Supporting Information for

Original article

Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases

Haowen Xu^{a,b}, Jiahao Chen^a, Pan Chen^a, Weifeng Li^a, Jingjing Shao^{a,b}, Shanshan Hong^a, Yi Wang^a, Lingfeng Chen^b, Wu Luo^{a,c,*}, Guang Liang^{a,b,*}

^aChemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China

^bSchool of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China

^cMedical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China

Received 10 May 2022; received in revised form 21 July 2022; accepted 2 September 2022

*Corresponding authors. Tel./fax: +86 577 86699396.

E-mail addresses: <u>wzmcliangguang@163.com</u> (Guang Liang), <u>wuluo@wmu.edu.cn</u> (Wu Luo).

Contents in Supporting Information Table S1 Figs. S1–S15

Table S1 List of 119 natural compounds.

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	Artemisinic acid	Engeletin	8-O- Acetylshanzhiside methyl ester	Rutin	Rapamycin	Praeruptorin A	4-Methylesculetin	coniferin	5-Methyl-7- methoxyisoflavone	7,8-Dihydroxy- 4- phenylcoumarin	Jatrorrhizine hydrochloride	Chrysin	Pregnenolone	Reserpine	Methyl eugenol	Methyl cholate	Salidroside
2	Skimmin	Salvianolic acid A	Geniposide	Imperatorin	Artemisinin	Hydroxyprogesterone	Astrasieversianin VII	Tubeimoside II	Notoginsenoside Fa	8-0- Acetylharpagide	Caffeic Acid	Khellin	Casanthranol	Isorhamnetin	Coenzyme Q10	Aleuritic acid	Esculin
3	Acetylcimigenol 3-O-alpha-L- arabinopyran	Baicalein	(+)-Pteryxin	Alismoxide	Dehydroevodiamine	Notopterol	Hyoscyamine sulfate hydrate	Tuberstemonine	Thiocolchicoside	Plantagoside	Berbamine dihydrochloride	Aloin	Isoimperatorin	Spinosin	Quercetin	Trans-Zeatin Riboside	Aminophylline
4	Picfeltarraenin IA	Sucralose	Gossypol acetic acid	Ecliptasaponin A	Nonacosane	Mandelic acid	N- Benzylpalmitamide	5β-Pregnane- 3α,20α-diol	Picroside II	Khasianine	Farrerol	Oxysophocarpine	2'- Deoxyinosine	Thymopentin	Bilobetin	Liensinine diperchlorate	Costunolide
5	Ganoderic acid G	Corydaline	Vinblastine sulfate	Azelaic acid	Harpagide	Arbutin	Chenodeoxycholic acid	Thymol	Cryptotanshinone	(-)-Epicatechin gallate	Corilagin	Penicillin G sodium salt	Resveratrol	Hydrocortisone	Toddalolactone	Sec-O- Glucosylhamaudol	Phellodendrine
6	Yangonin	Gigantol	5-Acetylsalicylic acid	Cyclocytidine hydrochloride	Rosmarinic acid	Epicatechin	Cinnamic aldehyde	Riboflavin	Aristolochic acid	Tubuloside A	Panaxadiol	(+)-Catechin hydrate	Oxymatrine	ADP	Secoxyloganin	Pseudolaric acid A	L-Thyroxine
7	SN38	Chlorogenic Acid	6-Hydroxyflavone	Schizandrin B	Ginsenoside Rb1	5-Hydroxy-1,7- diphenyl-6-hepten-3- one	Pterostilbene	Genistein	Apigenin	Schizandrin A	Isocorynoxeine	Hederasaponin B	Betulinic acid	Blinin	Notoginsenoside Fe	Isotretinoin	Laurocapram

(A) BMDMs were pretreated with different doses of COS for 24 h, cell counting kit-8 assay was evaluated for cellular viability. (B) Densitometric quantification of p20 (i) and IL-1 β (ii) described in Fig. 1C. (C) IL-6 production was measured by ELISA in SN from LPS-primed BMDMs treated with or without COS for 0.5 h, and stimulated with ATP for 0.5 h. Data are presented as the mean ± SEM, n = 3; *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant.

BMDMs were primed with LPS for 3 h and then pretreated with different doses of COS for 30 min and stimulated with ATP for 30 min. Production of IL-1 β (**A**) and TNF- α (**B**) was measured by ELISA and then the level is normalized to that of DMSO-treated control cells. Nonlinear regression analysis was performed, and the curve of Log[COS (µmol/L)] *versus* the normalized response is presented (n = 3).

