

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Occupation and SARS-CoV-2 seroprevalence studies: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063771
Article Type:	Original research
Date Submitted by the Author:	20-Apr-2022
Complete List of Authors:	Boucher, Emily; University of Calgary Cumming School of Medicine, Cao, Christian; University of Calgary, Cumming School of Medicine D'Mello, Sean; University of Waterloo Duarte, Nathan; McGill University, Faculty of Engineering Donnici, Claire; University of Calgary, Cumming School of Medicine Duarte, Natalie; University of Toronto, Faculty of Arts and Science Bennett, Graham; McGill University, Department of Economics Consortium, SeroTracker ; University of Calgary Adisesh, Anil; Unity Health Toronto, St. Michael's Hospital; University of Toronto, Division of Occupational Medicine Arora, Rahul; Oxford University, Institute of Biomedical Engineering Kodama, David; Unity Health Toronto, St. Michael's Hospital; University of Toronto Department of Medicine, Division of Emergency Medicine Bobrovitz, Niklas; University of Toronto Temerty Faculty of Medicine; University of Calgary, Department of Critical Care Medicine
Keywords:	COVID-19, Public health < INFECTIOUS DISEASES, OCCUPATIONAL & INDUSTRIAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Occupation and SARS-CoV-2 seroprevalence studies: a systematic review

Emily Boucher,¹ Christian Cao¹, Sean D'Mello,² Nathan Duarte,³ Claire Donnici¹, Natalie Duarte,⁴ Graham Bennett,⁵ SeroTracker Consortium, Anil Adisesh,⁶⁻⁸ Rahul K. Arora,^{1,9} David Kodama,^{6,10} Niklas Bobrovitz^{11,12}

1. Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

- 2. Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
- 3. Faculty of Engineering, McGill University, Montreal, QC, Canada
- 4. Faculty of Arts and Science, University of Toronto, ON, Canada
- 5. Department of Economics, Faculty of Arts, McGill University, Montreal, QC, Canada
- 6. St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- 7. Division of Occupational Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
- 8. Canadian Health Solutions, Saint John, NB, Canada

- 9. Institute of Biomedical Engineering, University of Oxford, Oxford, UK
 - 10. Division of Emergency Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
 - 11. Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
 - 12. Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada

*Correspondence to Dr. Niklas Bobrovitz, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; <u>niklas.bobrovitz@mail.utoronto.ca</u>

Word Count 1179

Key Words Covid-19, Infectious diseases, Occupational & industrial medicine

Key Messages

1. What is already known about this subject?

Worldwide, workplace outbreaks of COVID-19 have been frequent, and some of the largest reported. Accurate data on the risks of infection with SARS-CoV-2 infection and other respiratory infections across a variety of occupations are needed to inform public health interventions.

2. What are the new findings?

During the first year of the pandemic, a large number of seroprevalence studies covering a broad range of occupations globally were published. Rsults suggest considerable differences in the risk of SARS-CoV-2 infection between occupations.

3. How might this impact on policy or clinical practice in the foreseeable future?

Occupation appears to be an important correlate of SARS-CoV-2 infection. Additional high-quality, well-powered serosurveys would improve our understanding of the occupational risks of SARS-CoV-2 and other respiratory infections and should be considered an essential component of the pandemic response.

Key Messages

ABSTRACT

Objective. To describe and synthesize studies of SARS-CoV-2 seroprevalence by occupation prior to the widespread vaccine rollout.

Methods. We identified studies of occupational seroprevalence from a living systematic review (PROSPERO CRD42020183634). Electronic databases, gray literature, and news media were searched for studies published January-December 2020. Seroprevalence estimates and a free text description of the occupation were extracted and classified according to the Standard Occupational Classification (SOC) 2010 system using a machine-learning algorithm. Due to heterogeneity, results were synthesized narratively.

Results. We identified 196 studies including 591,940 participants from 38 countries. Most studies (n=162; 83%) were conducted locally vs regionally or nationally. Sample sizes were generally small (median=220 participants per occupation) and 135 studies (69%) were at a high risk of bias. One or more estimates were available for 21/23 major SOC occupation groups, but over half of the estimates identified (n=359/600) were for healthcare-related occupations. 'Personal Care and Service Occupations' (median 22% [IQR 9-28%]; n=14) had the highest median seroprevalence.

Conclusions. Many seroprevalence studies covering a broad range of occupations were published in the first year of the pandemic. Results suggest considerable differences in seroprevalence between occupations, although few large, high-quality studies were done. Well-designed studies are required to improve our understanding of the occupational risk of SARS-CoV-2 and should be considered as an element of pandemic preparedness for future respiratory pathogens.

BMJ Open

INTRODUCTION

Occupation is a social determinant of health and an important risk factor for SARS-CoV-2 infection. Essential workers in health and social care occupations have an increased risk of COVID-19 compared to non-essential workers, but the risks for other occupations are not well defined.¹⁻³ Studies using diagnostic or rapid testing results from health system and administrative data to examine occupational COVID-19 risk are affected by variable testing rates and access (e.g. due to workplace testing, paid sick leave, geographic, socio-economic factors). Few high-quality, prospective studies using frequent, serial diagnostic or rapid testing covering a broad range of occupations having been conducted.⁴

Serologic testing for SARS-CoV-2 antibodies provides evidence of previous infection and/or vaccination depending on vaccination status and the specific antigens targeted and can be used to obtain more accurate estimates of the cumulative incidence of infection.⁵ Accurate data on the occupational risks of COVID-19 and other respiratory infections are essential for informing compliance with workplace safety regulations, transmission control measures and resource allocation (testing, personal protective equipment (PPE), etc.). The objectives of this review were to describe and synthesize studies of SARS-CoV-2 seroprevalence across a broad range of occupations globally prior to the widespread rollout of vaccines.

METHODS

We identified studies of occupational seroprevalence from a living systematic review (PROSPERO CRD42020183634) of >1000 seroprevalence studies.⁶ In brief, electronic databases, grey literature, and news media were searched for cohort or cross-sectional studies

BMJ Open

reporting antibody testing for SARS-CoV-2. Records were screened independently, in duplicate. We restricted eligibility to studies that in English, French or that were machine-translatable and published January-December 2020 before vaccines were rolled-out, because differential vaccination rates by occupation would obscure results. We extracted seroprevalence estimates with a free-text description for each occupation. If multiple estimates were reported, the most recent estimate using laboratory-based methods (e.g. ELISA), and anti-spike and/or IgG antibodies were prioritized, because non-IgG and anti-nucleocapsid antibodies may decline more rapidly.⁷ Study-level risk of bias was assessed with a modified Joanna Briggs Institute Checklist for Prevalence Studies (**Table S1**).⁸

For each seroprevalence estimate, we identified the relevant Standard Occupational Classification (SOC) 2010 codes by applying the National Institute for Occupational Safety & Health (NIOSH) Industry and Occupation Computerized Coding System (NIOCCS) to occupation descriptions.⁹ NIOCCS was chosen, because most studies were conducted in the USA. Coding was manually verified if there was insufficient information for classification or the probability of correct classification was <0.8. Anticipating substantial heterogeneity and an insufficient number of estimates relative to covariates for meta-regression, we planned to summarize data using the median/IQR.

Patient and Public Involvement: It was not possible or appropriate to involve patients or the public in this study.

RESULTS

We identified 196 studies of occupational seroprevalence conducted in 2020 during the first and second waves of the pandemic. There were 591,940 participants from 38 countries, including the USA (n=44 studies), UK (n=16) and Italy (n=15). Most studies (n=162; 83%) were conducted locally (e.g. city, county) as opposed to regionally (e.g. state; n=20; 10%) or nationally (n=14; 7%). Most were restricted to one occupational group (n=103), limiting direct comparisons (i.e. using the same reference group). Sample sizes were often small (median=220, IQR 64-568 participants). Overall, 135 studies (69%) were at a high risk of bias, 47 moderate (24%), 2 low (1%) and 12 unclear (6%). Common reasons for bias were inadequate statistical analysis (i.e. no adjustment for test or sample characteristics; 92%), non-probability sampling (74%), and small sample-size (46%).

At least one estimate was available for all 23 major SOC occupation groups, except for 'Legal' and 'Military-Specific' occupations (**Figure 1**; all studies). Over half of the 600 estimates identified (n=359) were for healthcare-related occupations. For SOC groups with three or more estimates, the highest median seroprevalence was reported for 'Personal Care and Service Occupations' (median 22% [IQR 9-28%]; n=14, e.g. 'Personal Care Aids'). The next highest was reported for 'Building and Grounds Cleaning and Maintenance' occupations (11% [3-22%]; n=17, e.g. 'Maids and Housekeeping Cleaners'), and 'Healthcare Support' (11% [2-20%]; n=39, e.g. 'Nursing Assistants') occupations. The lowest median seroprevalence was 1% (0-11%; n=6, e.g. 'Athletes') for 'Arts, Design, Entertainment, Sports, and Media Occupations.' Individual estimates are listed in **Table S2**.

DISCUSSION

This review is the first comprehensive synthesis of occupational COVID-19 seroprevalence studies world-wide. We identified 196 studies representing 21 out of 23 major SOC groups conducted during the first and second waves of the SARS-CoV-2 pandemic in 2020, prior to the widespread rollout of vaccines, and described occupational groups with high seroprevalence.

Seroprevalence studies may estimate the cumulative incidence of infection more accurately than diagnostic testing studies when access to testing is variable.^{2,4} The data identified suggest considerable differences in seroprevalence by occupation, though we did not statistically test for differences due to considerable variation in geography, study dates and workplace determinants of infection (e.g. PPE, ventilation). 'Caring and Personal Service' occupations had the highest median seroprevalence (22%), which was four-times higher than the unemployed (5%) and median seroprevalence across all occupational groups (5%). The UK Office for National Statistics reported a slightly lower mean risk of a positive diagnostic or rapid test for COVID-19 across 25 occupational groups of 4%,¹⁰ but the discrepancy between the true cumulative incidence and confirmed infections is likely greater in regions with less access to testing: national, population-based serosurveys have estimated there are 10-20 serologically identifiable cases per one confirmed case.⁶

In future pandemics, large, well-reported, high-quality seroprevalence studies across a broad range of occupations are needed at an early stage to inform appropriate workplace policy. It has been suggested that 20% of the US workforce was exposed to disease or infection at work at

BMJ Open

least once a month prior to the pandemic.¹¹ Public health agencies require accurate data on the occupational risks of respiratory infections, including SARS-CoV-2, to inform compliance with workplace safety regulations, transmission control measures and allocate limited resources (e.g. testing, personal protective equipment and vaccines) during outbreaks and pandemics. For governments, there are also issues of occupational disease recognition and compensation to be considered. As such, public health agencies and governments may be best positioned to coordinate these types of studies, as opposed to academic institutions,⁶ which led the majority of serosurveys in the first year of the pandemic.

Strengths and Limitations

Despite the large number of studies of occupational seroprevalence conducted, many studies had methodological limitations. Only two studies were at a low risk of bias and most occupational subgroups had small sample sizes (median 220 participants). Many were limited to one major SOC group (n=103 studies), which precluded comparisons. Detailed descriptions of occupations were often lacking, potentially contributing to coding errors, and workplace determinants of infection (e.g. use of PPE) were poorly reported.

In conclusion, our review shows that a large number of seroprevalence studies covering a broad range of occupations were published in the first year of the pandemic. Results suggest considerable differences in seroprevalence between occupations, although few large, wellreported, high-quality studies were done. Carefully-designed, adequately powered seroprevalence studies with coverage of a broad range of occupations could improve our

understanding of the occupational risk of SARS-CoV-2 and other respiratory infections and should be considered an element of pandemic preparedness.

tor beer terien only

BMJ Open

Acknowledgements and funding disclosure

SeroTracker receives funding for SARS-CoV-2 seroprevalence study evidence synthesis from the Public Health Agency of Canada through Canada's COVID-19 Immunity Task Force, the World Health Organization Health Emergencies Programme, the Robert Koch Institute, and the Canadian Medical Association Joule Innovation Fund. No funding source had any role in the design of this study, its execution, analyses, interpretation of the data, or decision to submit results. This manuscript does not necessarily reflect the views of the World Health Organization or any other funder.

Statement of author's contributions

This secondary analysis of the SeroTracker database was conceived by NB, EB, DK and AA. Senior authors on this paper were NB, DK, RA and AA. The protocol was developed by EB, NB and DK. Data cleaning was performed by CC, CD, ND, SD and EB and verification by EB, SD, ND and GB. Analysis was performed by EB and RA. The first draft of the manuscript was written by EB and revised by EB, RA, NB, ND, GB, SD, CC, AA, DK. The SeroTracker Consortium maintained the living systematic review database used in the study. All authors reviewed and agreed to the findings, and also provided critical revisions to the paper.

Disclosure of potential and actual conflicts of interest

RKA was previously a Technical Consultant for the Bill and Melinda Gates Foundation Strategic Investment Fund, is a minority shareholder of Alethea Medical, and was a former Senior Policy Advisor at Health Canada. Each of these relationships is unrelated to the present work.

BMJ Open

JP reports grants to his institution from MedImmune, Sanofi Pasteur, Merck and AbbVie, and personal fees for lectures from AbbVie and Astra-Zeneca, all outside of the submitted work.

MPC reports grants from McGill Interdisciplinary Initiative in Infection and Immunity, grants from Canadian Institutes of Health Research, during the conduct of the study; personal fees from GEn1E Lifesciences, personal fees from nplex biosciences, personal fees from Kanvas biosciences, personal fees from AstraZeneca, non-financial support from Cidara therapeutics, non-financial support from Scynexis, Inc., non-financial support from Amplyx Pharmaceutics, outside the submitted work. In addition, MPC has a patent for methods detecting tissue damage, graft versus host disease, and infections using cell-free DNA profiling pending, a patent for methods assessing the severity and progression of SARS-CoV-2 infections using cell-free DNA pending, a patent for rapid identification of antimicrobial resistance and other microbial phenotypes using highly-multiplexed fluorescence in situ hybridization pending, and a patent highly multiplexed detection of gene expression with hybridization chain reaction pending, all outside the submitted work.

Ethics approval: Not applicable. This study did not involve human participants or animals.

Dating sharing: Data included in the analysis is available in Table S2 or from <u>https://serotracker.com</u>.

1 2 3		
4 5		
6 7 8 9	1.	Magnu vs 2nd
10 11 12 13 14 15	2.	Mutan Moral 19: pro Enviro
16 17 18 19 20 21 22	3.	Nguye Sikavi and th Sep 1;
23 24 25 26 27	4.	Duarte Arora 2021.
28 29 30 31 32	5.	Duarte Gurry Era. O
33 34 35 36 37 38 39	6.	Bobro M, Per antibo 23;16(
40 41 42 43 44 45	7.	Isho B saliva Immu
45 46 47 48 49 50	8.	Munn system incide
51 52 53 54 55 56 57 58 59 60	9.	NIOSI (NIOC Center

REFERENCES

- 1. Magnusson K, Nygard KM, Vold L, Telle KE. Occupational risk of COVID-19 in the 1st vs 2nd wave of infection. medRxiv. 2020 Jan 1.
- Mutambudzi M, Niedwiedz C, Macdonald EB, Leyland A, Mair F, Anderson J, Celis-Morales C, Cleland J, Forbes J, Gill J, Hastie C. Occupation and risk of severe COVID-19: prospective cohort study of 120 075 UK Biobank participants. Occupational and Environmental Medicine. 2021 May 1;78(5):307-14.
- 3. Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo CG, Ma W, Mehta RS, Warner ET, Sikavi DR, Lo CH, Kwon S. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. The Lancet Public Health. 2020 Sep 1;5(9):e475-83.
- 4. Duarte N, D'Mello S, Duarte NA, Rocco S, Van Wyk J, Pillai AA, Liu M, Williamson T, Arora RK. Uptake of SARS-CoV-2 workplace testing programs, March 2020 to March 2021. medRxiv. 2021 Jan 1.
- Duarte N, Yanes-Lane M, Arora RK, Bobrovitz N, Liu M, Bego MG, Yan T, Cao C, Gurry C, Hankins CA, Cheng MP. Adapting Serosurveys for the SARS-CoV-2 Vaccine Era. Open Forum Infect Dis. 2021 Dec 23;9(2):ofab632.
- Bobrovitz N, Arora RK, Cao C, Boucher E, Liu M, Donnici C, Yanes-Lane M, Whelan M, Perlman-Arrow S, Chen J, Rahim H. Global seroprevalence of SARS-CoV-2 antibodies: a systematic review and meta-analysis. PloS one. 2021 Jun 23;16(6):e0252617.
- Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol. 2020 Oct 8;5(52):eabe5511.
- 8. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and incidence data. Int J Evid Based Healthc. 2015;13(3):147–153.
- NIOSH (2021). NIOSH Industry and Occupation Computerized Coding System (NIOCCS). U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety

and Health, Division of Field Studies & Engineering, Health Informatics Branch. https://csams.cdc.gov/nioccs/About.aspx. Date accessed Sept 1, 2021.

- 10. Office for National Statistics. Coronavirus (COVID-19) Infection Survey: characteristics of people testing positive for COVID-19 in England. 2021 Feb 22. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsa nddiseases/articles/coronaviruscovid19infectionsinthecommunityinengland/characteristic sofpeopletestingpositiveforcovid19inengland22february2021
- rid19. 119inengla sixas NS. Estimating. ease: a key factor in con. .5(4):e0232452. 11. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers exposed to infection or disease: a key factor in containing risk of COVID-19 infection. PloS one. 2020 Apr 28;15(4):e0232452.

