Supporting Information

Ensuring Fact-Based Metabolite Identification in LC-MS-Based Metabolomics

Georgios Theodoridis* ^{1,2,3}, Helen Gika^{2,3,4}, Daniel Raftery^{,5,6}, Royston Goodacre⁷, Robert S. Plumb⁸, Ian D. Wilson*^{7,9}

¹ Department of Chemistry, Aristotle University of Thessaloniki, 54124, Greece

² Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan

Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece

³ FoodOmicsGR, AUTh node, Center for Interdisciplinary Research and Innovation (CIRI-

AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece

⁴ Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University, 54124 Thessaloniki, Greece.

⁵ Northwest Metabolomics Research Center

⁶ Mitochondria Metabolism Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109

⁷ Centre for Metabolomics Research, Department of Biochemistry and Systems Biology,

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, BioSciences Building, Crown St., Liverpool, L69 7ZB, UK

⁸ Scientific Operations, Waters Corporation, IMMERSE, Cambridge, 02142, MA, United States

⁹ Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction,

Imperial College London, Hammersmith Campus, London, W12 0NN, UK

* correspondence gtheodor@chem.auth.gr,

i.wilson@imperial.ac.uk

Table S1: Examples# of identifications showing unrealistic elution orders inRPLC-MS systems*

	RT(min)	Metabolites Names and characteristic LogKow values
Example 1	2.99	LysoPC(15:0)
	3.41	Phenylalanine
	3.62	Glucose
	4.27	Citric acid
	9.14	Lactic acid
	8.11	Aspartic acid -4.32
	8.29	LysoPC(15:0)
	9.53	Lactic acid -0.65
Example 2	4.27	Palmitic acid 6.96
	4.50	1-Methylhistamine
	4.60	5-Hydroxy-L-tryptophan
	4.86	L-Lysine -2.99
	5.08	2-Hydroxydecanedioic acid
	5.09	Asymmetric dimethylarginine
	5.09	4-Hydroxynonenal
	5.09	L-alpha-Aminobutyric acid
Example 3	2.09	Isocitric acid -2.01
	2.21	Arachidonic acid 8.07
	2.49	18-Hydroxycorticosterone
	3.55	Glucose -2.89
	3.67	11-Dehydrocorticosterone 1.77
	4.45	L-Leucine
	5.09	D-Ornithine
	5.24	Mevalonic acid-5P
	5.31	Glycine -3.41
	6.91	Eicosadienoic acid 8.50
	7.56	Deoxyuridine -1.19
Example 4	3.37	PC(18:1(9Z)/0:0)
	3.76	Arachidonic acid 8.07
	5.21	Lysopc(16:1(9Z)/0:0)
	11.79	Lysopc(18:1(11Z))
	13.18	L-Asparagine -4.99
	13.22	PC(18:2(9Z,12Z)/18:1(11Z))
	17.95	Glutathione
	21.13	Guanosine diphosphate -5.55

*Apolar analytes = italics, more polar analytes = normal font

LogKow were obtained from Chemspider. RPLC theory dictates that increase in analyte log Kow results

to increase in t_R . Here this relationship is not observed and values are clearly in disarray.

The numbers are reproduced as found in their sources but in some cases t_R values have been reduced to 2 digits.

*Studies are anonymised.