Densitometric quantification of cleaved-GSDMD described in Fig. 1F. Data are presented as the mean \pm SEM, n = 3; ***P < 0.001.

ELISA of IL-1 β (**A**) and TNF- α (**B**) in the serum of mice intraperitoneally injected with LPS (10 mg/kg) and treated with or without COS (40 mg/kg). Data are presented as the mean ± SEM, n = 6 per group; ***P < 0.001; ns, not significant.

Western blotting analysis of IL-1 β and p20 levels (**A**) in SN or ELISA of IL-1 β in culture SN (**B**) of BMDMs treated with COS (5 µmol/L) before or after LPS challenged and stimulated with ATP for 0.5 h. Data are presented as the mean ± SEM, n = 3; **P < 0.01, ***P < 0.001; ns, not significant.

(A, B) Western blotting analysis of IL-1 β and p20 levels (A) in SN or ELISA of IL-1 β in culture SN (B) of LPS-primed BMDMs treated with of COS (5 µmol/L) and stimulated with poly (dA:dT) for 4 h. (C, D) Western blotting analysis of IL-1 β and p20 levels (C) or ELISA (D) of IL-1 β in culture SN of LPS-primed BMDMs treated with of COS (5 µmol/L) and stimulated with *Salmonella* for 4 h. Data are presented as the mean ± SEM, n = 3. ns, not significant.

Densitometric quantification of p20 (A) and IL-1 β (B) described in Fig. 1J. Data are presented as the mean ± SEM, n = 3; *P < 0.05, **P < 0.01.

(A) Densitometric quantification of p20 (i) and IL-1 β (ii) described in Fig. 2D. (B) Densitometric quantification of ASC Speck described in Fig. 2D. Data are presented as the mean \pm SEM, n = 3; *P < 0.05, ***P < 0.001.

Streptavidin-covered beads with bio-COS (100 μ mol/L) and different concentrations of free COS were incubated with the cell lysates of HEK-293T cells transfected with high expression plasmid of Flag-NLRP3 for 6 h. As indicated, the levels of bound proteins (Pull-down) and total proteins (Input) were determined using western blotting (n = 3).

Densitometric quantification of NLRP3 oligomerization described in Fig. 3F. Data are presented as the mean \pm SEM, n = 3; **P < 0.01.

(A) Densitometric quantification of p20 (i) and IL-1 β (ii) described in Fig. 4A. (B) Densitometric quantification of ASC Speck described in Fig. 4D. Data are presented as the mean \pm SEM, n = 3; **P < 0.01, ***P < 0.001; ns, not significant.

(A) ATPase activity assay for WT or C598A NACHT protein treated with or without COS (5 μ mol/L). (B) Fluorescence analysis of HEK-293T cells expressing HA-EGFP-tagged WT or C598A NLRP3 treated with or without COS (5 μ mol/L). Data are presented as the mean \pm SEM of three separate experiments performed in duplicate (*n*=3 per group); ****P* < 0.001; ns, not significant.

(A) Densitometric quantification of p20 (i) and IL-1 β (ii) described in Fig. 5C. (B) Densitometric quantification of p20 (i) and IL-1 β (ii) described in Fig. 5F. Data are presented as the mean \pm SEM, n = 3; *P < 0.05, **P < 0.01, ***P < 0.001; ns, not significant.

WT or $Nlrp3^{KO}$ mice were intraperitoneally injected with Alum crystals (1 mg per mouse) in the presence or absence of COS (40 mg/kg). n = 6 per group. (A) FACS analysis of neutrophil ratios in the peritoneal cavity. (B) Representative figures in FACS analysis. (C) Western blotting analysis of mature IL-1 β and p20 levels in peritoneal cells from WT or $Nlrp3^{KO}$ mice. Data are presented as the mean ± SEM. **P < 0.01; ns, not significant.

(A) Representative photographs to show the colon length. (B) Densitometric quantification of p20 in WT mice colon described in Fig. 7E. (C) Densitometric quantification of p20 in *Nlrp3^{KO}* mice colon described in Fig. 7F. (C) Histopathological scores of paraffin-embedded colon tissues H&E staining. Data are presented as the mean \pm SEM, (n = 6 per group); *P < 0.05, ***P < 0.001; ns, not significant.