Figure Legends

Figure 1. Seroprevalence by SOC 2010 major occupation group. *Estimates are a mix of 'Healthcare Practitioners and Technical Occupations' and 'Healthcare Support Occupations' (see next page)

Table S1. Modified Joanna Briggs Institute Risk of Bias Tool (supplementary files)

Table S2. Summary of included studies (supplementary files)

	Тс	tal BM	J Open Median, K	QR	Seropreva	lence %	Page №%of 109
SOC 2010 Major Occupation Group	Estimates		Study dates, midpoint	Sample size	(Median, IQR)	(Scale 0-75%)	Low-Moderate RoB
Architecture and Engineering Occupations (17-0000)	1	1	15/08 (15/08-15/08)	21 (21-21)	42.9 (42.9-42.9)	T	0 (0%)
I Bersonal Care and Service Occupations (39-0000)	14	7	03/05 (02/04-02/06)	127 (54-302)	21.5 (9.32-27.76)	⊢ <u> </u> ⊣ •	3 (21%)
– Bistallation, Maintenance, and Repair Occupations (49-0000)	1	1	19/06 (19/06-19/06)	134 (134-134)	16.4 (16.4-16.4)	1	0 (0%)
duilding and Grounds Cleaning and Maintenance Occupations (37-0000)	17	8	13/07 (09/06-16/08)	102 (42-226)	10.8 (3.3-21.7)	H I	6 (35%)
Healthcare Support Occupations (31-0000)	39	12	05/06 (19/05-21/06)	263 (122-562)	10.7 (2-20.05)	+	12 (31%)
6 Business and Financial Operations Occupations (13-0000)	2	2	05/07 (18/06-22/07)	462 (252-671)	8.27 (5.3-11.23)	(D	2 (100%)
blanagement Occupations (11-0000)	10	6	17/06 (01/05-02/08)	44 (23-145)	8.17 (6.7-19.93)	H	3 (30%)
B ood Preparation and Serving Related Occupations (35-0000)	6	4	17/06 (11/05-23/07)	58 (12-108)	6.35 (2.37-24.03)	+ <mark> -</mark>	2 (33%)
Healthcare Practitioners and Technical Occupations (29-0000) Healthcare Practitioners and Technical Occupations, 5-digit codes**	222	23	13/06 (13/05-13/07)	215 (64-482)	5.91 (1.83-11.71)	k ∥ → •	84 (38%)
12 Miscellaneous Health Technologists and Technicians	4	3	26/08 (09/08-12/09)	60 (20-121)	12.96 (9.09-27.54)	⊢│ ──→	1 (25%)
13 Registered Nurses 14	78	18	05/06 (05/05-05/07)	329 (71-1000)	8.44 (3.68-15.5)	+ 	22 (28%)
1 Clinical Laboratory Technologists and Technicians	18	12	15/06 (19/05-11/07)	204 (86-284)	6.22 (2.07-11.94)	H II I⊐I •	12 (67%)
1 ⊕ hysicians and Surgeons	65	21	09/06 (10/05-09/07)	214 (59-564)	5.88 (1.85-11.8)	+ II →• •	23 (35%)
1 ≩mergency Medical Technicians and Paramedics	9	6	13/06 (27/05-30/06)	157 (56-243)	5.41 (5.2-11)	н) •	4 (44%)
18 Herapists	15	4	08/06 (19/05-28/06)	121 (61-235)	3.75 (0-9.45)	d a	7 (47%)
19 20 ^{Physician Assistants}	9	2	27/06 (26/05-28/07)	230 (156-320)	3.48 (0.64-9.43)	(F	3 (33%)
2 Pharmacists	9	7	29/06 (14/06-14/07)	113 (29-213)	0.5 (0-3.45)	• •••	4 (44%)
althcare Occupations (mixed)*	94	25	05/06 (29/04-12/07)	375 (110-1012)	5.66 (2.35-11.6)	+ <mark>∥</mark> → •• •	23 (24%)
Sales and Related Occupations (41-0000)	23	8	21/08 (22/06-19/10)	643 (236-1184)	5.3 (1.2-8.8)	• 1 -1 • •	6 (26%)
24 Education, Training, and Library Occupations (25-0000)	6	5	05/07 (12/06-27/07)	238 (73-1305)	5.07 (2.71-17.22)	H H	3 (50%)
дурания (45-0000) Бастина, Fishing, and Forestry Occupations (45-0000)	3	3	13/07 (25/06-30/07)	80 (66-100)	5 (2.5-5)	н	1 (33%)
∑or employed (mixed)*	37	14	23/06 (12/05-04/08)	382 (116-905)	4.9 (2.7-14.97)	⊦ •	28 (76%)
Shice and Administrative Support Occupations (43-0000)	39	18	14/06 (18/05-11/07)	120 (32-522)	4.88 (1.36-13.36)	₩ •	20 (51%)
29 First responders (mixed)*	6	1	18/05 (13/05-22/05)	219 (72-599)	4.67 (1.6-7.34)	ф.	1 (17%)
30 Community and Social Service Occupations (21-0000)	6	2	30/05 (18/05-11/06)	104 (49-188)	4.45 (2.13-6.1)	н <mark>)</mark> •	1 (17%)
Brotective Service Occupations (33-0000)	28	9	04/07 (21/05-16/08)	190 (46-555)	4.29 (2.17-7.47)	H ⊣ • •	6 (21%)
Bansportation and Material Moving Occupations (53-0000)	23	7	08/08 (08/06-08/10)	230 (80-364)	3.5 (1.8-11.8)	H → •	8 (35%)
Price, Physical, and Social Science Occupations (19-0000)	11	7	06/07 (11/06-30/07)	343 (174-570)	2.6 (1.66-6.46)	K H	4 (36%)
35 Production Occupations (51-0000) 36	4	3	23/05 (26/04-19/06)	764 (342-1132)	1.52 (1.45-4.93)		2 (50%)
Arts, Design, Entertainment, Sports, and Media Occupations (27-0000)	6	5	07/07 (04/06-09/08)	164 (47-823)	1.39 (0.18-11.02)	(+	3 (50%)
Gemputer and Mathematical Occupations (15-0000)	only - http 1	o://bmjope	en.bmj.com/site/abo 03/05 (03/05-03/05)	ut/guidelines.: 47 (47-47)	xhtml 0 (0-0)	1	1 (100%)
39 nstruction and Extraction Occupations (47-0000)	1	1	03/05 (03/05-03/05)	42 (42-42)	0 (0-0)	L	1 (100%)

 BMJ Open

Supplementary File I. List of all estimates, included studies and references
--

SOC 2010 Major Group	Study	N	SOC 2010 Occupation Title	Study Type	Study Dates	Country	Serum positive prevalence (95% CIs)	Overall Risk of Bias (JBI)
Not employed (mixed)*	Merkely et al., 2020 ¹	n=209	Homemaker (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	0.73% (0- 1.74%)	Moderate
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=37	Homemaker (Unpaid)	Prospective cohort	04/15 - 08/15	India	18.9%	High
Not employed (mixed)*	Biggs et al., 2020 ³	n=157	Retired (Unpaid)	Cross-sectional survey	04/28 - 05/03	United States of America	1.91%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=5381	Retired (Unpaid)	Prospective cohort	05/04 - 06/23	France	4.3% (3.5- 5%)	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=2767	Retired (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	1.09% (0.66- 1.52%)	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=1635	Retired (Unpaid)	Cross-sectional survey	04/06 - 06/30	Switzerland	4.3%	Low
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=10	Retired (Unpaid)	Prospective cohort	04/15 - 08/15	India	20%	High
Not employed (mixed)*	Alemu et al., 2020 ⁶	n=32	Student (Unpaid)	Cross-sectional survey	04/23 - 04/28	Ethiopia	15.6%	Moderate
Not employed (mixed)*	Biggs et al., 2020 ³	n=16	Student (Unpaid)	Cross-sectional survey	04/28 - 05/03	United States of America	12.5%	Moderate
Not employed (mixed)*	Brehm et al., 2020 ⁷	n=73	Student (Unpaid)	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	2.7%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=81	Student (Unpaid)	Prospective cohort	05/04 - 06/23	France	7.2% (0.1- 12.6%)	Moderate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Not employed (mixed)*	Iversen et al., 2020 ⁸	n=688	Student (Unpaid)	Cross-sectional survey	04/15 - 04/22	Denmark	14.97%	Low
Not employed (mixed)*	Lumley et al., 2020 ⁹	n=620	Student (Unpaid)	Prospective cohort	04/23 - 11/30	The United Kingdom	6.77%	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=774	Student (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	0.69% (0- 1.49%)	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=666	Student (Unpaid)	Cross-sectional survey	04/06 - 06/30	Switzerland	10.5%	Low
Not employed (mixed)*	Shakiba et al., 2020 ¹⁰	n=114	Student (Unpaid)	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	17.5% (11.3- 23.7%)	Moderat
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=14	Student (Unpaid)	Prospective cohort	04/15 - 08/15	India	21.4%	High
Not employed (mixed)*	Tilley et al., 2020 ¹¹	n=790	Student (Unpaid)	Cross-sectional survey	04/29 - 05/08	United States of America	4% (3-5.1%)	Moderat
Not employed (mixed)*	Tsitsilonis et al., 2020 ¹²	n=1395	Student (Unpaid)	Cross-sectional survey	06/15 - 07/15	Greece	0.42% (0.03- 1.5%)	Moderat
Not employed (mixed)*	Arnaldo et al., 2020 ¹³	n=513	Military, Rank Not Specified	Cross-sectional survey	07/06 - 07/13	Mozambique	3.7%	High
Not employed (mixed)*	Arnaldo et al., 2020 ¹⁴	n=116	Military, Rank Not Specified	Cross-sectional survey	11/02 - 11/12	Mozambique	1.7%	High
Not employed (mixed)*	Mabunda et al., 2020 ¹⁵	n=324	Military, Rank Not Specified	Cross-sectional survey	09/21 - 10/02	Mozambique	2.8%	High
Not employed (mixed)*	Mahomed et al., 2020 ¹⁶	n=116	Military, Rank Not Specified	Cross-sectional survey	11/26 - 12/03	Mozambique	18.1%	High
Not employed (mixed)*	Payne et al., 2020 ¹⁷	n=382	Military, Rank Not Specified	Cross-sectional survey	04/20 - 04/24	United States of America	59.7%	High
Not employed (mixed)*	World et al., 2020 ¹⁸	n=6900	Military, Rank Not Specified	Cross-sectional survey	08/15 - 10/15	Republic of Korea	0.36%	Unclear
Management Occupations (11- 0000)	Shakiba et al., 2020 ¹⁰	n=16	Farmers, Ranchers, and Other Agricultural Managers	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	19.7% (9.1- 31%)	Moderat
Management Occupations (11-	Favara et al., 2020 ¹⁹	n=43	Medical and Health Services Managers	Cross-sectional survey	07/13 - 07/13	The United Kingdom	9.3%	High

0000)								
Management Occupations (11- 0000)	Galan et al., 2020 ²⁰	n=170	Medical and Health Services Managers	Cross-sectional survey	04/14 - 04/27	Spain	27.6%	High
Management Occupations (11- 0000)	Hunter et al., 2020 ²¹	n=44	Medical and Health Services Managers	Cross-sectional survey	04/29 - 05/08	United States of America	4.55%	High
Management Occupations (11- 0000)	Leidner et al., 2020 ²²	n=257	Medical and Health Services Managers	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.11%	High
Management Occupations (11- 0000)	Martin et al., 2020 ²³	n=2078	Medical and Health Services Managers	Cross-sectional survey	05/29 - 07/13	The United Kingdom	6.79%	Modera
Management Occupations (11- 0000)	Siddiqui et al., 2020 ²	n=15	Medical and Health Services Managers	Prospective cohort	04/15 - 08/15	India	20%	High
Management Occupations (11- 0000)	Baracco et al., 2020 ²⁴	n=45	Managers, All Other	Cross-sectional survey	04/23 - 05/05	Italy	6.67%	High
Management Occupations (11- 0000)	Goenka et al., 2020 ²⁵	n=71	Managers, All Other	Cross-sectional survey	07/12 - 08/23	India	7.04%	Modera
Management Occupations (11- 0000)	Goenka et al., 2020 ²⁶	n=13	Managers, All Other	Cross-sectional survey	08/01 - 08/31	India	38.46%	High
Business and Financial Operations Occupations (13- 0000)	Satpati et al., 2020 ²⁷	n=43	Management Analysts	Cross-sectional survey	07/26 - 08/08	India	2.33%	Modera
Business and Financial	Poustchi et al., 2020 ²⁸	n=880	Financial Specialists	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	14.2% (12.1- 16.5%)	Modera

Operations Occupations (13- 0000)								
Computer and Mathematical Occupations (15- 0000)	Biggs et al., 2020 ³	n=47	Computer User Support Specialists	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Modera
Architecture and Engineering Occupations (17- 0000)	Siddiqui et al., 2020 ²	n=21	Engineers	Prospective cohort	04/15 - 08/15	India	42.9%	High
Life, Physical, and Social Science Occupations (19- 0000)	Jones et al., 2020 ²⁹	n=245	Medical Scientists	Cross-sectional survey	01/15 - 06/15	The United Kingdom	1.9%	High
Life, Physical, and Social Science Occupations (19- 0000)	Anna et al., 2020 ³⁰	n=505	Medical Scientists, Except Epidemiologists	Prospective cohort	04/28 - 07/31	France	8.71%	Modera
Life, Physical, and Social Science Occupations (19- 0000)	Erber et al., 2020 ³¹	n=635	Medical Scientists, Except Epidemiologists	Cross-sectional survey	04/14 - 05/29	Germany	1.24%	High
Life, Physical, and Social Science Occupations (19- 0000)	Favara et al., 2020 ¹⁹	n=38	Medical Scientists, Except Epidemiologists	Cross-sectional survey	07/13 - 07/13	The United Kingdom	2.6%	High
Life, Physical, and Social Science Occupations (19- 0000)	Hanrath et al., 2020 ³²	n=468	Medical Scientists, Except Epidemiologists	Cross-sectional survey	05/29 - 07/06	The United Kingdom	6.2%	High
Life, Physical, and Social Science Occupations (19- 0000)	Leidner et al., 2020 ²²	n=2654	Medical Scientists, Except Epidemiologists	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.22%	High

Life, Physical, and Social Science Occupations (19- 0000)	Martin et al., 2020 ²³	n=1154	Medical Scientists, Except Epidemiologists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	9.71%	Moderate
Life, Physical, and Social Science Occupations (19- 0000)	Rosser et al., 2020 ³³	n=102	Medical Scientists, Except Epidemiologists	Cross-sectional survey	04/20 - 05/20	United States of America	0.98%	High
Life, Physical, and Social Science Occupations (19- 0000)	Silva et al., 2020 ³⁴	n=69	Chemists	Cross-sectional survey	06/05 - 07/31	Brazil	4%	High
Life, Physical, and Social Science Occupations (19- 0000)	Tsitsilonis et al., 2020 ¹²	n=250	Physical Scientists, All Other	Cross-sectional survey	06/15 - 07/15	Greece	1.42% (0- 7.24%)	Moderate
Community and Social Service Occupations (21- 0000)	Jones et al., 2020 ²⁹	n=211	Healthcare Social Workers	Cross-sectional survey	01/15 - 06/15	The United Kingdom	6.3%	High
Community and Social Service Occupations (21- 0000)	Leidner et al., 2020 ²²	n=235	Social Workers, All Other	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.4%	High
Community and Social Service Occupations (21- 0000)	Rosser et al., 2020 ³³	n=117	Social Workers, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.71%	High
Community and Social Service Occupations (21- 0000)	Sabourin et al., 2020 ³⁵	n=91	Social Workers, All Other	Cross-sectional survey	07/15 - 08/15	United States of America	5.49%	High
Community and Social Service	Yogo et al., 2020 ³⁶	n=35	Social Workers, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High

Occupations (21- 0000)								
Community and Social Service Occupations (21- 0000)	Biggs et al., 2020 ³	n=6	Religious Workers	Cross-sectional survey	04/28 - 05/03	United States of America	16.67%	Modera
Education, Training, and Library Occupations (25- 0000)	Campos et al., 2020 ³⁷	n=2715	Postsecondary Teachers	Cross-sectional survey	05/13 - 07/10	Portugal	2.6%	High
Education, Training, and Library Occupations (25- 0000)	Goncalves et al., 2020 ³⁸	n=1636	Postsecondary Teachers	Cross-sectional survey	06/15 - 06/30	Portugal	3.05%	Modera
Education, Training, and Library Occupations (25- 0000)	Tsitsilonis et al., 2020 ¹²	n=312	Postsecondary Teachers	Cross-sectional survey	06/15 - 07/15	Greece	1.2% (0.14- 3.7%)	Modera
Education, Training, and Library Occupations (25- 0000)	Fontanet et al., 2020 ³⁹	n=42	Elementary and Middle School Teachers	Retrospective cohort	04/28 - 04/30	France	7.1%	Modera
Education, Training, and Library Occupations (25- 0000)	Siddiqui et al., 2020 ²	n=8	Elementary and Middle School Teachers	Prospective cohort	04/15 - 08/15	India	25%	High
Education, Training, and Library Occupations (25- 0000)	Torres et al., 2020 ⁴⁰	n=165	Elementary and Middle School Teachers	Cross-sectional survey	05/04 - 05/19	Chile	20.6% (14.7- 27.6%)	High

Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Halatoko et al., 2020 ⁴¹	n=55	Fine Artists, Including Painters, Sculptors, and Illustrators	Cross-sectional survey	04/23 - 05/08	Togo	0%	High
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Slusser et al., 2020 ⁴²	n=5603	Athletes, Coaches, Umpires, and Related Workers	Cross-sectional survey	04/08 - 04/21	United States of America	0.7% (0.28- 1.15%)	Unclear
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Vince et al., 2020 ⁴³	n=272	Athletes, Coaches, Umpires, and Related Workers	Prospective cohort	05/29 - 07/31	Croatia	14%	Moderate
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Vince et al., 2020 ⁴³	n=43	Coaches and Scouts	Prospective cohort	05/29 - 07/31	Croatia	16.3%	Moderate
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Mack et al., 2020 ⁴⁴	n=1007	Umpires, Referees, and Other Sports Officials	Prospective cohort	06/16 - 06/30	Germany	2.09% (1.37- 3.17%)	High
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Khan et al., 2020 ⁴⁵	n=44	Media and Communication Workers	Cross-sectional survey	07/01 - 07/15	India	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=566	Healthcare Practitioners and Technical Occupations	Cross-sectional survey	05/18 - 06/13	United States of America	4.6% (3- 6.7%)	Moderate

Page 24 c	of 109
-----------	--------

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ⁴⁵	n=355	Healthcare Practitioners and Technical Occupations	Cross-sectional survey	07/01 - 07/15	India	4.8% (3- 7.6%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=402	Healthcare Practitioners and Technical Occupations	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	1.49%	High
Healthcare Occupations (mixed)*	Hanrath et al., 2020 ³²	n=102	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/06	The United Kingdom	6.62%	High
Healthcare Occupations (mixed)*	Jones et al., 2020 ²⁹	n=413	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/15 - 06/15	The United Kingdom	7.8%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ²³	n=550	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/13	The United Kingdom	10.36%	Moderate
Healthcare Occupations (mixed)*	Amendola et al., 2020 ⁴⁷	n=117	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 04/15	Italy	4.27%	High
Healthcare Occupations (mixed)*	Arnaldo et al., 2020 ⁴⁸	n=543	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/10 - 08/21	Mozambique	3.7%	High

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Healthcare Occupations (mixed)*	Bal et al., 2020 ⁴⁹	n=190	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/10 - 05/28	France	3.68%	High
Healthcare Occupations (mixed)*	Barallat et al., 2020 ⁵⁰	n=429	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/22	Spain	7.69%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=35	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	11%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=20	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	15%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=44	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	11%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=99	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	12%	High
Healthcare Occupations (mixed)*	Biggs et al., 2020 ³	n=59	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/28 - 05/03	United States of America	10.17%	Mode

