arr2. In some cases, the trajectory distance goes out of range of interest. The percentage of time where residues are within 5 Å is indicated in parenthesis for each trajectory.

Supplementary Fig. 26: Interactions in MD Simulations. Interaction between proximal cluster and helix VIII. In some cases, the trajectory distance goes out of range of interest. The percentage of time where residues are within 5 Å is indicated in parenthesis for each trajectory.

Supplementary Fig. 27: Proximal and distal phosphorylation clusters in MD simulation of the model refined from M₂R-arr2. Stacked snapshots of PTH1R proximal (a) and distal (b) phosphorylation cluster in one of the trajectories. Snapshots were taken every 100 ns spanning 1200 ns. (c,d) Two modes of interactions between pS493 of proximal cluster and R161 on the N-edge.

Supplementary Fig. 28: Secondary Structure Classification in MD simulations. We labeled each protein residue in each frame of the MD trajectory using MdTraj's dictionary of protein secondary structure (DSSP 2.2.0) assignment and show the most frequently observed secondary structure label as color of each cell. The frequency to observe the most frequently observed label is annotated as percentage in each cell. Noticeably, Helix VIII (res.464-480) is solidly maintained as an α helix between G464 and A480.

Supplementary Fig. 29: Orientation of Helix VIII in MD simulations. We measured the angle between the lower TM7b (res. 451-461) helix and the Helix VIII (res.464-480) and show the distribution of the angle together with the root mean squared distance (r.m.s.d.) of Helix VIII from its initial position. The angle between the two helices of concern is maintained at 124.3° in average with a standard deviation of 9.1° and r.m.s.d. at 2.4 angstrom in average with standard deviation of 1.0 Å.

Supplementary Fig. 30: Single phosphorylation site pS519. Stacked snapshots of PTH1R pS519 interacting with R99. Snapshots were taken every 200 ns spanning 1200 ns.

Supplementary Fig. 31: Orientation of arr2 in MD simulations. (a) Time series of r.m.s.d. from starting position of arr2. (b) Proportion of explained variance in principal axes (aircraft axes) of arr2 coordinate. In all trajectories, the principal axes are well distinguished by their explained variance throughout hence showing that the change in overall shape of arrestin (defined by its C α coordinates) is minimal. This assures that the identity of principle axes is unambiguous and cannot interchange. (c) Time series of orientation angles. (d) Time series of intercouple distance, defined as the distance between mean of arrestin (green sphere) and mean of the 7TM core (res.182-460) (cyan sphere). The intercouple distance in our model is 47.3 Å

Supplementary Fig. 32: Ionic interactions between (a) aspartate/glutamate on cytoplasmic tail of $\beta_2 V_2 R$ -Gsarr2 megaplex (PDBID: 6ni2 corresponds to the arr2–V2Rpp portion shown in white, and PDBID: 6ni3 corresponds to $\beta_2 V_2 R$ –Gs portion of the megaplex) and (b) proximal phosphorylation cluster of our PTH1R model (in cyan for PTH1R, green for arr2). Note that while local resolution does not allow for placement of side chains for D355 and E356 in the megaplex arrangement, cryo-EM density for this region was observed and it was suggested by the authors that both residues are in a position to interact with K160 and R161 on arr2.

Supplementary Fig. 33: Reaction scheme for the synthesis of O-(2-bromoethyl)-L-tyrosine 4 (BrEtY)

SI Table

Supplementary Table 1: Literature survey of PTH1R phosphorylation. The following articles used a variety of experimental techniques to locate phosphorylation sites on the PTH1R. Positions not demonstrated by later in vitro mass spectrometry experiments are indicated with a δ , but these discrepancies could potentially arise due to differential accessibility of kinases in different cell lines and other experimental conditions. Phospho-site numbers refer to the human ortholog.

Author	Doi	Title	Phospho-	Remark
			Sites	
Blind et	10.1002/jb	Phosphorylation of the	S473 δ	To localize phosphorylation sites on the cytoplasmic tail, the authors prepared
al 1996	mr.565011	cytoplasmic tail of the	S475 δ	a recombinant fusion protein containing the rat PTH1R C-terminus to serve as
	0505	PTH/PTHrP receptor	Τ478 δ	substrate for phosphorylation by purified PKA, PKC, and GRK2 in vitro. They
			S491	identified S491, together with minor sites at S473 and/or S475, as the
				preferential site for PKA-mediated phosphorylation. On the other hand, they
				showed that none of the three sites is a major target of PKC. For GRK2, little
				to no phosphorylation of the C-terminus fusion protein was found, likely due to
				the absence of the full-length receptor in the experiment, which activates
				GRK2.
				By replacing serine/threonine with alanine in ICL3 of the opossum PTH1R
				expressed in HEK 293 cells, the authors concluded that these positions did not
				affect PTH-inducible phosphorylation nor basal phosphorylation in the
				cytoplasmic tail.
Malecz	10.1210/me	Identification of	S491	In this study, the authors investigated phosphorylation sites with opossum
et al	nd.12.12.02	Phosphorylation Sites in	S492	PTH1R expressed in HEK 293 cells. By performing a series of phosphoamino
1998	03	the G Protein-Coupled	S495 δ	acid analysis on ³² P-labeled PTH1R mutants, they identified S485, S486, or
		Receptor for Parathyroid		S489 (human: S491, S492 and S495) as sites of phosphorylation in presence
		Hormone. Receptor		of agonist. They also reported basal phosphorylation at S489. In addition, they
		Phosphorylation Is Not		also concluded that S467 and S469 (human: S473 and S475) were not
		Required for Agonist-		phosphorylated, since no phosphothreonine appeared if threonine was
		Induced Internalization		substituted for either of the two serine residues. They also showed that
				overexpressed GRK2 enhanced phosphorylation of the wildtype PTH1R, but
				had no effect on the rate or extent of receptor internalization in response to
				PTH.
Tawfeek	10.1210/me	Phosphorylation of the	S491	Using site-directed mutagenesis, phosphopeptide mapping, and direct
et al	nd.16.1.076	Receptor for PTH and	S492	sequencing of phospho-receptor fragments, the authors reported PTH-
2002	0	PTHrP Is Required for	S493	dependent phosphorylation of the rat PTH1R in COS-7 cells. Based on
		Internalization and	S495 δ	mutagenesis and radiosequencing data, they concluded that phosphorylation
		Regulates Receptor	S501	occurred on S491, S492, S493, S495, S501, and S504, but suggested that S489
		Signaling	S504	was not phosphorylated due to insufficient radioactivity detected, though the
				serine in position 489 is required for phosphorylation. They also suggested
				that S491 is frequently phosphorylated and that either both of S492/S493 or
				only S493 is phosphorylated.
Miedlich	10.1152/ajp	Eliminating	S489	This study explored the downstream effect of single and multiple mutagenesis
et al	endo.00036	phosphorylation sites of	S491	on some phosphorylation sites of rat PTH1R in COS-7 cells. They concluded
2008	.2008	the parathyroid hormone	S492	that preventing one or more phosphorylation of either S491/492/493, S501, or