Healthcare Occupations (mixed)*	Blairon et al., 2020 ⁵²	n=588	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/25 - 06/19	Belgium	19.2%	High
Healthcare Occupations (mixed)*	Borraz et al., 2020 ⁵³	n=289	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/20 - 04/21	Spain	5.88%	High
Healthcare Occupations (mixed)*	Brunner et al., 2020 ⁵⁴	n=762	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/29	United States of America	4.5%	High
Healthcare Occupations (mixed)*	Brunner et al., 2020 ⁵⁴	n=764	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/29	United States of America	2%	High
Healthcare Occupations (mixed)*	Carozzi et al., 2020 ⁵⁵	n=17098	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/01 - 04/30	Italy	3.1%	High
Healthcare Occupations (mixed)*	Carrat et al., 2020 ⁴	n=568	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	05/04 - 06/23	France	11.6% (8.3- 14.4%)	Moderate
Healthcare Occupations (mixed)*	Cavlek et al., 2020 ⁵⁶	n=558	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/25 - 05/24	Croatia	1.25%	High

Healthcare Occupations (mixed)*	Chibwana et al., 2020 ⁵⁷	n=500	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	05/22 - 06/19	Malawi	12.3% (8.2- 16.5%)	High
Healthcare Occupations (mixed)*	Coffman et al., 2020 ⁵⁸	n=1100	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	07/01 - 07/31	United States of America	2.2%	Unclea
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=118	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	8.47%	Modera
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=27	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	14.81%	Modera
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=24	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	12.5%	Modera
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=1068	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	5.43%	Modera
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=174	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	5.75%	Modera

Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=319	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	11.29%	Moderate
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=5698	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	7.2%	Moderate
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=412	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	4.61%	Moderate
Healthcare Occupations (mixed)*	Denyer et al., 2020 ⁶⁰	n=5850	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/12 - 05/18	Japan	1.79%	Unclear
Healthcare Occupations (mixed)*	Dimeglio et al., 2020 ⁶¹	n=8758	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/10	France	3.2% (2.8- 3.5%)	High
Healthcare Occupations (mixed)*	Erber et al., 2020 ³¹	n=603	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/14 - 05/29	Germany	2.8%	High
Healthcare Occupations (mixed)*	Fuereder et al., 2020 ⁶²	n=62	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Retrospective cohort	04/01 - 06/04	Austria	3.2% (0.4- 11.2%)	High

Healthcare Occupations (mixed)*	Fusco et al., 2020 ⁶³	n=115	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/23 - 04/02	Italy	1.74%	High
Healthcare Occupations (mixed)*	Geraci et al., 2020 ⁶⁴	n=230	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/16 - 05/20	United States of America	2.17%	High
Healthcare Occupations (mixed)*	Gudo et al., 2020 ⁶⁵	n=1427	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/17 - 06/30	Mozambique	7% (6-9%)	High
Healthcare Occupations (mixed)*	Hackner et al., 2020 ⁶⁶	n=130	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/01 - 04/30	Austria	2.3%	High
Healthcare Occupations (mixed)*	Halatoko et al., 2020 ⁴¹	n=370	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/23 - 05/08	Togo	1.4%	High
Healthcare Occupations (mixed)*	Haq et al., 2020 ⁶⁷	n=76	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/15 - 06/29	Pakistan	35.5% (24.8- 47.3%)	Moderate
Healthcare Occupations (mixed)*	He et al., 2020 ⁶⁸	n=1059	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Repeated cross sectional study	05/13 - 06/10	China	9.3%	High

Healthcare Occupations (mixed)*	Herzberg et al., 2020 ⁶⁹	n=871	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	04/14 - 06/16	Germany	2.64%	High
Healthcare Occupations (mixed)*	Jeremias et al., 2020 ⁷⁰	n=100	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/30	United States of America	12%	High
Healthcare Occupations (mixed)*	Jespersen et al., 2020 ⁷¹	n=17948	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/18 - 06/19	Denmark	3.36% (2.38- 3.82%)	Moderate
Healthcare Occupations (mixed)*	Kassem et al., 2020 ⁷²	n=74	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/01 - 06/14	Egypt	12.2%	High
Healthcare Occupations (mixed)*	Kern et al., 2020 ⁷³	n=1316	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/09 - 04/16	Germany	1.06% (0.58- 1.78%)	High
Healthcare Occupations (mixed)*	Khalil et al., 2020 ⁷⁴	n=190	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/15 - 05/28	The United Kingdom	22%	High
Healthcare Occupations (mixed)*	Kumar et al., 2020 ⁷⁵	n=635	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Repeated cross sectional study	07/11 - 07/24	India	0%	High

Healthcare Occupations (mixed)*	Lackermair et al., 2020 ⁷⁶	n=151	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/02 - 04/06	Germany	2.6% (0.8- 7.1%)	High
Healthcare Occupations (mixed)*	Lahner et al., 2020 ⁷⁷	n=1084	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/07 - 04/27	Italy	0.7%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁸	n=116	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/07 - 04/21	China	0%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁸	n=304	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/07 - 04/21	China	0%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁹	n=3832	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/29 - 04/29	China	4% (3.4- 4.7%)	Modera
Healthcare Occupations (mixed)*	Lorenzo et al., 2020 ⁸⁰	n=38	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/02 - 05/31	Italy	5.3%	High
Healthcare Occupations (mixed)*	Mahomed et al., 2020 ⁸¹	n=569	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/31 - 10/12	Mozambique	0.7%	High

Healthcare Occupations (mixed)*	Mahumane et al., 2020 ⁸²	n=380	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	11/02 - 11/17	Mozambique	1.3%	High
Healthcare Occupations (mixed)*	Majdoubi et al., 2020 ⁸³	n=276	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/17 - 06/19	Canada	0.6% (0- 2.71%)	High
Healthcare Occupations (mixed)*	Majiya et al., 2020 ⁸⁴	n=185	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/26 - 06/30	Nigeria	25.41%	Moderate
Healthcare Occupations (mixed)*	Majiya et al., 2020 ⁸⁴	n=43	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/26 - 06/30	Nigeria	37.21%	Moderate
Healthcare Occupations (mixed)*	Malfertheiner et al., 2020 ⁸⁵	n=139	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/15 - 06/07	Germany	0%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ⁸⁶	n=326	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 05/18	Belgium	11%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ²³	n=4631	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/13	The United Kingdom	13.65%	Moderate

Healthcare Occupations (mixed)*	Melo et al., 2020 ⁸⁷	n=471	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/01 - 06/30	Brazil	13.59%	High
Healthcare Occupations (mixed)*	Morcuende et al., 2020 ⁸⁸	n=6	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/21	United States of America	0%	High
Healthcare Occupations (mixed)*	Moscola et al., 2020 ⁸⁹	n=8156	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/20 - 06/23	United States of America	11.6%	High
Healthcare Occupations (mixed)*	Nishida et al., 2020 ⁹⁰	n=49	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/12 - 06/19	Japan	0%	Modera
Healthcare Occupations (mixed)*	Olalla et al., 2020 ⁹¹	n=498	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 04/25	Spain	2.2%	High
Healthcare Occupations (mixed)*	Pallett et al., 2020 ⁹²	n=504	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	04/08 - 06/12	The United Kingdom	10.6% (7.6- 13.6%)	High
Healthcare Occupations (mixed)*	Pere et al., 2020 ⁹³	n=3569	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/02 - 06/26	France	11.9%	High

Healthcare Occupations (mixed)*	Poulikakos et al., 2020 ⁹⁴	n=281	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/06	The United Kingdom	6%	High
Healthcare Occupations (mixed)*	Psichogiou et al., 2020 ⁹⁵	n=1495	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/13 - 05/15	Greece	1.26% (0.43- 3.26%)	Moderate
Healthcare Occupations (mixed)*	Satpati et al., 2020 ²⁷	n=18	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	07/26 - 08/08	India	5.56%	Moderate
Healthcare Occupations (mixed)*	Seetharam et al., 2020 ⁹⁶	n=728	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/16 - 08/29	India	27.3% (24.1- 30.6%)	Unclear
Healthcare Occupations (mixed)*	Shakiba et al., 2020 ¹⁰	n=43	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	14.5% (4.5- 25%)	Moderate
Healthcare Occupations (mixed)*	Shields et al., 2020 ⁹⁷	n=516	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/24 - 04/25	The United Kingdom	24.4%	High
Healthcare Occupations (mixed)*	Silva et al., 2020 ⁹⁸	n=61	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/09 - 04/29	Brazil	4.91%	High

Healthcare Occupations (mixed)*	Solodky et al., 2020 ⁹⁹	n=85	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/16	France	5.88%	High
Healthcare Occupations (mixed)*	Soriano et al., 2020 ¹⁰⁰	n=108	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Retrospective cohort	04/26 - 05/16	Spain	13%	High
Healthcare Occupations (mixed)*	Statistica et al., 2020 ¹⁰¹	n=64660	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/25 - 07/15	Italy	2.5%	Uncle
Healthcare Occupations (mixed)*	Steensels et al., 2020 ¹⁰²	n=3056	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/22 - 04/30	Belgium	6.4% (5.5- 7.3%)	High
Healthcare Occupations (mixed)*	Stock et al., 2020 ¹⁰³	n=98	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/04 - 04/20	United States of America	15.3%	High
Healthcare Occupations (mixed)*	Takita et al., 2020 ¹⁰⁴	n=175	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/20 - 05/20	Japan	4% (1.62- 8.07%)	High
Healthcare Occupations (mixed)*	Tong et al., 2020 ¹⁰⁵	n=191	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/12 - 05/15	China	0%	High

Page	36	of	109	
------	----	----	-----	--

1 2	
2 3	
4	
5 6	
6 7	
8	
9 10	
11	
12 13	
14	
15	
16 17	
18	
19	
20 21	
22 23	
23 24	
25	
26	
27 28	
20 29	
30	
31 32	
33	
34 25	
35 36 37	
37	
38 39	
39 40	
41	
42 43	
44	
45	
46 47	
77	

Healthcare Occupations (mixed)*	Trieu et al., 2020 ¹⁰⁶	n=607	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/06 - 04/09	Norway	5.27%	High
Healthcare Occupations (mixed)*	Tu et al., 2020 ¹⁰⁷	n=325	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross sectional study with prospective cohort follow up of a subset of the sample	03/19 - 03/20	China	43.08%	High
Healthcare Occupations (mixed)*	Valdivia et al., 2020 ¹⁰⁸	n=1153	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/13 - 04/30	Spain	3.5%	High
Healthcare Occupations (mixed)*	Vasquez et al., 2020 ¹⁰⁹	n=1147	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/19 - 06/06	Peru	58.3%	High
Healthcare Occupations (mixed)*	Viegas et al., 2020 ¹¹⁰	n=1443	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/03 - 08/21	Mozambique	2.63%	High
Healthcare Occupations (mixed)*	Vlachoyiannopoulosa et al., 2020 ¹¹¹	n=321	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/25 - 05/10	Greece	2.18%	High
Healthcare Occupations (mixed)*	Volta et al., 2020 ¹¹²	n=76	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/27 - 04/27	Italy	11.8%	High

Healthcare Occupations (mixed)*	Ward et al., 2020 ¹¹³	n=5416	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	09/15 - 09/28	The United Kingdom	10.67%	Moderat
Healthcare Occupations (mixed)*	Ward et al., 2020 ¹¹³	n=1692	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	09/15 - 09/28	The United Kingdom	6.68%	Moderat
Healthcare Occupations (mixed)*	Xiong et al., 2020 ¹¹⁴	n=797	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/12 - 03/17	China	4.39%	Unclear
Healthcare Occupations (mixed)*	Zhang et al., 2020 ¹¹⁵	n=63	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/21 - 02/16	China	0%	High
Healthcare Occupations (mixed)*	Zhao et al., 2020 ¹¹⁶	n=1060	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/14 - 02/21	China	8.3%	High
First responders (mixed)*	Ahmad et al., 2020 ¹¹⁷	n=40	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	04/21 - 05/22	United States of America	20%	High
First responders (mixed)*	Halbrook et al., 2020 ¹¹⁸	n=679	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/19 - 08/31	United States of America	8.1%	Moderat

First responders (mixed)*	Iwuji et al., 2020 ¹¹⁹	n=683	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/12 - 05/13	United States of America	0.7%	High
First responders (mixed)*	Magyar et al., 2020 ¹²⁰	n=70	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/01 - 05/14	United States of America	4.29%	High
First responders (mixed)*	Martinez et al., 2020 ¹²¹	n=79	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	04/16 - 04/17	United States of America	5.06%	High
First responders (mixed)*	Staletovich et al., 2020 ¹²²	n=359	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/17 - 05/22	United States of America	0%	Unclear
Healthcare Practitioners and Technical Occupations (29- 0000)	Hibino et al., 2020 ¹²³	n=806	Health Diagnosing and Treating Practitioners	Cross-sectional survey	06/01 - 07/30	Japan	0.74% (0.27- 1.61%)	Unclear
Healthcare Practitioners and Technical Occupations (29- 0000)	Jones et al., 2020 ²⁹	n=856	Dentists, General	Cross-sectional survey	01/15 - 06/15	The United Kingdom	7.9%	High
Life, Physical, and Social Science	Calcagno et al., 2020 ¹²⁴	n=343	Life, Physical, and Social Science Occupations	Cross-sectional survey	04/17 - 05/20	Italy	6.71%	Moderate

Occupations (19- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=49	Dietitians and Nutritionists	Cross-sectional survey	07/12 - 08/23	India	18.37%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=6	Dietitians and Nutritionists	Cross-sectional survey	08/01 - 08/31	India	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=321	Pharmacists	Cross-sectional survey	05/18 - 06/13	United States of America	4.4% (2.4- 7.2%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=5	Pharmacists	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=29	Pharmacists	Cross-sectional survey	04/17 - 05/20	Italy	3.45%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=17	Pharmacists	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=189	Pharmacists	Cross-sectional survey	05/29 - 07/06	The United Kingdom	4.76%	High

Page 40 of 7	109

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=109	Pharmacists	Cross-sectional survey	06/15 - 06/29	India	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Mahomed et al., 2020 ⁸¹	n=404	Pharmacists	Cross-sectional survey	08/31 - 10/12	Mozambique	0.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ²³	n=113	Pharmacists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=213	Pharmacists	Cross-sectional survey	04/20 - 05/20	United States of America	1.88%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=652	Physicians and Surgeons	Cross-sectional survey	05/14 - 05/28	Brazil	5.8%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=372	Physicians and Surgeons	Cross-sectional survey	05/13 - 07/08	United States of America	1.61%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=63	Physicians and Surgeons	Cross-sectional survey	06/12 - 06/19	Japan	3.2% (0.88- 11%)	Moderat
Healthcare Practitioners and	Noor et al., 2020 ¹³⁰	n=157	Physicians and Surgeons	Cross-sectional survey	07/13 - 07/15	Pakistan	17.83%	Moderat

Page 41	of 109
---------	--------

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Singhal et al., 2020 ¹³¹	n=208	Physicians and Surgeons	Cross-sectional survey	06/01 - 06/30	India	12.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=23	Anesthesiologists	Cross-sectional survey	03/01 - 04/21	United States of America	13.04%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=3	Obstetricians and Gynecologists	Cross-sectional survey	03/01 - 04/21	United States of America	100%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=23	Pediatricians, General	Cross-sectional survey	04/14 - 04/16	Spain	4.3%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1944	Psychiatrists	Cross-sectional survey	04/15 - 04/22	Denmark	1.85%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=301	Surgeons	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.66%	High
Healthcare Practitioners and Technical	Akinbami et al., 2020 ⁴⁶	n=2297	Physicians and Surgeons, All Other	Cross-sectional survey	05/18 - 06/13	United States of America	6.1% (5.1- 7.1%)	Moderat

		BMJ Open	1				Page 42
Alharbi et al., 2020 ¹²⁵	n=18	Physicians and Surgeons, All Other	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	27.78%	High
Amendola et al., 2020 ⁴⁷	n=214	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/15	Italy	4.67%	High
Baracco et al., 2020 ²⁴	n=417	Physicians and Surgeons, All Other	Cross-sectional survey	04/23 - 05/05	Italy	17%	High
Barallat et al., 2020 ⁵⁰	n=1821	Physicians and Surgeons, All Other	Cross-sectional survey	05/04 - 05/22	Spain	11.81%	High
Bianchi et al., 2020 ¹³³	n=34	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 05/15	Italy	5.88%	Unclear
Blairon et al., 2020 ⁵²	n=323	Physicians and Surgeons, All Other	Cross-sectional survey	05/25 - 06/19	Belgium	11.8%	High
Brehm et al., 2020 ⁷	n=275	Physicians and Surgeons, All Other	Cross sectional study with	03/20 - 07/17	Germany	3.3%	Moderate

prospective cohort

follow up of a

1 2 3

Occupations (29-

				subset of the sample				
Healthcare Practitioners and Technical Occupations (29- 0000)	Brousseau et al., 2020 ¹³⁴	n=432	Physicians and Surgeons, All Other	Cross-sectional survey	07/06 - 09/24	Canada	7.2%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=700	Physicians and Surgeons, All Other	Cross-sectional survey	04/17 - 05/20	Italy	7.86%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=64	Physicians and Surgeons, All Other	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Chen et al., 2020 ¹³⁵	n=17	Physicians and Surgeons, All Other	Cross-sectional survey	02/19 - 02/19	China	41.18%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Erber et al., 2020 ³¹	n=860	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 05/29	Germany	1.63%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹³⁶	n=15	Physicians and Surgeons, All Other	Prospective cohort	06/01 - 06/07	The United Kingdom	13.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹⁹	n=82	Physicians and Surgeons, All Other	Cross-sectional survey	07/13 - 07/13	The United Kingdom	10.9%	High

 Page 44 of 109

High

High

High

Moderate

High

High

High

High

Healthcare Practitioners and Technical Occupations (29- 0000)	Fujita et al., 2020 ¹³⁷	n=42	Physicians and Surgeons, All Other	Cross-sectional survey	04/10 - 04/20	Japan	4.7%	
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=564	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 04/27	Spain	39.36%	
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=490	Physicians and Surgeons, All Other	Cross-sectional survey	07/27 - 10/02	United States of America	1.43%	
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=255	Physicians and Surgeons, All Other	Cross-sectional survey	07/12 - 08/23	India	3.92%	
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=29	Physicians and Surgeons, All Other	Cross-sectional survey	08/01 - 08/31	India	20.69%	
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=899	Physicians and Surgeons, All Other	Cross-sectional survey	05/29 - 07/06	The United Kingdom	7.01%	
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=72	Physicians and Surgeons, All Other	Cross-sectional survey	03/26 - 04/08	The United Kingdom	22%	
Healthcare Practitioners and	Hunter et al., 2020 ²¹	n=279	Physicians and Surgeons, All Other	Cross-sectional survey	04/29 - 05/08	United States of America	1.08%	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 45	of 109
---------	--------

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26 27

28

29

30

31

32

33

34

35

Technical Occupations (29-0000) Insua et al., 2020¹⁴⁰ Healthcare Physicians and Cross-sectional 06/08 -0.9% (0.1n=116 Argentina High Practitioners and 06/09 Surgeons, All Other survey 5.5%) Technical Occupations (29-0000) Iversen et al., 2020⁸ Healthcare n=4698 Physicians and Cross-sectional 04/15 -Denmark 4.07% Low Practitioners and Surgeons, All Other 04/22 survey Technical Occupations (29-0000) Healthcare Iversen et al., 2020⁸ n=113 Physicians and 04/15 -7.08% Cross-sectional Denmark Low Surgeons, All Other 04/22 Practitioners and survey Technical Occupations (29-0000) Healthcare Jeremias et al., 2020⁷⁰ n=79 Physicians and Cross-sectional 03/01 -United States 11.4% High survey 04/30 Practitioners and Surgeons, All Other of America Technical Occupations (29-0000) Healthcare Kassem et al., 2020⁷² n=30 Physicians and Cross-sectional 06/01 Egypt 6.66% High Surgeons, All Other Practitioners and survey 06/14 Technical Occupations (29-0000) Healthcare Kassem et al., 2020⁷² n=30 Physicians and Cross-sectional 06/01 3.33% Egypt High Surgeons, All Other Practitioners and 06/14 survey Technical Occupations (29-0000) Kassem et al., 2020⁷² Physicians and High Healthcare n=30 Cross-sectional 06/01 -Egypt 0% Practitioners and Surgeons, All Other 06/14 survey Technical

BMJ Open

 Page 46 of 109

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	3.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=980	Physicians and Surgeons, All Other	Cross-sectional survey	06/15 - 06/29	India	2.8% (1.9- 4%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Kohler et al., 2020 ¹⁴¹	n=268	Physicians and Surgeons, All Other	Cross-sectional survey	03/19 - 04/03	Switzerland	1.49%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kumar et al., 2020 ¹⁴²	n=201	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/30	India	7% (4.2- 11.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=1081	Physicians and Surgeons, All Other	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=1859	Physicians and Surgeons, All Other	Prospective cohort	04/23 - 11/30	The United Kingdom	10.11%	Moderate
Healthcare Practitioners and Technical	Martin et al., 2020 ²³	n=1243	Physicians and Surgeons, All Other	Cross-sectional survey	05/29 - 07/13	The United Kingdom	10.3%	Moderate

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Mesnil et al., 2020 ¹⁴³	n=111	Physicians and Surgeons, All Other	Cross-sectional survey	06/08 - 06/22	France	11%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Missaglia et al., 2020 ¹⁴⁴	n=377	Physicians and Surgeons, All Other	Cross-sectional survey	04/01 - 04/30	Italy	14.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=272	Physicians and Surgeons, All Other	Cross-sectional survey	05/13 - 07/08	United States of America	2.94%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Moscola et al., 2020 ⁸⁹	n=3746	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 06/23	United States of America	8.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=149	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	1.3% (0.37- 4.8%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=46	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=40	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderate

Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=59	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	1.7% (0.3- 9%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=925	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0.43% (0.17-1.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Noor et al., 2020 ¹³⁰	n=303	Physicians and Surgeons, All Other	Cross-sectional survey	07/13 - 07/15	Pakistan	19.8%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Orth-Holler et al., 2020 ¹⁴⁵	n=377	Physicians and Surgeons, All Other	Cross-sectional survey	03/20 - 03/27	Austria	0.3% (0.01- 1.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Plebani et al., 2020 ¹⁴⁶	n=2337	Physicians and Surgeons, All Other	Cross-sectional survey	02/22 - 05/29	Italy	3.6% (2.8- 4.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=2533	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.07%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rudberg et al., 2020 ¹⁴⁷	n=439	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 05/08	Sweden	19.1%	Moderat
Healthcare Practitioners and	Schmidt et al., 2020 ¹⁴⁸	n=34	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 04/30	Germany	8.82%	High

1 2 3 4 5 6	Technical Occupations (29- 0000)			
7 8 9 10 11	Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=115	Physicians and Surgeons, All Ot
11Healthcare12Healthcare13Practitioners and14Technical15Occupations (29-160000)	Practitioners and Technical Occupations (29-	Venugopal et al., 2020 ¹⁵⁰	n=157	Physicians and Surgeons, All Ot
17 18 19 20 21	Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=110	Physicians and Surgeons, All Ot
22 23 24 25 26 27 28 29 30 31	Healthcare Practitioners and Technical Occupations (29- 0000)	Brzostek et al., 2020 ¹⁵¹	n=998	Physician Assist
	Healthcare Practitioners and Technical Occupations (29- 0000)	Hoffmann et al., 2020 ¹⁵²	n=156	Physician Assist
32 33	Healthcare Practitioners and	Mohr et al., 2020 ¹²⁹	n=156	Physician Assist

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=115	Physicians and Surgeons, All Other	Cross-sectional survey	04/02 - 04/16	Italy	6.09%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=157	Physicians and Surgeons, All Other	Cross-sectional survey	03/01 - 05/01	United States of America	25%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=110	Physicians and Surgeons, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	1.82%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brzostek et al., 2020 ¹⁵¹	n=998	Physician Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	28.3%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Hoffmann et al., 2020 ¹⁵²	n=156	Physician Assistants	Prospective cohort	07/01 - 07/31	Germany	1.3%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=156	Physician Assistants	Cross-sectional survey	05/13 - 07/08	United States of America	0.64%	Moderate
Healthcare Practitioners and Technical	Morcuende et al., 2020 ⁸⁸	n=6	Physician Assistants	Cross-sectional survey	03/01 - 04/21	United States of America	9.43%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=53	Physician Assistants	Cross-sectional survey	03/01 - 04/21	United States of America	9.43%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Patel et al., 2020 ¹⁵³	n=230	Physician Assistants	Prospective cohort	06/02 - 06/27	United States of America	3.48%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=919	Physician Assistants	Cross-sectional survey	04/03 - 06/19	United States of America	5.66%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Shah et al., 2020 ¹⁵⁵	n=248	Physician Assistants	Cross-sectional survey	05/25 - 07/09	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Shah et al., 2020 ¹⁵⁵	n=320	Physician Assistants	Cross-sectional survey	05/25 - 07/09	United States of America	0.63%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=386	Occupational Therapists	Prospective cohort	04/23 - 11/30	The United Kingdom	11.4%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=235	Physical Therapists	Cross-sectional survey	05/18 - 06/13	United States of America	10.6% (7- 15.3%)	Moderat

Page 50 of 109

Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=15	Physical Therapists	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Cooper et al., 2020 ⁵⁹	n=84	Physical Therapists	Cross-sectional survey	06/10 - 08/07	The United Kingdom	10.71%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=159	Physical Therapists	Cross-sectional survey	05/14 - 05/28	Brazil	10.7%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=409	Respiratory Therapists	Cross-sectional survey	05/18 - 06/13	United States of America	8.3% (5.8- 11.4%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Brunner et al., 2020 ⁵⁴	n=42	Respiratory Therapists	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=25	Respiratory Therapists	Cross-sectional survey	07/27 - 10/02	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hunter et al., 2020 ²¹	n=94	Respiratory Therapists	Cross-sectional survey	04/29 - 05/08	United States of America	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=135	Respiratory Therapists	Cross-sectional survey	04/20 - 05/20	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=235	Respiratory Therapists	Cross-sectional survey	04/03 - 06/19	United States of America	4.26%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=121	Respiratory Therapists	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=253	Therapists, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.58%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Schmidt et al., 2020 ¹⁴⁸	n=80	Therapists, All Other	Cross-sectional survey	04/20 - 04/30	Germany	3.75%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=22	Therapists, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	4.55%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=13	Veterinarians	Cross-sectional survey	04/17 - 05/20	Italy	0%	Moderat
Healthcare Practitioners and	Akinbami et al., 2020 ⁴⁶	n=6426	Registered Nurses	Cross-sectional survey	05/18 - 06/13	United States of America	7.7% (7.1- 8.4%)	Moderat

Page 53	of 109
---------	--------

 BMJ Open

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=70	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	10%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=9	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	33.33%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=76	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	26.32%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=21	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	14.29%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=43	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	27.91%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Amendola et al., 2020 ⁴⁷	n=216	Registered Nurses	Cross-sectional survey	04/15 - 04/15	Italy	6.02%	Hig
Healthcare Practitioners and Technical	Bampoe et al., 2020 ¹⁵⁶	n=52	Registered Nurses	Cross-sectional survey	05/11 - 06/05	The United Kingdom	13.5% (5.6- 25.8%)	Hig

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Bampoe et al., 2020 ¹⁵⁶	n=40	Registered Nurses	Cross-sectional survey	05/11 - 06/05	The United Kingdom	12.5% (4.2- 26.8%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=1014	Registered Nurses	Cross-sectional survey	04/23 - 05/05	Italy	17.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Barallat et al., 2020 ⁵⁰	n=2243	Registered Nurses	Cross-sectional survey	05/04 - 05/22	Spain	10.64%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=444	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	2.3%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Brousseau et al., 2020 ¹³⁴	n=1189	Registered Nurses	Cross-sectional survey	07/06 - 09/24	Canada	11.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=1833	Registered Nurses	Cross-sectional survey	04/17 - 05/20	Italy	8.18%	Moderat
Healthcare Practitioners and Technical	Chau et al., 2020 ¹²⁶	n=144	Registered Nurses	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Chen et al., 2020 ¹³⁵	n=25	Registered Nurses	Cross-sectional survey	02/19 - 02/19	China	8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Cooper et al., 2020 ⁵⁹	n=3471	Registered Nurses	Cross-sectional survey	06/10 - 08/07	The United Kingdom	7.52%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=370	Registered Nurses	Cross-sectional survey	05/14 - 05/28	Brazil	11.4%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=412	Registered Nurses	Cross-sectional survey	06/08 - 07/08	United States of America	7%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Erber et al., 2020 ³¹	n=958	Registered Nurses	Cross-sectional survey	04/14 - 05/29	Germany	2.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹³⁶	n=45	Registered Nurses	Prospective cohort	06/01 - 06/07	The United Kingdom	28.89%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹⁹	n=237	Registered Nurses	Cross-sectional survey	07/13 - 07/13	The United Kingdom	16.5%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=251	Registered Nurses	Prospective cohort	06/29 - 07/29	Germany	12%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=887	Registered Nurses	Prospective cohort	06/29 - 07/29	Germany	20%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Fujita et al., 2020 ¹³⁷	n=50	Registered Nurses	Cross-sectional survey	04/10 - 04/20	Japan	6%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=687	Registered Nurses	Cross-sectional survey	04/14 - 04/27	Spain	30.71%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=937	Registered Nurses	Cross-sectional survey	07/27 - 10/02	United States of America	1.39%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=224	Registered Nurses	Cross-sectional survey	07/12 - 08/23	India	9.38%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=43	Registered Nurses	Cross-sectional survey	08/01 - 08/31	India	34.88%	High
Healthcare Practitioners and	Grant et al., 2020 ¹⁵⁹	n=1345	Registered Nurses	Cross-sectional survey	05/15 - 06/05	The United Kingdom	34.7%	High

Page 57 d	of 109
-----------	--------

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Grant et al., 2020 ¹⁵⁹	n=108	Registered Nurses	Cross-sectional survey	05/15 - 06/05	The United Kingdom	25%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=749	Registered Nurses	Cross-sectional survey	05/29 - 07/06	The United Kingdom	8.99%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=209	Registered Nurses	Cross-sectional survey	06/15 - 06/29	Pakistan	38.8% (32.1- 45.7%)	Mode
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=106	Registered Nurses	Cross-sectional survey	03/26 - 04/08	The United Kingdom	24%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=22	Registered Nurses	Cross-sectional survey	03/26 - 04/08	The United Kingdom	23%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hunter et al., 2020 ²¹	n=317	Registered Nurses	Cross-sectional survey	04/29 - 05/08	United States of America	2.2%	High
Healthcare Practitioners and Technical	Iversen et al., 2020 ⁸	n=9963	Registered Nurses	Cross-sectional survey	04/15 - 04/22	Denmark	4.03%	Low

BMJ Open

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1786	Registered Nurses	Cross-sectional survey	04/15 - 04/22	Denmark	4.65%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Jeremias et al., 2020 ⁷⁰	n=1043	Registered Nurses	Cross-sectional survey	03/01 - 04/30	United States of America	9.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Jones et al., 2020 ²⁹	n=1962	Registered Nurses	Cross-sectional survey	01/15 - 06/15	The United Kingdom	10.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	10.71%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	7.14%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	3.57%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=321	Registered Nurses	Cross-sectional survey	06/15 - 06/29	India	2.8% (1.5- 5.3%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Kohler et al., 2020 ¹⁴¹	n=398	Registered Nurses	Cross-sectional survey	03/19 - 04/03	Switzerland	0.75%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kumar et al., 2020 ¹⁴²	n=308	Registered Nurses	Cross-sectional survey	06/01 - 06/30	India	6.8% (4.5- 10.2%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=110	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=3504	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.34%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=4528	Registered Nurses	Prospective cohort	04/23 - 11/30	The United Kingdom	13.21%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mansour et al., 2020 ¹⁶⁰	n=285	Registered Nurses	Cross-sectional survey	03/24 - 04/04	United States of America	32.63%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=580	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.52%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=74	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	9.46%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=676	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.92%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=337	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.93%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=339	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Meissner et al., 2020 ¹⁶²	n=439	Registered Nurses	Cross-sectional survey	04/14 - 05/06	United States of America	1.37%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=410	Registered Nurses	Cross-sectional survey	05/13 - 07/08	United States of America	1.46%	Moderate
Healthcare Practitioners and	Moscola et al., 2020 ⁸⁹	n=11468	Registered Nurses	Cross-sectional survey	04/20 - 06/23	United States of America	13.1%	High

Page 61	of 109
---------	--------

 BMJ Open

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Mostafa et al., 2020 ¹⁶³	n=4040	Registered Nurses	Cross-sectional survey	04/22 - 05/14	Egypt	1.31%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=489	Registered Nurses	Cross-sectional survey	06/12 - 06/19	Japan	0.2% (0.04- 1.1%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Noor et al., 2020 ¹³⁰	n=460	Registered Nurses	Cross-sectional survey	07/13 - 07/15	Pakistan	39.78%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Paradiso et al., 2020 ¹⁶⁴	n=606	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	03/26 - 04/17	Italy	0.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Plebani et al., 2020 ¹⁴⁶	n=3230	Registered Nurses	Cross-sectional survey	02/22 - 05/29	Italy	4.7% (4- 5.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Poustchi et al., 2020 ²⁸	n=1245	Registered Nurses	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	15.9% (13.9- 18%)	Modera
Healthcare Practitioners and Technical	Rudberg et al., 2020 ¹⁴⁷	n=636	Registered Nurses	Cross-sectional survey	04/14 - 05/08	Sweden	21.9%	Modera

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Schmidt et al., 2020 ¹⁴⁸	n=154	Registered Nurses	Cross-sectional survey	04/20 - 04/30	Germany	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=1445	Registered Nurses	Cross-sectional survey	04/03 - 06/19	United States of America	5.05%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Siddiqui et al., 2020 ²	n=59	Registered Nurses	Prospective cohort	04/15 - 08/15	India	10.2%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Siddiqui et al., 2020 ²	n=70	Registered Nurses	Prospective cohort	04/15 - 08/15	India	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=64	Registered Nurses	Cross-sectional survey	04/02 - 04/16	Italy	7.8% (1.2- 14.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Sydney et al., 2020 ¹⁶⁵	n=81	Registered Nurses	Cross-sectional survey	04/28 - 05/04	United States of America	18.52%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=83	Registered Nurses	Cross-sectional survey	04/14 - 04/16	Spain	4.8%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=23	Registered Nurses	Cross-sectional survey	04/14 - 04/16	Spain	8.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=142	Registered Nurses	Cross-sectional survey	03/01 - 05/01	United States of America	28%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=1129	Registered Nurses	Cross-sectional survey	05/20 - 06/08	United States of America	2.48%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=12	Registered Nurses	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Zhou et al., 2020 ¹⁶⁶	n=2406	Registered Nurses	Cross-sectional survey	03/16 - 03/25	China	1.37%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=141	Nurse Practitioners	Cross-sectional survey	07/27 - 10/02	United States of America	1.42%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=214	Nurse Practitioners	Cross-sectional survey	06/08 - 07/08	United States of America	3.7%	Moderate
Healthcare Practitioners and	Akinbami et al., 2020 ⁴⁶	n=719	Health Technologists and Technicians	Cross-sectional survey	05/18 - 06/13	United States of America	4.2% (2.8- 5.9%)	Moderat

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Blairon et al., 2020 ⁵²	n=61	Health Technologists and Technicians	Cross-sectional survey	05/25 - 06/19	Belgium	6.6%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=65	Health Technologists and Technicians	Cross-sectional survey	05/20 - 06/08	United States of America	4.62%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Silva et al., 2020 ³⁴	n=224	Clinical Laboratory Technologists and Technicians	Cross-sectional survey	06/05 - 07/31	Brazil	7.59%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=66	Medical and Clinical Laboratory Technologists	Cross-sectional survey	05/14 - 05/28	Brazil	3%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=293	Medical and Clinical Laboratory Technicians	Cross-sectional survey	05/18 - 06/13	United States of America	3.4% (1.7- 6.2%)	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=365	Medical and Clinical Laboratory Technicians	Cross-sectional survey	05/18 - 06/13	United States of America	5.5% (3.4- 8.3%)	Modera
Healthcare Practitioners and Technical	Alharbi et al., 2020 ¹²⁵	n=80	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	20%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=256	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/23 - 05/05	Italy	12.1%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=105	Medical and Clinical Laboratory Technicians	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=216	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/17 - 05/20	Italy	6.94%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=157	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/17 - 05/20	Italy	11.46%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=33	Medical and Clinical Laboratory Technicians	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=192	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/14 - 04/27	Spain	21.35%	High
Healthcare Practitioners and Technical	Goenka et al., 2020 ²⁵	n=72	Medical and Clinical Laboratory Technicians	Cross-sectional survey	07/12 - 08/23	India	15.28%	Modera