		receptor type 1	S493	S504 enhances coupling of the PTH1R to phospholipase C upon PTH
		differentially affects	S495 δ	stimulation. However, PTH-dependent inositol phosphate accumulation in
		stimulation of	S501	cells with the phosphorylation-deficient mutant
		phospholipase C and	S504	S489A/S491A/S492A/S493A/S495A/S501A/S504A, was much higher,
		receptor internalization		suggesting that individual mutations do not fully recapitulate the phospho-
		-		deficient PTH1R phenotype.
Zindel	10.1042/B	Identification of key	S73	In this study, LC-MS/MS sequencing was used to identify phosphorylation
et al	CJ2016074	phosphorylation sites in	S473	sites on tryptic phosphopeptides generated from immuno-purified human
2016	0	PTH1R	S491	PTH1R with PTH stimulation in HEK293T cells. Ten sites were identified in
		that determine arrestin3	S492	total. Nine of these (S473, S491, S492, S493, T503, S504, S519, T547 and
		binding and fine-tune	S493	T551) were located in the C-terminus, while S73 is in the extra-cellular
		receptor signaling	T503	domain. Significantly higher abundance was reported for S491, S492/S493
			S504	and S519. Except for T503/S504, all other sites are singly phosphorylated. For
			S519	S492/S493, either one of these is phosphorylated, the precise position of
			T547	phosphorylation could not be determined. Phosphorylation on ICL3 were not
			T551	detected in mass spectrometry, possibly due to lower coverage of this short
				loop. The authors also investigated interaction between PTH1R and arr3 using
				FRET and BRET experiments and concluded that the two P-clusters located at
				S489-S495 and at S501-T506 operate in concert to promote the formation of
				stable arrestin-receptor complexes. Significant FRET signal loss was observed
				with T503A/S504A mutantssuggesting that T503/S504 are the key
				determinant for high-affinity arrestin recruitment.
Qiu	10.1038/s4	IGF-I induced	Y494	By comparing mass spectra of phosphorylated and unphosphorylated peptides,
et al	1413-017-	phosphorylation of PTH		the authors identified that Y494 on a recombinantly expressed human PTH1R
2018	0002-7	receptor enhances		C-terminus can be specifically phosphorylated by IGF1R tyrosine kinase upon
		osteoblast to osteocyte		induction by IGF1R in vitro. To track the phosphorylated PTH1R in
		transition		osteoblasts and early osteocytes in vitro and in vivo, they developed a
				polyclonal antibody against the phosphorylation site.
Zhang	10.1074/jbc	Site-specific	T387	In this study, reversible ubiquitination sites in human PTH1R was studied.
et al	.RA118.00	polyubiquitination	T392	Using tandem MS, the authors identified K388 in ICL3 and K484 in the
2018	1737	differentially regulates	S489	proximal C-terminus as the primary ubiquitination sites in PTH1R. They also
		parathyroid hormone	S491	obtained MS/MS spectra to verify phosphorylation sites at ICL3 and the
		receptor-initiated MAPK	S492	proximal C-terminus in PTH1R overexpressed in HEK-293S GnTI ⁻ cells.
		signaling and cell	S493	Several simultaneous phosphorylation were reported in the mass spectra,
		proliferation		namely, T387/T392, S489, S491, S493, S491/S493, S491/S492, S489/S493.
				They also concluded that PTH1R binding to β -arrestin as well as
				ubiquitination are dependent on T387/T392 phosphorylation.
White	10.1126/sci	Spatial bias in cAMP	T387	The authors identified ten phosphorylation sites in human PTH1R in response
et al	signal.abc5	generation determines	T392	to PTH stimulation by SILAC-based LC-MS/MS. They noted that ICL3
2021	944	biological responses to	S489	phosphorylation status lacks quantitative information, potentially due to that
		PTH type 1 receptor	S491	ICL2/3 phosphorylation only takes part in initial β -arrestin recruitment. Except
		activation	S492	for S492/S504, all other sites were found to be singly phosphorylated.
			Y494	
			T503	
			S504	
			S519	
			T551	

Supplementary Table 2: Number of atoms in molecular dynamics simulation starting from M₂R-arr2-based model.

Content	Number of atoms
Water	167232
Sodium	152
Chloride	164
POPC	38592
Cholesterol	7104
Protein	14318
Total	227562