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=32	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/15 - 06/29	Pakistan	50% (31.8- 68.1%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1292	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/15 - 04/22	Denmark	1.93%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=397	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/15 - 06/29	India	2.5% (1.4- 4.6%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=452	Medical and Clinical Laboratory Technicians	Prospective cohort	04/23 - 11/30	The United Kingdom	8.63%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=140	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/12 - 06/19	Japan	0%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=225	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/20 - 05/20	United States of America	0.44%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=342	Radiologic Technologists	Cross-sectional survey	04/15 - 04/22	Denmark	3.51%	Low

Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ²³	n=241	Radiologic Technologists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	9.96%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=1158	Emergency Medical Technicians and Paramedics	Cross-sectional survey	05/18 - 06/13	United States of America	5.2% (4- 6.6%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Buntinx et al., 2020 ¹⁶⁷	n=10	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/14 - 04/16	Belgium	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=157	Emergency Medical Technicians and Paramedics	Cross-sectional survey	06/15 - 06/29	Pakistan	42% (34.2- 50.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=323	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/15 - 04/22	Denmark	4.95%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Mesnil et al., 2020 ¹⁴³	n=212	Emergency Medical Technicians and Paramedics	Cross-sectional survey	06/08 - 06/22	France	11%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Reuben et al., 2020 ¹⁶⁸	n=10	Emergency Medical Technicians and Paramedics	Cross-sectional survey	05/28 - 07/15	United States of America	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Saberian et al., 2020 ¹⁶⁹	n=243	Emergency Medical Technicians and Paramedics	Cross-sectional survey	03/20 - 05/20	Iran (Islamic Republic of)	41.56%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=56	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/03 - 06/19	United States of America	5.36%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Tarabichi et al., 2020 ¹⁷⁰	n=111	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/20 - 05/19	United States of America	5.41%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=188	Health Technologists and Technicians, All Other	Cross-sectional survey	04/23 - 05/05	Italy	13.8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=22	Health Technologists and Technicians, All Other	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=99	Health Technologists and Technicians, All Other	Cross-sectional survey	07/12 - 08/23	India	12.12%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=16	Health Technologists and Technicians, All Other	Cross-sectional survey	08/01 - 08/31	India	68.75%	High
Healthcare Support	Jeremias et al., 2020 ⁷⁰	n=155	Healthcare Support Occupations	Cross-sectional survey	03/01 - 04/30	United States of America	5.8%	High

Page 69	of	109
---------	----	-----

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Ward et al., 2020 ¹¹³	n=979	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	09/15 - 09/28	The United Kingdom	11.09% (8.96- 13.59%)	Moderat
Healthcare Support Occupations (31- 0000)	Ward et al., 2020 ¹¹³	n=257	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	09/15 - 09/28	The United Kingdom	8.95%	Moderat
Healthcare Support Occupations (31- 0000)	Vijh et al., 2020 ¹⁷¹	n=169	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	05/04 - 05/14	Canada	26.63%	High
Healthcare Support Occupations (31- 0000)	Akinbami et al., 2020 ⁴⁶	n=641	Nursing Assistants	Cross-sectional survey	05/18 - 06/13	United States of America	12.8% (10.3- 15.6%)	Moderat
Healthcare Support Occupations (31- 0000)	Bampoe et al., 2020 ¹⁵⁶	n=108	Nursing Assistants	Cross-sectional survey	05/11 - 06/05	The United Kingdom	15.7% (9.5- 24%)	High
Healthcare Support Occupations (31- 0000)	Baracco et al., 2020 ²⁴	n=257	Nursing Assistants	Cross-sectional survey	04/23 - 05/05	Italy	22.2%	High
Healthcare Support Occupations (31- 0000)	Barallat et al., 2020 ⁵⁰	n=832	Nursing Assistants	Cross-sectional survey	05/04 - 05/22	Spain	13.94%	High
Healthcare Support Occupations (31- 0000)	Bhattacharya et al., 2020 ¹⁷²	n=121	Nursing Assistants	Cross-sectional survey	06/01 - 06/15	United States of America	1.65%	High
Healthcare Support	Brousseau et al., 2020 ¹³⁴	n=132	Nursing Assistants	Cross-sectional survey	07/06 - 09/24	Canada	16.7%	High

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Brunner et al., 2020 ⁵⁴	n=95	Nursing Assistants	Cross-sectional survey	05/04 - 05/29	United States of America	1.05%	High
Healthcare Support Occupations (31- 0000)	Brzostek et al., 2020 ¹⁵¹	n=570	Nursing Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	39.5%	Modera
Healthcare Support Occupations (31- 0000)	Brzostek et al., 2020 ¹⁵¹	n=263	Nursing Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	45.6%	Modera
Healthcare Support Occupations (31- 0000)	Calcagno et al., 2020 ¹²⁴	n=476	Nursing Assistants	Cross-sectional survey	04/17 - 05/20	Italy	9.24%	Modera
Healthcare Support Occupations (31- 0000)	Costa et al., 2020 ¹²⁸	n=553	Nursing Assistants	Cross-sectional survey	05/14 - 05/28	Brazil	10.5%	Modera
Healthcare Support Occupations (31- 0000)	Galan et al., 2020 ²⁰	n=472	Nursing Assistants	Cross-sectional survey	04/14 - 04/27	Spain	33.26%	High
Healthcare Support Occupations (31- 0000)	Garcia et al., 2020 ¹⁷³	n=2424	Nursing Assistants	Cross-sectional survey	05/01 - 05/30	Spain	22.4%	High
Healthcare Support Occupations (31- 0000)	Garcia et al., 2020 ¹⁷⁴	n=2424	Nursing Assistants	Cross-sectional survey	05/01 - 05/30	Spain	22.4%	High
Healthcare Support	Hanrath et al., 2020 ³²	n=1434	Nursing Assistants	Cross-sectional survey	05/29 - 07/06	The United Kingdom	11.44%	High

Page 71 c	of 109
-----------	--------

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Iversen et al., 2020 ⁸	n=501	Nursing Assistants	Cross-sectional survey	04/15 - 04/22	Denmark	1.2%	Low
Healthcare Support Occupations (31- 0000)	Khan et al., 2020 ¹²⁷	n=624	Nursing Assistants	Cross-sectional survey	06/15 - 06/29	India	2.4% (1.5- 4%)	Mode
Healthcare Support Occupations (31- 0000)	Mughal et al., 2020 ¹⁷⁵	n=121	Nursing Assistants	Cross-sectional survey	05/14 - 05/19	United States of America	0.83%	High
Healthcare Support Occupations (31- 0000)	Rao et al., 2020 ¹⁷⁶	n=1000	Nursing Assistants	Cross-sectional survey	05/23 - 06/06	India	1%	Uncle
Healthcare Support Occupations (31- 0000)	Rudberg et al., 2020 ¹⁴⁷	n=428	Nursing Assistants	Cross-sectional survey	04/14 - 05/08	Sweden	25.5%	Mode
Healthcare Support Occupations (31- 0000)	Siddiqui et al., 2020 ²	n=28	Nursing Assistants	Prospective cohort	04/15 - 08/15	India	10.7%	High
Healthcare Support Occupations (31- 0000)	Yogo et al., 2020 ³⁶	n=154	Nursing Assistants	Cross-sectional survey	05/20 - 06/08	United States of America	3.24%	High
Healthcare Support Occupations (31- 0000)	Brousseau et al., 2020 ¹³⁴	n=201	Orderlies	Cross-sectional survey	07/06 - 09/24	Canada	17.9%	High
Healthcare Support	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Page 72 c	of 109
-----------	--------

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	33.33%	High
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	11.11%	High
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	22.22%	High
Healthcare Support Occupations (31- 0000)	Hanrath et al., 2020 ³²	n=122	Orderlies	Cross-sectional survey	05/29 - 07/06	The United Kingdom	9.02%	High
Healthcare Support Occupations (31- 0000)	Lumley et al., 2020 ⁹	n=377	Orderlies	Prospective cohort	04/23 - 11/30	The United Kingdom	15.38%	Modera
Healthcare Support Occupations (31- 0000)	Rosser et al., 2020 ³³	n=3959	Medical Assistants	Cross-sectional survey	04/20 - 05/20	United States of America	1.39%	High
Healthcare Support Occupations (31- 0000)	Yogo et al., 2020 ³⁶	n=106	Phlebotomists	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Support Occupations (31- 0000)	Cavlek et al., 2020 ⁵⁶	n=300	Healthcare Support Workers, All Other	Cross-sectional survey	04/25 - 05/24	Croatia	0.67%	High
Healthcare Support	Erber et al., 2020 ³¹	n=383	Healthcare Support Workers, All Other	Cross-sectional survey	04/14 - 05/29	Germany	2.34%	High

Page 7	3 of	109
--------	------	-----

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Khan et al., 2020 ¹²⁷	n=141	Healthcare Support Workers, All Other	Cross-sectional survey	06/15 - 06/29	India	0%	Moderate
Protective Service Occupations (33- 0000)	Shukla et al., 2020 ¹⁷⁷	n=1713	Protective Service Occupations	Cross-sectional survey	04/24 - 05/21	United States of America	1.46%	Moderate
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=18	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	0%	High
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=47	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	14.89%	High
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=13	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	7.69%	High
Protective Service Occupations (33- 0000)	Akinbami et al., 2020 ⁴⁶	n=330	Firefighters	Cross-sectional survey	05/18 - 06/13	United States of America	6.7% (4.2- 9.9%)	Moderate
Protective Service Occupations (33- 0000)	Gray et al., 2020 ¹⁷⁸	n=132	Firefighters	Cross-sectional survey	05/01 - 05/31	United States of America	14%	High
Protective Service Occupations (33- 0000)	Reuben et al., 2020 ¹⁶⁸	n=62	Firefighters	Cross-sectional survey	05/28 - 07/15	United States of America	4.84%	High
Protective Service Occupations (33- 0000)	Sabourin et al., 2020 ³⁵	n=42	Firefighters	Cross-sectional survey	07/15 - 08/15	United States of America	2.38%	High
Protective Service Occupations (33- 0000)	Tarabichi et al., 2020 ¹⁷⁰	n=185	Firefighters	Cross-sectional survey	04/20 - 05/19	United States of America	5.41%	High

Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=7	Fire Inspectors and Investigators	Cross-sectional survey	04/16 - 04/17	United States of America	14.29%	High
Protective Service Occupations (33- 0000)	Akinbami et al., 2020 ⁴⁶	n=785	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/18 - 06/13	United States of America	4% (2.7- 5.6%)	Moderate
Protective Service Occupations (33- 0000)	Chughtai et al., 2020 ¹⁷⁹	n=154	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/20 - 05/30	Pakistan	15.6%	High
Protective Service Occupations (33- 0000)	Gudo et al., 2020 ⁶⁵	n=564	Police and Sheriff's Patrol Officers	Cross-sectional survey	06/17 - 06/30	Mozambique	6% (4-8%)	High
Protective Service Occupations (33- 0000)	Gujski et al., 2020 ¹⁸⁰	n=4026	Police and Sheriff's Patrol Officers	Cross-sectional survey	06/22 - 07/08	Poland	4.2%	Moderate
Protective Service Occupations (33- 0000)	Halatoko et al., 2020 ⁴¹	n=196	Police and Sheriff's Patrol Officers	Cross-sectional survey	04/23 - 05/08	Togo	0%	High
Protective Service Occupations (33- 0000)	Langa et al., 2020 ¹⁸¹	n=471	Police and Sheriff's Patrol Officers	Cross-sectional survey	09/28 - 10/09	Mozambique	1.5%	High
Protective Service Occupations (33- 0000)	Macicame et al., 2020 ¹⁸²	n=456	Police and Sheriff's Patrol Officers	Cross-sectional survey	09/14 - 09/30	Mozambique	4.39%	High
Protective Service Occupations (33- 0000)	Mahomed et al., 2020 ⁸¹	n=554	Police and Sheriff's Patrol Officers	Cross-sectional survey	08/31 - 10/12	Mozambique	2.9%	High
Protective Service Occupations (33- 0000)	Reuben et al., 2020 ¹⁶⁸	n=220	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/28 - 07/15	United States of America	3.64%	High
Protective Service Occupations (33- 0000)	Sabourin et al., 2020 ³⁵	n=125	Police and Sheriff's Patrol Officers	Cross-sectional survey	07/15 - 08/15	United States of America	4%	High

Protective Service Occupations (33- 0000)	Shukla et al., 2020 ¹⁷⁷	n=1643	Police and Sheriff's Patrol Officers	Cross-sectional survey	04/24 - 05/21	United States of America	1.52%	Moderate
Protective Service Occupations (33- 0000)	Siddiqui et al., 2020 ²	n=27	Police and Sheriff's Patrol Officers	Prospective cohort	04/15 - 08/15	India	7.4%	High
Protective Service Occupations (33- 0000)	Viegas et al., 2020 ¹¹⁰	n=559	Police and Sheriff's Patrol Officers	Cross-sectional survey	08/03 - 08/21	Mozambique	3.94%	High
Protective Service Occupations (33- 0000)	Denyer et al., 2020 ⁶⁰	n=38216	Security Guards	Cross-sectional survey	05/12 - 05/18	Japan	0.23%	Unclear
Protective Service Occupations (33- 0000)	Mahumane et al., 2020 ⁸²	n=407	Security Guards	Cross-sectional survey	11/02 - 11/17	Mozambique	4.9%	High
Protective Service Occupations (33- 0000)	Siddiqui et al., 2020 ²	n=9	Security Guards	Prospective cohort	04/15 - 08/15	India	0%	High
Protective Service Occupations (33- 0000)	Silva et al., 2020 ³⁴	n=32	Security Guards	Cross-sectional survey	06/05 - 07/31	Brazil	34%	High
Protective Service Occupations (33- 0000)	Thani et al., 2020 ¹⁸³	n=61	Security Guards	Cross-sectional survey	07/26 - 09/09	Qatar	60.1%	Moderate
Food Preparation and Serving Related Occupations (35- 0000)	Thani et al., 2020 ¹⁸³	n=93	Food Preparation and Serving Related Occupations	Cross-sectional survey	07/26 - 09/09	Qatar	29.2%	Moderate
Food Preparation and Serving Related Occupations (35- 0000)	Siddiqui et al., 2020 ²	n=8	Cooks, All Other	Prospective cohort	04/15 - 08/15	India	37.5%	High
Food Preparation and Serving	Brunner et al., 2020 ⁵⁴	n=8	Food Preparation Workers	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High

Related Occupations (35- 0000)								
Healthcare Support Occupations (31- 0000)	Rosser et al., 2020 ³³	n=335	Healthcare Support Occupations	Cross-sectional survey	04/20 - 05/20	United States of America	3.58%	High
Food Preparation and Serving Related Occupations (35- 0000)	Biggs et al., 2020 ³	n=24	Food Servers, Nonrestaurant	Cross-sectional survey	04/28 - 05/03	United States of America	4.17%	Modera
Food Preparation and Serving Related Occupations (35- 0000)	Leidner et al., 2020 ²²	n=113	Food Servers, Nonrestaurant	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	1.77%	High
Food Preparation and Serving Related Occupations (35- 0000)	Hanrath et al., 2020 ³²	n=340	Other Food Preparation and Serving Related Workers	Cross-sectional survey	05/29 - 07/06	The United Kingdom	8.53%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Martin et al., 2020 ²³	n=528	Building and Grounds Cleaning and Maintenance Occupations	Cross-sectional survey	05/29 - 07/13	The United Kingdom	8.14%	Modera
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Brousseau et al., 2020 ¹³⁴	n=102	Building Cleaning and Pest Control Workers	Cross-sectional survey	07/06 - 09/24	Canada	10.8%	High
Building and Grounds Cleaning and Maintenance	Chau et al., 2020 ¹²⁶	n=42	Building Cleaning and Pest Control Workers	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High

Page 76 of 109

Occupations (37- 0000)								
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=57	Building Cleaning and Pest Control Workers	Prospective cohort	06/29 - 07/29	Germany	19.3%	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Chau et al., 2020 ¹²⁶	n=6	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Epstude et al., 2020 ¹⁸⁴	n=45	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	06/15 - 06/30	Germany	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Thani et al., 2020 ¹⁸³	n=105	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	07/26 - 09/09	Qatar	54.5%	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Brunner et al., 2020 ⁵⁴	n=23	Maids and Housekeeping Cleaners	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Goenka et al., 2020 ²⁵	n=226	Maids and Housekeeping Cleaners	Cross-sectional survey	07/12 - 08/23	India	26.11%	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Goenka et al., 2020 ²⁶	n=10	Maids and Housekeeping Cleaners	Cross-sectional survey	08/01 - 08/31	India	10%	High

Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Hanrath et al., 2020 ³²	n=515	Maids and Housekeeping Cleaners	Cross-sectional survey	05/29 - 07/06	The United Kingdom	13.2%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Khan et al., 2020 ¹²⁷	n=276	Maids and Housekeeping Cleaners	Cross-sectional survey	06/15 - 06/29	India	3.3% (1.7- 6.2%)	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Leidner et al., 2020 ²²	n=137	Maids and Housekeeping Cleaners	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	8.03%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Moscola et al., 2020 ⁸⁹	n=7314	Maids and Housekeeping Cleaners	Cross-sectional survey	04/20 - 06/23	United States of America	20.9%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Shakiba et al., 2020 ¹⁰	n=159	Maids and Housekeeping Cleaners	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	25% (13.6- 37.5%)	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Shields et al., 2020 ⁹⁷	n=29	Maids and Housekeeping Cleaners	Cross-sectional survey	04/24 - 04/25	The United Kingdom	34.5%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Siddiqui et al., 2020 ²	n=46	Maids and Housekeeping Cleaners	Prospective cohort	04/15 - 08/15	India	21.7%	High

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Personal Care and Service Occupations (39- 0000)	Biggs et al., 2020 ³	n=10	Hairdressers, Hairstylists, and Cosmetologists	Cross-sectional survey	04/28 - 05/03	United States of America	10%	Moderate
Personal Care and Service Occupations (39- 0000)	Biggs et al., 2020 ³	n=48	Childcare Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Personal Care and Service Occupations (39- 0000)	Chen et al., 2020 ¹³⁵	n=11	Personal Care Aides	Cross-sectional survey	02/19 - 02/19	China	9.09%	High
Personal Care and Service Occupations (39- 0000)	Galan et al., 2020 ²⁰	n=337	Personal Care Aides	Cross-sectional survey	04/14 - 04/27	Spain	27.89%	High
Personal Care and Service Occupations (39- 0000)	Galan et al., 2020 ²⁰	n=168	Personal Care Aides	Cross-sectional survey	04/14 - 04/27	Spain	27.38%	High
Personal Care and Service Occupations (39- 0000)	Godbout et al., 2020 ¹³⁸	n=86	Personal Care Aides	Cross-sectional survey	07/27 - 10/02	United States of America	2.32%	High
Personal Care and Service Occupations (39- 0000)	Hassan et al., 2020 ¹⁸⁵	n=403	Personal Care Aides	Cross-sectional survey	05/11 - 06/17	Sweden	20.1%	High
Personal Care and Service Occupations (39- 0000)	Kumar et al., 2020 ¹⁴²	n=292	Personal Care Aides	Cross-sectional survey	06/01 - 06/30	India	18.5% (14.5- 23.3%)	High
Personal Care and Service Occupations (39- 0000)	Ladhani et al., 2020 ¹⁸⁶	n=208	Personal Care Aides	Prospective cohort	04/10 - 04/13	The United Kingdom	75% (68.7- 80.4%)	High

Personal Care and Service Occupations (39- 0000)	Lindahl et al., 2020 ¹⁸⁷	n=1005	Personal Care Aides	Cross-sectional survey	04/01 - 04/20	Sweden	22.9% (20.4- 25.7%)	High
Personal Care and Service Occupations (39- 0000)	Regan et al., 2020 ¹⁸⁸	n=305	Personal Care Aides	Cross-sectional survey	04/15 - 05/06	United States of America	23.6%	Unclear
Personal Care and Service Occupations (39- 0000)	Siddiqui et al., 2020 ²	n=5	Personal Care Aides	Prospective cohort	04/15 - 08/15	India	40%	High
Personal Care and Service Occupations (39- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=72	Personal Care Aides	Cross-sectional survey	03/01 - 05/01	United States of America	28%	Moderate
Personal Care and Service Occupations (39- 0000)	Viegas et al., 2020 ¹¹⁰	n=85	Personal Care Aides	Cross-sectional survey	08/03 - 08/21	Mozambique	1.18%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹³	n=928	Sales and Related Occupations	Cross-sectional survey	07/06 - 07/13	Mozambique	6.5%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ⁴⁸	n=1123	Sales and Related Occupations	Cross-sectional survey	08/10 - 08/21	Mozambique	1.6%	High
Sales and Related Occupations (41- 0000)	Langa et al., 2020 ¹⁸¹	n=871	Sales and Related Occupations	Cross-sectional survey	09/28 - 10/09	Mozambique	0.2%	High
Sales and Related Occupations (41- 0000)	Mabunda et al., 2020 ¹⁵	n=1585	Sales and Related Occupations	Cross-sectional survey	09/21 - 10/02	Mozambique	8.3%	High
Sales and Related Occupations (41- 0000)	Macicame et al., 2020 ¹⁸²	n=1288	Sales and Related Occupations	Cross-sectional survey	09/14 - 09/30	Mozambique	4.97%	High

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ⁸¹	n=1556	Sales and Related Occupations	Cross-sectional survey	08/31 - 10/12	Mozambique	0.8%	High
Sales and Related Occupations (41- 0000)	Mahumane et al., 2020 ⁸²	n=643	Sales and Related Occupations	Cross-sectional survey	11/02 - 11/17	Mozambique	1.9%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹⁴	n=472	Sales and Related Occupations	Cross-sectional survey	11/16 - 11/21	Mozambique	6.8%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹⁴	n=460	Sales and Related Occupations	Cross-sectional survey	11/02 - 11/12	Mozambique	5.9%	High
Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ¹⁶	n=517	Sales and Related Occupations	Cross-sectional survey	11/26 - 12/03	Mozambique	8.9%	High
Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ¹⁶	n=1001	Sales and Related Occupations	Cross-sectional survey	11/07 - 11/21	Mozambique	4.5%	High
Sales and Related Occupations (41- 0000)	Biggs et al., 2020 ³	n=19	Retail Sales Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Modera
Sales and Related Occupations (41- 0000)	Poustchi et al., 2020 ²⁸	n=753	Cashiers	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	16.1% (12.9- 19.2%)	Modera
Sales and Related Occupations (41- 0000)	Alali et al., 2020 ¹⁸⁹	n=525	Cashiers	Cross-sectional survey	05/23 - 06/26	Kuwait	38.1% (34- 42.3%)	High
Sales and Related Occupations (41- 0000)	Denyer et al., 2020 ⁶⁰	n=19075	Retail Salespersons	Cross-sectional survey	05/12 - 05/18	Japan	0.04%	Unclea
Sales and Related Occupations (41- 0000)	Kern et al., 2020 ⁷³	n=300	Retail Salespersons	Cross-sectional survey	04/09 - 04/16	Germany	0.33% (0.01- 1.84%)	High

Sales and Related Occupations (41- 0000)	Khan et al., 2020 ⁴⁵	n=132	Retail Salespersons	Cross-sectional survey	07/01 - 07/15	India	5.3% (2.5- 10.7%)	Moderate
Sales and Related Occupations (41- 0000)	Thani et al., 2020 ¹⁸³	n=171	Retail Salespersons	Cross-sectional survey	07/26 - 09/09	Qatar	40.3%	Moderate
Sales and Related Occupations (41- 0000)	Siddiqui et al., 2020 ²	n=4	Sales Representatives, Wholesale and Manufacturing, Except Technical and Scientific Products	Prospective cohort	04/15 - 08/15	India	25%	High
Sales and Related Occupations (41- 0000)	Biggs et al., 2020 ³	n=34	Real Estate Sales Agents	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderat
Sales and Related Occupations (41- 0000)	Gudo et al., 2020 ⁶⁵	n=1493	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	Cross-sectional survey	06/17 - 06/30	Mozambique	10% (8-11%)	High
Sales and Related Occupations (41- 0000)	Viegas et al., 2020 ¹¹⁰	n=1246	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	5.22%	High
Sales and Related Occupations (41- 0000)	Shakiba et al., 2020 ¹⁰	n=46	Sales and Related Workers, All Other	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	8.7% (0.8- 20%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Calcagno et al., 2020 ¹²⁴	n=539	Office and Administrative Support Occupations	Cross-sectional survey	04/17 - 05/20	Italy	3.34%	Moderat
Office and Administrative Support Occupations (43- 0000)	Costa et al., 2020 ¹²⁸	n=120	Office and Administrative Support Occupations	Cross-sectional survey	05/14 - 05/28	Brazil	14.2%	Moderat

Office and Administrative Support Occupations (43- 0000)	Rosser et al., 2020 ³³	n=972	Office and Administrative Support Occupations	Cross-sectional survey	04/20 - 05/20	United States of America	1.34%	High
Office and Administrative Support Occupations (43- 0000)	Tsitsilonis et al., 2020 ¹²	n=504	Office and Administrative Support Occupations	Cross-sectional survey	06/15 - 07/15	Greece	0.48% (0- 2.37%)	Modera
Office and Administrative Support Occupations (43- 0000)	Khan et al., 2020 ⁴⁵	n=37	Hotel, Motel, and Resort Desk Clerks	Cross-sectional survey	07/01 - 07/15	India	10.8% (4.1- 25.5%)	Modera
Office and Administrative Support Occupations (43- 0000)	Brunner et al., 2020 ⁵⁴	n=26	Receptionists and Information Clerks	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Favara et al., 2020 ¹³⁶	n=10	Receptionists and Information Clerks	Prospective cohort	06/01 - 06/07	The United Kingdom	0%	High
Office and Administrative Support Occupations (43- 0000)	Moscola et al., 2020 ⁸⁹	n=9645	Receptionists and Information Clerks	Cross-sectional survey	04/20 - 06/23	United States of America	12.6%	High
Office and Administrative Support Occupations (43- 0000)	Biggs et al., 2020 ³	n=11	Shipping, Receiving, and Traffic Clerks	Cross-sectional survey	04/28 - 05/03	United States of America	18.18%	Modera
Office and Administrative	Silva et al., 2020 ³⁴	n=82	Stock Clerks and Order Fillers	Cross-sectional survey	06/05 - 07/31	Brazil	4.88%	High

Support Occupations (43- 0000)								
Office and Administrative Support Occupations (43- 0000)	Khan et al., 2020 ⁴⁵	n=186	Secretaries and Administrative Assistants	Cross-sectional survey	07/01 - 07/15	India	3.8% (1.8- 7.7%)	Modera
Office and Administrative Support Occupations (43- 0000)	Alemu et al., 2020 ⁶	n=48	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	04/23 - 04/28	Ethiopia	2.1%	Modera
Office and Administrative Support Occupations (43- 0000)	Barallat et al., 2020 ⁵⁰	n=1181	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	05/04 - 05/22	Spain	6.52%	High
Office and Administrative Support Occupations (43- 0000)	Lumley et al., 2020 ⁹	n=1557	Executive Secretaries and Executive Administrative Assistants	Prospective cohort	04/23 - 11/30	The United Kingdom	6.74%	Modera
Office and Administrative Support Occupations (43- 0000)	Reuben et al., 2020 ¹⁶⁸	n=18	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	05/28 - 07/15	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Akinbami et al., 2020 ⁴⁶	n=964	Medical Secretaries	Cross-sectional survey	05/18 - 06/13	United States of America	8% (6.4- 9.9%)	Modera
Office and Administrative Support	Alharbi et al., 2020 ¹²⁵	n=8	Medical Secretaries	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	25%	High

Occupations (43- 0000)								
Office and Administrative Support Occupations (43- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=357	Medical Secretaries	Cross-sectional survey	06/08 - 07/08	United States of America	4.2%	Moderate
Office and Administrative Support Occupations (43- 0000)	Erber et al., 2020 ³¹	n=557	Medical Secretaries	Cross-sectional survey	04/14 - 05/29	Germany	3.78%	High
Office and Administrative Support Occupations (43- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=240	Medical Secretaries	Prospective cohort	06/29 - 07/29	Germany	7.1%	Moderate
Office and Administrative Support Occupations (43- 0000)	Goenka et al., 2020 ²⁵	n=75	Medical Secretaries	Cross-sectional survey	07/12 - 08/23	India	8%	Moderate
Office and Administrative Support Occupations (43- 0000)	Goenka et al., 2020 ²⁵	n=75	Medical Secretaries	Cross-sectional survey	07/12 - 08/23	India	8%	Moderate
Office and Administrative Support Occupations (43- 0000)	Iversen et al., 2020 ⁸	n=2631	Medical Secretaries	Cross-sectional survey	04/15 - 04/22	Denmark	2.7%	Low
Office and Administrative Support Occupations (43- 0000)	Leidner et al., 2020 ²²	n=793	Medical Secretaries	Cross sectional study with prospective cohort follow up of a	04/08 - 05/22	United States of America	3.15%	High

1 2 3 4 5 6 7 8 9 10	
11 12 13 14 15 16 17 18 19 20	
21 22 23 24 25 26 27 28	
29 30 31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47	

				subset of the sample				
Office and Administrative Support Occupations (43- 0000)	Mesnil et al., 2020 ¹⁴³	n=184	Medical Secretaries	Cross-sectional survey	06/08 - 06/22	France	14.13%	High
Office and Administrative Support Occupations (43- 0000)	Nishida et al., 2020 ⁹⁰	n=98	Medical Secretaries	Cross-sectional survey	06/12 - 06/19	Japan	1% (0.18- 5.6%)	Moderate
Office and Administrative Support Occupations (43- 0000)	Noor et al., 2020 ¹³⁰	n=91	Medical Secretaries	Cross-sectional survey	07/13 - 07/15	Pakistan	43.96%	Moderate
Office and Administrative Support Occupations (43- 0000)	Thani et al., 2020 ¹⁸³	n=82	Medical Secretaries	Cross-sectional survey	07/26 - 09/09	Qatar	31.6%	Moderat
Office and Administrative Support Occupations (43- 0000)	Zhou et al., 2020 ¹⁶⁶	n=505	Medical Secretaries	Cross-sectional survey	03/16 - 03/25	China	1.39%	Moderate
Office and Administrative Support Occupations (43- 0000)	Chau et al., 2020 ¹²⁶	n=20	Data Entry Keyers	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Office and Administrative Support Occupations (43- 0000)	Jones et al., 2020 ²⁹	n=1233	Office Clerks, General	Cross-sectional survey	01/15 - 06/15	The United Kingdom	6.1%	High

Office and Administrative Support Occupations (43- 0000)	Rosser et al., 2020 ³³	n=218	Office Clerks, General	Cross-sectional survey	04/20 - 05/20	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Satpati et al., 2020 ²⁷	n=47	Office Clerks, General	Cross-sectional survey	07/26 - 08/08	India	4.26%	Moderate
Office and Administrative Support Occupations (43- 0000)	Baracco et al., 2020 ²⁴	n=194	Office and Administrative Support Workers, All Other	Cross-sectional survey	04/23 - 05/05	Italy	14.4%	High
Office and Administrative Support Occupations (43- 0000)	Brzostek et al., 2020 ¹⁵¹	n=286	Office and Administrative Support Workers, All Other	Cross-sectional survey	04/17 - 05/07	United States of America	45.5%	Moderate
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	14.28%	High
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	14.28%	High
Farming, Fishing, and Forestry Occupations (45- 0000)	Satpati et al., 2020 ²⁷	n=53	Agricultural Workers	Cross-sectional survey	07/26 - 08/08	India	0%	Moderate
Farming, Fishing, and Forestry Occupations (45- 0000)	Addetia et al., 2020 ¹⁹⁰	n=120	Fishers and Related Fishing Workers	Retrospective cohort	05/01 - 05/31	United States of America	5%	High
Farming, Fishing, and Forestry Occupations (45- 0000)	Arnaldo et al., 2020 ¹³	n=80	Fishers and Related Fishing Workers	Cross-sectional survey	07/06 - 07/13	Mozambique	5%	High
Construction and Extraction Occupations (47- 0000)	Biggs et al., 2020 ³	n=42	Construction Trades Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderat
Installation, Maintenance, and Repair Occupations (49- 0000)	Blairon et al., 2020 ⁵²	n=134	Other Installation, Maintenance, and Repair Occupations	Cross-sectional survey	05/25 - 06/19	Belgium	16.4%	High
Production Occupations (51- 0000)	Picon et al., 2020 ¹⁹¹	n=40	Butchers and Other Meat, Poultry, and Fish Processing Workers	Cross-sectional survey	06/13 - 06/17	Brazil	15%	Moderat
Production Occupations (51- 0000)	Picon et al., 2020 ¹⁹¹	n=1087	Miscellaneous Food Processing Workers	Cross-sectional survey	06/13 - 06/17	Brazil	1.47%	Moderat
Production Occupations (51- 0000)	Bontadi et al., 2020 ¹⁹²	n=1267	Production Workers, All Other	Cross-sectional survey	04/11 - 04/29	Italy	1.58%	High

Production Occupations (51- 0000)	Xu et al., 2020 ¹⁹³	n=442	Production Workers, All Other	Cross-sectional survey	03/09 - 04/10	China	1.4% (0.6- 2.9%)	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ¹³	n=248	Transportation and Material Moving Occupations	Cross-sectional survey	07/06 - 07/13	Mozambique	4.8%	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ⁴⁸	n=367	Transportation and Material Moving Occupations	Cross-sectional survey	08/10 - 08/21	Mozambique	7.4%	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ¹⁴	n=112	Transportation and Material Moving Occupations	Cross-sectional survey	11/16 - 11/21	Mozambique	16.1%	High
Transportation and Material Moving Occupations (53- 0000)	Biggs et al., 2020 ³	n=14	Transportation and Material Moving Occupations	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Gudo et al., 2020 ⁶⁵	n=554	Transportation and Material Moving Occupations	Cross-sectional survey	06/17 - 06/30	Mozambique	3% (1-4%)	High
Transportation and Material Moving Occupations (53- 0000)	Langa et al., 2020 ¹⁸¹	n=230	Transportation and Material Moving Occupations	Cross-sectional C	09/28 - 10/09	Mozambique	0.4%	High
Transportation and Material Moving Occupations (53- 0000)	Mabunda et al., 2020 ¹⁵	n=473	Transportation and Material Moving Occupations	Cross-sectional survey	09/21 - 10/02	Mozambique	8.7%	High
Transportation and Material Moving Occupations (53- 0000)	Macicame et al., 2020 ¹⁸²	n=282	Transportation and Material Moving Occupations	Cross-sectional survey	09/14 - 09/30	Mozambique	3.19%	High

Transportation and Material Moving Occupations (53- 0000)	Mahomed et al., 2020 ⁸¹	n=334	Transportation and Material Moving Occupations	Cross-sectional survey	08/31 - 10/12	Mozambique	1.5%	High
Transportation and Material Moving Occupations (53- 0000)	Mahumane et al., 2020 ⁸²	n=287	Transportation and Material Moving Occupations	Cross-sectional survey	11/02 - 11/17	Mozambique	1%	High
Transportation and Material Moving Occupations (53- 0000)	Thani et al., 2020 ¹⁸³	n=435	Transportation and Material Moving Occupations	Cross-sectional survey	07/26 - 09/09	Qatar	53.4%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Halatoko et al., 2020 ⁴¹	n=212	Air Transportation Workers	Cross-sectional survey	04/23 - 05/08	Togo	0.9%	High
Transportation and Material Moving Occupations (53- 0000)	Viegas et al., 2020 ¹¹⁰	n=623	Air Transportation Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	2.25%	High
Transportation and Material Moving Occupations (53- 0000)	Viegas et al., 2020 ¹¹⁰	n=362	Air Transportation Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	3.31%	High
Transportation and Material Moving Occupations (53- 0000)	Khan et al., 2020 ¹²⁷	n=57	Ambulance Drivers and Attendants, Except Emergency Medical Technicians	Cross-sectional survey	06/15 - 06/29	India	3.5% (0.9- 13.3%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Martinez et al., 2020 ¹²¹	n=30	Heavy and Tractor- Trailer Truck Drivers	Cross-sectional survey	04/16 - 04/17	United States of America	16.67%	High
Transportation and Material Moving Occupations (53- 0000)	Siddiqui et al., 2020 ²	n=9	Heavy and Tractor- Trailer Truck Drivers	Prospective cohort	04/15 - 08/15	India	11.1%	High

Transportation and Material Moving Occupations (53- 0000)	Halatoko et al., 2020 ⁴¹	n=122	Taxi Drivers and Chauffeurs	Cross-sectional survey	04/23 - 05/08	Togo	0.8%	High
Transportation and Material Moving Occupations (53- 0000)	Poustchi et al., 2020 ²⁸	n=718	Taxi Drivers and Chauffeurs	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	14.1% (11.4- 16.9%)	Modera
Transportation and Material Moving Occupations (53- 0000)	Alemu et al., 2020 ⁶	n=8	Parking Lot Attendants	Cross-sectional survey	04/23 - 04/28	Ethiopia	12.5%	Modera
Transportation and Material Moving Occupations (53- 0000)	Alemu et al., 2020 ⁶	n=110	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	04/23 - 04/28	Ethiopia	10%	Modera
Transportation and Material Moving Occupations (53- 0000)	Khan et al., 2020 ⁴⁵	n=97	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	07/01 - 07/15	India	2.1% (0.5- 7.9%)	Modera
Transportation and Material Moving Occupations (53- 0000)	Satpati et al., 2020 ²⁷	n=63	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	07/26 - 08/08	India	12.7%	Modera
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=6295	Unemployed	Prospective cohort	05/04 - 06/23	France	4.9% (4.1- 5.6%)	Modera
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=1457	Unemployed	Prospective cohort	05/04 - 06/23	France	8.3% (6.4- 10%)	Modera
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=306	Unemployed	Prospective cohort	05/04 - 06/23	France	7.2% (2.3- 11.1%)	Modera
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=125	Unemployed	Prospective cohort	05/04 - 06/23	France	3.8% (0.5- 6.3%)	Modera
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=402	Unemployed	Prospective cohort	05/04 - 06/23	France	7.8% (4.7- 10.4%)	Modera

Not employed (mixed)*	Chamie et al., 2020 ¹⁹⁴	n=230	Unemployed	Cross-sectional survey	04/25 - 04/28	United States of America	4.3%	Moderate
Not employed (mixed)*	McLaughlin et al., 2020 ¹⁹⁵	n=241	Unemployed	Cross-sectional survey	05/04 - 05/19	United States of America	19.3% (14.6- 24.5%)	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=1095	Unemployed	Cross-sectional survey	05/01 - 05/16	Hungary	0.43% (0.16- 0.84%)	Moderate
Not employed (mixed)*	Munoz et al., 2020 ¹⁹⁶	n=905	Unemployed	Cross-sectional survey	07/15 - 07/16	Argentina	20%	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=549	Unemployed	Cross-sectional survey	04/06 - 06/30	Switzerland	6%	Low
Not employed (mixed)*	Satpati et al., 2020 ²⁷	n=47	Unemployed	Cross-sectional survey	07/26 - 08/08	India	2.13%	Moderate
Not employed (mixed)*	Ward et al., 2020 ¹¹³	n=59369	Unemployed	Cross-sectional survey	09/15 - 09/28	The United Kingdom	3.35%	Moderate

1. Merkely B, Szabó AJ, Kosztin A, et al. Novel coronavirus epidemic in the Hungarian population, a cross-sectional nationwide survey to support the exit policy in Hungary. *GeroScience*. 2020;42(4):1063-1074. doi:10.1007/s11357-020-00226-9

2. Siddiqui S, Naushin S, Pradhan S, et al. SARS-CoV-2 antibody seroprevalence and stability in a tertiary care hospital-setting. *medRxiv*. Published online September 2020. doi:10.1101/2020.09.02.20186486

3. Biggs HM, Harris JB, Breakwell L, et al. Estimated Community Seroprevalence of SARS-CoV-2 Antibodies Two Georgia Counties, April 28May 3, 2020. *MMWR Morbidity and Mortality Weekly Report*. 2020;69(29):965-970. doi:10.15585/mmwr.mm6929e2

4. Carrat F, Lamballerie X de, Rahib D, et al. Seroprevalence of SARS-CoV-2 among adults in three regions of France following the lockdown and associated risk factors: A multicohort study. *medRxiv*. Published online September 2020:2020.09.16.20195693. doi:10.1101/2020.09.16.20195693

5. Richard A, Wisniak A, Perez-Saez J, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies, risk factors for infection and associated symptoms in Geneva, Switzerland: A population-based study. *medRxiv*. Published online December 2020. doi:10.1101/2020.12.16.20248180

6. Alemu BN, Addissie A, Mamo G, et al. *Sero-Prevalence of Anti-SARS-CoV-2 Antibodies in Addis Ababa, Ethiopia*. Microbiology; 2020. doi:10.1101/2020.10.13.337287

7. Brehm T, Schwinge D, Lampalzer S, et al. Seroprevalence of SARS-CoV-2 antibodies among hospital workers in a German tertiary care center: A sequential follow-up study. *International Journal of Hygiene and Environmental Health*. 2021;232:113671. doi:10.1016/j.ijheh.2020.113671

8. Iversen K, Bundgaard H, Hasselbalch RB, et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. *The Lancet Infectious diseases*. Published online August 2020. doi:10.1016/S1473-3099(20)30589-2

Z	
3 4	9. Lumley SF, O'Donnell D, Stoesser NE, et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. <i>New England Journal of Medicine</i> . Published online December 2020:NEJMoa2034545. doi:10.1056/NEJMoa2034545
5 6 7	10. Shakiba M, Nazemipour M, Salari A, et al. Seroprevalence of SARS-CoV-2 in Guilan Province, Iran, April 2020. <i>Emerging Infectious Disease journal</i> . 2021;27(2). doi:10.3201/eid2702.201960
8 9 10	11. Tilley K, Ayvazyan V, Martinez L, et al. A Cross-Sectional Study Examining the Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in a University Student Population. <i>Journal of Adolescent Health</i> . 2020;67(6):763-768. doi:10.1016/j.jadohealth.2020.09.001
11 12 13	12. Tsitsilonis OE, Paraskevis D, Lianidou E, et al. Seroprevalence of Antibodies against SARS-CoV-2 among the Personnel and Students of the National and Kapodistrian University of Athens, Greece: A Preliminary Report. <i>Life</i> . 2020;10(9):214. doi:10.3390/life10090214
13 14 15	13. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Pemba (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
16 17	14. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Nas Cidades de Xai-Xai E Chókwè (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
18 19	15. Nedio Mabunda. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Beira (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
20 21 22	16. Mussagy Mahomed. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Maxixe E Vila de Massinga (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
23 24 25	17. Payne DC, Smith-Jeffcoat SE, Nowak G, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members - USS Theodore Roosevelt, April 2020. <i>MMWR Morbidity and mortality weekly report</i> . 2020;69(23):714-721. doi:10.15585/mmwr.mm6923e4
26	18. COVID-19 Serology Tests Still Show Low Antibody Rate of 0.07%. KBS World Radio.
27 28 29	19. Favara DM, McAdam K, Cooke A, et al. SARS-CoV-2 antigen and antibody prevalence among UK staff working with cancer patients during the COVID-19 pandemic. <i>medRxiv</i> . Published online September 2020:2020.09.18.20197590. doi:10.1101/2020.09.18.20197590
30 31 32	20. Galán MI, Velasco M, Casas ML, et al. Hospital-Wide SARS-CoV-2 seroprevalence in health care workers in a Spanish teaching hospital. <i>Enfermedades Infecciosas y Microbiología Clínica</i> . Published online December 2020:S0213005X20304183. doi:10.1016/j.eimc.2020.11.015
33 34 35 36	21. Hunter BR, Dbeibo L, Weaver CS, et al. Seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies among healthcare workers with differing levels of coronavirus disease 2019 (COVID-19) patient exposure. <i>Infection Control & Hospital Epidemiology</i> . Published online August 2020:1-2. doi:10.1017/ice.2020.390
37 38	22. Leidner R, Frary A, Cramer J, et al. Longitudinal SARS-CoV-2 serosurveillance of over ten thousand health care workers in the Providence Oregon cohort. <i>medRxiv</i> . Published online August 2020:2020.08.16.20176107. doi:10.1101/2020.08.16.20176107
39 40 41	23. Martin CA, Patel P, Goss C, et al. Demographic and occupational determinants of anti-SARS-CoV-2 IgG seropositivity in hospital staff. <i>Journal of Public Health</i> . 2020;(fdaa199). doi:10.1093/pubmed/fdaa199
42 43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46	

BMJ Open

24. Baracco A, Perotti G, Filippin A, et al. SARS-CoV-2 Antibody Prevalence in Health Care Workers of Lodi Hospital, the COVID-19 Italian Epicentre. Social Science Research Network; 2020.
25. Goenka M, Afzalpurkar S, Goenka U, et al. Seroprevalence of COVID-19 Amongst Health Care Workers in a Tertiary Care Hospital of a Metropolitan City from India. <i>The Journal of the Association of Physicians of India</i> . 2020;68(11):14-19.
26. Goenka MK, Shah BB, Goenka U, et al. COVID-19 prevalence among health-care workers of Gastroenterology department: An audit from a tertiary-care hospital in India. <i>JGH Open</i> . 2021;5(1):56-63. doi:10.1002/jgh3.12447
27. Satpati P, Sarangi S, Gantait K, et al. Sero-Surveillance (IgG) of SARS-CoV-2 Among Asymptomatic General Population of Paschim Medinipur, West Bengal, India. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.09.12.20193219
28. Poustchi H, Darvishian M, Mohammadi Z, et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: A population-based cross-sectional study. <i>The Lancet Infectious Diseases</i> . 2020;0(0). doi:10.1016/S1473-3099(20)30858-6
29. Jones CR, Hamilton FW, Thompson A, Morris TT, Moran E. SARS-CoV-2 IgG seroprevalence in healthcare workers and other staff at North Bristol NHS Trust: A sociodemographic analysis. <i>Journal of Infection</i> . 2020;0(0). doi:10.1016/j.jinf.2020.11.036
30. Anna F, Goyard S, Lalanne AI, et al. High seroprevalence but short-lived immune response to SARS-CoV-2 infection in Paris. <i>medRxiv</i> . Published online November 2020:2020.10.25.20219030. doi:10.1101/2020.10.25.20219030
31. Erber J, Kappler V, Haller B, et al. Strategies for infection control and prevalence of anti-SARS-CoV-2 IgG in 4,554 employees of a university hospital in Munich, Germany. Published online October 2020. doi:10.1101/2020.10.04.20206136
32. Hanrath AT, Loeff IS van der, Lendrem DW, et al. SARS-CoV-2 testing of 11,884 healthcare workers at an acute NHS hospital trust in England: A retrospective analysis. <i>medRxiv</i> . Published online December 2020:2020.12.22.20242362. doi:10.1101/2020.12.22.20242362
33. Rosser JI, Röltgen K, Dymock M, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence in healthcare personnel in northern California early in the coronavirus disease 2019 (COVID-19) pandemic. <i>Infection Control & Hospital Epidemiology</i> . Published online December 2020:1-7. doi:10.1017/ice.2020.1358
34. Silva VO, de Oliveira EL, Castejon MJ, et al. Prevalence of antibodies against sars-cov-2 in professionals of a public health laboratory at são paulo, sp, brazil. <i>medRxiv</i> . Published online October 2020. doi:10.1101/2020.10.19.20213421
35. Sabourin KR, Schultz J, Romero J, et al. Risk Factors of SARS-CoV-2 Antibodies in Arapahoe County First Responders - the COVID-19 Arapahoe SErosurveillance Study (CASES) Project. <i>Journal of Occupational and Environmental Medicine</i> . Published online December 2020. doi:10.1097/JOM.00000000002099
36. Yogo N, Greenwood KL, Thompson L, et al. Point prevalence survey to evaluate the seropositivity for coronavirus disease 2019 (COVID-19) among high-risk healthcare workers. <i>Infection Control and Hospital Epidemiology</i> . Published online December 2020:1-6. doi:10.1017/ice.2020.1370
37. Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. <i>European Journal of Immunology</i> . 2020;50(12):2025-2040. doi:10.1002/eji.202048970
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	38. Gonçalves J, Sousa RL, Jacinto MJ, et al. Evaluating SARS-CoV-2 Seroconversion Following Relieve of Confinement Measures. <i>Frontiers in Medicine</i> . 2020;7. doi:10.3389/fmed.2020.603996
6 7	39. Fontanet A, Grant R, Tondeur L, et al. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission. <i>medRxiv</i> . Published online June 2020:2020.06.25.20140178. doi:10.1101/2020.06.25.20140178
8 9 10	40. Torres JP, Piñera C, De La Maza V, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Prevalence in Blood in a Large School Community Subject to a Coronavirus Disease 2019 Outbreak: A Cross-sectional Study. <i>Clinical Infectious Diseases</i> . Published online July 2020:ciaa955. doi:10.1093/cid/ciaa955
11 12 13	41. Halatoko WA, KONU YR, Gbeasor-Komlanvi FA, et al. Prevalence of SARS-CoV-2 among high-risk populations in LomÉ (Togo) in 2020. <i>medRxiv</i> . Published online August 2020:2020.08.07.20163840. doi:10.1101/2020.08.07.20163840
14 15	42. Slusser S. MLB antibody study: 0.7% of those tested had been exposed to coronavirus. San Francisco Chronicle. Published online May 2020.
16 17	43. Vince A, Zadro R, Šostar Z, et al. SARS-CoV-2 Seroprevalence in a Cohort of Asymptomatic, RT-PCR Negative Croatian First League Football Players. <i>medRxiv</i> . Published online November 2020:2020.10.30.20223230. doi:10.1101/2020.10.30.20223230
18 19 20 21	44. Mack D, Gärtner BC, Rössler A, et al. Prevalence of SARS-CoV-2 IgG antibodies in a large prospective cohort study of elite football players in Germany (MayJune 2020): Implications for a testing protocol in asymptomatic individuals and estimation of the rate of undetected cases. <i>Clinical Microbiology and Infection</i> . 2020;27(3):473.e1-473.e4. doi:10.1016/j.cmi.2020.11.033
22 23 24	45. Khan SMS, Qurieshi MA, Haq I, et al. Seroprevalence of SARS-CoV-2 specific IgG antibodies in District Srinagar, northern India A cross-sectional study. <i>PLOS ONE</i> . 2020;15(11):e0239303. doi:10.1371/journal.pone.0239303
25 26 27 28	46. Akinbami LJ, Vuong N, Petersen LR, et al. SARS-CoV-2 Seroprevalence among Healthcare, First Response, and Public Safety Personnel, Detroit Metropolitan Area, Michigan, USA, MayJune 2020 - Volume 26, Number 12December 2020 - Emerging Infectious Diseases journal - CDC. Published online December 2020. doi:10.3201/eid2612.203764
29 30	47. Amendola A, Tanzi E, Folgori L, et al. Low seroprevalence of SARS-CoV-2 infection among healthcare workers of the largest children hospital in Milan during the pandemic wave. <i>Infection Control & Hospital Epidemiology</i> . Published online August 2020:1-2. doi:10.1017/ice.2020.401
31 32	48. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Quelimane (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
33 34 35	49. Bal A, Brengel-Pesce K, Gaymard A, et al. Clinical and microbiological assessments of COVID-19 in healthcare workers: A prospective longitudinal study. <i>medRxiv</i> . Published online November 2020:2020.11.04.20225862. doi:10.1101/2020.11.04.20225862
36 37 38	50. Fernández-Rivas G, Quirant-Sánchez B, González V, et al. Seroprevalence of SARS-CoV-2 IgG Specific Antibodies among Healthcare Workers in the Northern Metropolitan Area of Barcelona, Spain, after the first pandemic wave. <i>medRxiv</i> . Published online June 2020:2020.06.24.20135673. doi:10.1101/2020.06.24.20135673
39 40 41 42	51. Bardai G, Ouellet J, Engelhardt T, Bertolizio G, Wu Z, Rauch F. Prevalence of SARS-CoV-2 infections in a pediatric orthopedic hospital. von Ungern-Sternberg B, ed. <i>Pediatric Anesthesia</i> . 2021;31(2):247-248. doi:10.1111/pan.14047
43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

52. Blairon L, Mokrane S, Wilmet A, et al. Large-scale, molecular and serological SARS-CoV-2 screening of healthcare workers in a 4-site public hospital in Belgium after COVID-19 outbreak. *Journal of Infection*. Published online July 2020:S0163445320305144. doi:10.1016/j.jinf.2020.07.033

53. Moreno Borraz LA, Giménez López M, Carrera Lasfuentes P, et al. Prevalencia de infección por coronavirus SARS-CoV-2 en pacientes y profesionales de un hospital de media y larga estancia en España. *Revista Española de Geriatría y Gerontología*. 2020;56(2):75-80. doi:10.1016/j.regg.2020.10.005

54. Brunner WM, Hirabayashi L, Krupa NL, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG results among healthcare workers in a rural upstate New York hospital system. *Infection Control & Hospital Epidemiology*. Published online October 2020:1-4. doi:10.1017/ice.2020.1296

55. Carozzi FM, Cusi MG, Pistello M, et al. Detection of asymptomatic SARS-CoV-2 infections among healthcare workers: Results from a large-scale screening program based on rapid serological testing. *medRxiv*. Published online August 2020. doi:10.1101/2020.07.30.20149567

56. Vilibic-Cavlek T, Stevanovic V, Tabain I, et al. Severe acute respiratory syndrome coronavirus 2 seroprevalence among personnel in the healthcare facilities of Croatia, 2020. *Revista da Sociedade Brasileira de Medicina Tropical*. 2020;53. doi:10.1590/0037-8682-0458-2020

57. Chibwana MG, Jere KC, kamng'ona R, et al. High SARS-CoV-2 seroprevalence in Health Care Workers but relatively low numbers of deaths in urban Malawi. *medRxiv*. Published online August 2020:2020.07.30.20164970. doi:10.1101/2020.07.30.20164970

58. Coffman B. New Co-Immunity Project data show COVID-19 infection among health care workers may be lower than the general population | UofL News. *UofLNews*. Published online August 2020.

59. Cooper DJ, Lear S, Watson L, et al. A prospective study of risk factors associated with seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a large UK teaching hospital. *medRxiv*. Published online November 2020:2020.11.03.20220699. doi:10.1101/2020.11.03.20220699

60. Denyer S. Japanese firm's blanket testing of employees could serve as model. *LMT Online*. Published online June 2020.

61. Dimeglio C, Herin F, Miedougé M, et al. Screening for SARS-CoV-2 antibodies among healthcare workers in a university hospital in southern France. *Journal of Infection*. 2020;0(0). doi:10.1016/j.jinf.2020.09.035

62. Fuereder T, Berghoff AS, Heller G, et al. SARS-CoV-2 seroprevalence in oncology healthcare professionals and patients with cancer at a tertiary care centre during the COVID-19 pandemic. *ESMO Open*. 2020;5(5). doi:10.1136/esmoopen-2020-000889

63. Fusco FM, Pisaturo M, Iodice V, et al. COVID-19 among healthcare workers in a specialist infectious diseases setting in Naples, Southern Italy: Results of a cross-sectional surveillance study. *Journal of Hospital Infection*. 2020;105(4):596-600. doi:10.1016/j.jhin.2020.06.021

64. Geraci L. Antibody tests show just 2% exposure rate to COVID-19. The Lancaster News. Published online May 2020.

65. Eduardo Samo Gudo. Inquérito Sero-epidemiológico de SARS-CoV-2 na Cidade de Nampula. República de Moçambique Ministério da Saúde; 2020:19.

66. Hackner K, Errhalt P, Willheim M, et al. Diagnostic accuracy of two commercially available rapid assays for detection of IgG and IgM antibodies to SARS-CoV-2 compared to ELISA in a low-prevalence population. *Research Square*. Published online August 2020. doi:10.21203/rs.3.rs-50887/v1

4

5

6

7 8

9

10 11

12

13 14

15

16

17

18

19 20

21

22 23

24

25 26

27

28

29

30 31

32

33 34

35

36 37

38

39

40

45 46 47 BMJ Open

67. Haq M, Rehman A, Noor M, et al. Seroprevalence and Risk Factors of SARS CoV-2 in Health Care Workers of Tertiary-Care Hospitals in the Province of Khyber Pakhtunkhwa, Pakistan. medRxiv. Published online September 2020:2020.09.29.20203125. doi:10.1101/2020.09.29.20203125 68. He L, Zeng Y, Zeng C, et al. Positive Rate of Serology and RT-PCR for COVID-19 among healthcare workers during different periods in Wuhan, China. Journal of Infection. Published online August 2020. doi:10.1016/j.jinf.2020.08.027 69. Herzberg J, Vollmer T, Fischer B, et al. Prospective Sero-epidemiological Evaluation of SARS-CoV-2 among Health Care Workers in a German Secondary Care Hospital. International Journal of Infectious Diseases. 2021;102:136-143. doi:10.1016/j.ijid.2020.10.026 70. Jeremias A, Nguyen J, Levine J, et al. Prevalence of SARS-CoV-2 Infection Among Health Care Workers in a Tertiary Community Hospital. JAMA Internal *Medicine*. Published online August 2020. doi:10.1001/jamainternmed.2020.4214 71. Jespersen S, Mikkelsen S, Greve T, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence Survey Among 17 971 Healthcare and Administrative Personnel at Hospitals, Prehospital Services, and Specialist Practitioners in the Central Denmark Region. Clinical Infectious Diseases. Published online October 2020:ciaa1471. doi:10.1093/cid/ciaa1471 72. Kassem AM, Talaat H, Shawky S, et al. SARS-CoV-2 infection among healthcare workers of a gastroenterological service in a tertiary care facility. Arab Journal of Gastroenterology. 2020;21(3):151-155. doi:10.1016/j.ajg.2020.07.005 73. Kern PM, Müller H-H, Menzel T, Weisser H. Studie zur Immunität gegen SARS-CoV-2: Keine signifikante humorale Immunität gegen SARS-CoV-2 im medizinischen Personal eines Klinikums der Maximalversorgung und in der Stadtregion Fulda. Der Klinikarzt. 2020;49(06):268-273. doi:10.1055/a-1198-1243 74. Khalil A, Hill R, Wright A, Ladhani S, O'Brien P. SARS-CoV-2-Specific Antibody Detection in Healthcare Workers in a UK Maternity Hospital: Correlation With SARS-CoV-2 RT-PCR Results. Clinical Infectious Diseases. 2020;(ciaa893). doi:10.1093/cid/ciaa893 75. Kumar A, Sathyapalan D, Ramachandran A, Subhash K, Biswas L, Beena KV. SARS-CoV-2 antibodies in healthcare workers in a large university hospital, Kerala, India. Clinical Microbiology and Infection. 2021;27(3):481-483. doi:10.1016/j.cmi.2020.09.013 76. Lackermair K, William F, Grzanna N, et al. Infection with SARS-CoV-2 in primary care health care workers assessed by antibody testing. Family Practice. Published online August 2020:cmaa078. doi:10.1093/fampra/cmaa078 77. Lahner E, Dilaghi E, Prestigiacomo C, et al. Prevalence of Sars-Cov-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy. International Journal of Environmental Research and Public Health. 2020;17(12). doi:10.3390/ijerph17124417 78. Liu M, Cheng S-Z, Xu K-W, et al. Use of personal protective equipment against coronavirus disease 2019 by healthcare professionals in Wuhan, China: Cross sectional study. BMJ. 2020;369. doi:10.1136/bmj.m2195 79. Liu T, Wu S, Tao H, Zeng G, Zhou F, Wang X. Prevalence of IgG Antibodies to SARS-CoV-2 in Wuhan Implications for the Longevity of Antibodies Against SARS-CoV-2. Research Square. Published online November 2020. doi:10.21203/rs.3.rs-99748/v1 80. Lorenzo D, Carrisi C. COVID-19 exposure risk for family members of healthcare workers: An observational study. International Journal of Infectious Diseases. 2020;98:287-289. doi:10.1016/j.ijid.2020.06.106 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1	
2	
3	
4	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47

81. Mussagy Mahomed. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Tete (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.

82. Arlete Mahumane. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Chimoio (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.

83. Majdoubi A, Michalski C, O'Connell SE, et al. Antibody reactivity to SARS-CoV-2 is common in unexposed adults and infants under 6 months. *medRxiv*. Published online November 2020:2020.10.05.20206664. doi:10.1101/2020.10.05.20206664

84. Majiya H, Aliyu-Paiko M, Balogu VT, et al. Seroprevalence of COVID-19 in Niger State. *medRxiv*. Published online August 2020. doi:10.1101/2020.08.04.20168112

85. Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study. *Journal of Clinical Virology*. 2020;130:104575. doi:10.1016/j.jcv.2020.104575

86. Martin C, Montesinos I, Dauby N, et al. Dynamics of SARS-CoV-2 RT-PCR positivity and seroprevalence among high-risk healthcare workers and hospital staff. *Journal of Hospital Infection*. 2020;106(1):102-106. doi:10.1016/j.jhin.2020.06.028

87. de Melo MS, Borges LP, de Souza DRV, et al. Anti-SARS-CoV-2 IgM and IgG Antibodies in Health Workers in Sergipe, Brazil. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.09.24.20200873

88. Morcuende M, Guglielminotti J, Landau R. Anesthesiologists' and Intensive Care Providers' Exposure to COVID-19 Infection in a New York City Academic Center: A Prospective Cohort Study Assessing Symptoms and COVID-19 Antibody Testing. *Anesthesia and analgesia*. 2020;131(3):669-676. doi:10.1213/ANE.000000000005056

89. Moscola J, Sembajwe G, Jarrett M, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the New York City Area. *JAMA*. 2020;324(9):893-895. doi:10.1001/jama.2020.14765

90. Nishida T, Iwahashi H, Yamauchi K, et al. Seroprevalence of SARS-CoV-2 Antibodies Among 925 Staff Members in an Urban Hospital Accepting COVID-19 Patients in Osaka Prefecture, Japan. *medRxiv*. Published online January 2020:2020.09.10.20191866. doi:10.1101/2020.09.10.20191866

91. Olalla J, Correa AM, Martín-Escalante MD, et al. Search for asymptomatic carriers of SARS-CoV-2 in healthcare workers during the pandemic: A Spanish experience. *QJM: An International Journal of Medicine*. 2020;(hcaa238). doi:10.1093/qjmed/hcaa238

92. Pallett SJC, Rayment M, Patel A, et al. Point-of-care serological assays for delayed SARS-CoV-2 case identification among health-care workers in the UK: A prospective multicentre cohort study. *The Lancet Respiratory Medicine*. 2020;8(9):885-894. doi:10.1016/S2213-2600(20)30315-5

93. Péré H, Wack M, Védie B, et al. Sequential SARS-CoV-2 IgG assays as confirmatory strategy to confirm equivocal results: Hospital-wide antibody screening in 3,569 staff health care workers in Paris. *Journal of Clinical Virology*. 2020;132:104617. doi:10.1016/j.jcv.2020.104617

94. Poulikakos D, Sinha S, Kalra PA. SARS-CoV-2 antibody screening in healthcare workers in a tertiary centre in North West England. *Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology*. 2020;129:104545-104545. doi:10.1016/j.jcv.2020.104545

95. Psichogiou M, Karabinis A, Pavlopoulou I, et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. *medRxiv*. Published online June 2020. doi:10.1101/2020.06.23.20137620

Z	
3 4	96. Kolthur-Seetharam U, Shah D, Shastri J, et al. SARS-CoV2 Serological Survey in Mumbai by NITI-BMC-TIFR: Preliminary Report of Round-2. NITI-BMC-TIFR; 2020.
5 6 7	97. Shields AM, Faustini SE, Perez-Toledo M, et al. SARS-CoV-2 seroconversion in health care workers. <i>medRxiv</i> . Published online May 2020:2020.05.18.20105197. doi:10.1101/2020.05.18.20105197
8 9 10	98. Ismael Amaral Silva PA, Ismael C, Marchon da Silva C, Domenge C. 1761P Universal screening of SARS-CoV-2 of oncology healthcare workers a Brazilian experience. <i>Annals of Oncology</i> . 2020;31:S1024. doi:10.1016/j.annonc.2020.08.1825
11 12 13	99. Solodky ML, Galvez C, Russias B, et al. Lower detection rates of SARS-COV2 antibodies in cancer patients versus health care workers after symptomatic COVID- 19. Annals of Oncology. 2020;31(8):1087-1088. doi:10.1016/j.annonc.2020.04.475
14 15	100. Soriano V, Meiriño R, Corral O, Guallar MP. Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in Adults in Madrid, Spain. <i>Clinical Infectious Diseases</i> . 2020;(ciaa769). doi:10.1093/cid/ciaa769
16 17	101. Instituto Nazionale di Statistica. PRIMI RISULTATI DELL'INDAGINE DI SIEROPREVALENZA SUL SARS-CoV-2. Instituto Nazionale di Statistica; 2020.
18 19 20	102. Steensels D, Oris E, Coninx L, et al. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. JAMA. 2020;(7501160). doi:10.1001/jama.2020.11160
21 22 23	103. Stock AD, Bader ER, Cezayirli P, et al. COVID-19 Infection Among Healthcare Workers: Serological Findings Supporting Routine Testing. <i>Frontiers in Medicine</i> . 2020;7. doi:10.3389/fmed.2020.00471
24 25	104. Takita M, Matsumura T, Yamamoto K, et al. Geographical Profiles of COVID-19 Outbreak in Tokyo: An Analysis of the Primary Care ClinicBased Point-of-Care Antibody Testing. Journal of Primary Care & Community Health. 2020;11:215013272094269. doi:10.1177/2150132720942695
26 27 28	105. Tong X, Ning M, Huang R, et al. Surveillance of SARS-CoV-2 infection among frontline health care workers in Wuhan during COVID-19 outbreak. <i>Immunity, Inflammation and Disease</i> . 2020;8(4):840-843. doi:10.1002/iid3.340
29 30 31	106. Trieu M-C, Bansal A, Madsen A, et al. SARS-CoV-2Specific Neutralizing Antibody Responses in Norwegian Health Care Workers After the First Wave of COVID- 19 Pandemic: A Prospective Cohort Study. <i>The Journal of Infectious Diseases</i> . 2020;2021-(jiaa737). doi:10.1093/infdis/jiaa737
32 33 34	107. Tu D, Shu J, Wu X, et al. Immunological detection of serum antibodies in pediatric medical workers exposed to varying levels of SARS-CoV-2. <i>The Journal of Infection</i> . 2021;82(1):159-198. doi:10.1016/j.jinf.2020.07.023
35 36	108. Valdivia A, Torres I, Huntley D, et al. Caveats in interpreting SARS-CoV-2 IgM+/IgG- antibody profile in asymptomatic health care workers. <i>Journal of Medical Virology</i> . 2020;n/a(n/a). doi:10.1002/jmv.26400
37 38 39	109. Chafloque-Vasquez RA, Pampa-Espinoza L, Salinas JCC. Seroprevalence of COVID-19 in workers in a hospital in the Peruvian Amazon. ACTA MEDICA PERUANA. 2020;37(3). doi:10.35663/amp.2020.373.1050
40 41 42	110. Edna Viegas. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Maputo (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46	

BMJ Open

111. Vlachoyiannopoulos P, Alexopoulos H, Apostolidi I, et al. Anti-SARS-CoV-2 antibody detection in healthcare workers of two tertiary hospitals in Athens, Greece. Clinical Immunology. 2020;221:108619. doi:10.1016/j.clim.2020.108619 112. Dalla Volta A, Valcamonico F, Pedersini R, et al. The Spread of SARS-CoV-2 Infection Among the Medical Oncology Staff of ASST Spedali Civili of Brescia: Efficacy of Preventive Measures. Frontiers in Oncology. 2020;10:1574. doi:10.3389/fonc.2020.01574 113. Ward H, Cooke G, Atchison C, et al. Declining prevalence of antibody positivity to SARS-CoV-2: A community study of 365,000 adults. medRxiv. Published online October 2020:2020.10.26.20219725. doi:10.1101/2020.10.26.20219725 114. Xiong S, Guo C, Dittmer U, Zheng X, Wang B. The prevalence of antibodies to SARS-CoV-2 in asymptomatic healthcare workers with intensive exposure to COVID-19. medRxiv. Published online June 2020:2020.05.28.20110767. doi:10.1101/2020.05.28.20110767 115. Zhang J, Liu J, Li N, et al. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing. medRxiv. Published online March 2020;2020.03.04.20030916. doi:10.1101/2020.03.04.20030916 116. Zhao D, Wang M, Wang M, et al. Asymptomatic infection by SARS-CoV-2 in healthcare workers: A study in a large teaching hospital in Wuhan, China. International Journal of Infectious Diseases. 2020;99:219-225. doi:10.1016/j.ijid.2020.07.082 117. Ahmad K, Rezvanizadeh V, Dahal S, et al. COVID-19 IgG/IgM antibody testing in Los Angeles County, California. European Journal of Clinical Microbiology & Infectious Diseases. Published online November 2020. doi:10.1007/s10096-020-04111-3 118. Halbrook M, Gadoth A, Martin-Blais R, et al. Incidence of SARS-CoV-2 infection among asymptomatic frontline health workers in Los Angeles County, California. medRxiv. Published online November 2020:2020.11.18.20234211. doi:10.1101/2020.11.18.20234211 119. Iwuji K, Islam E, Berdine G, Nugent K, Test V, Tijerina A. Prevalence of Coronavirus Antibody Among First Responders in Lubbock, Texas. Journal of Primary Care & Community Health. 11:2150132720971390. doi:10.1177/2150132720971390 120. Parker-Magyar A. Few among Long Hill first responders test positive for COVID-19 antibodies. Echoes Sentinel. Published online June 2020. 121. Caban-Martinez AJ, Schaefer-Solle N, Santiago K, et al. Epidemiology of SARS-CoV-2 antibodies among firefighters/paramedics of a US fire department: A crosssectional study. Occupational and Environmental Medicine. 2020;77(12):857-861. doi:10.1136/oemed-2020-106676 122. Staletovich J. South Florida Cities Begin Testing Employees For COVID-19 Antibodies. WLRN. Published online May 2020. 123. Hibino M, Iwabuchi S, Munakata H. SARS-CoV-2 IgG seroprevalence among medical staff in a general hospital that treated patients with COVID-19 in Japan: Retrospective evaluation of nosocomial infection control. Journal of Hospital Infection. 2020;107:103-104. doi:10.1016/j.jhin.2020.10.001 124. Calcagno A, Ghisetti V, Emanuele T, et al. Risk for SARS-CoV-2 Infection in Healthcare Workers, Turin, Italy. Emerging Infectious Diseases. 2021;27(1):303-305. doi:10.3201/eid2701.203027 125. Alharbi SA, Almutairi AZ, Jan AA, Alkhalify AM. Enzyme-Linked Immunosorbent Assay for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) IgM/IgA and IgG Antibodies Among Healthcare Workers. Cureus. Published online September 2020. doi:10.7759/cureus.10285 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	126. Chau NVV, Toan LM, Man DNH, et al. Absence of SARS-CoV-2 antibodies in health care workers of a tertiary referral hospital for COVID-19 in southern
4	Vietnam. Journal of Infection. 2020;82(1):e36-e37. doi:10.1016/j.jinf.2020.11.018
5	
6	127. Khan MS, Haq I, Qurieshi MA, et al. SARS-CoV-2 seroprevalence in healthcare workers of dedicated-COVID hospitals and nonCOVID hospitals of District
7	Srinagar, Kashmir. <i>medRxiv</i> . Published online October 2020:2020.10.23.20218164. doi:10.1101/2020.10.23.20218164
8	128. Costa SF, Giavina-Bianchi P, Buss L, et al. SARS-CoV-2 seroprevalence and risk factors among oligo/asymptomatic healthcare workers(HCW): Estimating the
9	impact of community transmission. <i>Clinical Infectious Diseases</i> . 2020;(ciaa1845). doi:10.1093/cid/ciaa1845
10	
11	129. Mohr N, Harland K, Krishnadasan A, Santibanez S, Talan D. Diagnosed and Undiagnosed COVID-19 in US Emergency Department Health Care Personnel: A
12	Cross-sectional Analysis. Annals of Emergency Medicine. Published online December 2020. doi:10.1016/j.annemergmed.2020.12.007
13 14	
14	130. Noor M, Haq M, Ul Haq N, et al. Does Working in a COVID-19 Receiving Health Facility Influence Seroprevalence to SARS-CoV-2? <i>Cureus</i> . Published online
15	November 2020. doi:10.7759/cureus.11389
17	131. Singhal T, Shah S, Naik R, Kazi A, Thakkar P. Prevalence of COVID-19 Antibodies in Healthcare Workers at the Peak of the Pandemic in Mumbai, India: A
18	Preliminary Study. Indian Journal of Medical Microbiology. 2020;38(3):461-463. doi:10.4103/ijmm.IJMM_20_308
19	
20	132. Dacosta-Urbieta A, Rivero-Calle I, Pardo-Seco J, et al. Seroprevalence of SARS-CoV-2 Among Pediatric Healthcare Workers in Spain. Frontiers in Pediatrics.
21	2020;8. doi:10.3389/fped.2020.00547
22	122 Sectors Disput: A Detail: C. Tesi E. et al. INCIDENCE OF CARS COM 2 INFECTION IN DATIENTS WITH ACTIVE CANCED, MONO INSTITUTIONAL
23	133. Sartore-Bianchi A, Patelli G, Tosi F, et al. INCIDENCE OF SARS-COV-2 INFECTION IN PATIENTS WITH ACTIVE CANCER: MONO-INSTITUTIONAL SERIES OF A COMPREHENSIVE CANCER INSTITUTION IN LOMBARDY DURING THE COVID-19 PANDEMIC (NIGUARDA CANCER CENTER, MILANO,
24	ITALY). In: <i>Tumori Journal</i> . Vol 106. AIOM Abstracts.; 2020:1-215. doi:10.1177/0300891620953388
25	111121). III. Tumort Journal. Vol 100. Thom Rostlacts., 2020.1 213. doi:10.117/105000/1020/55500
26	134. Brousseau N, Morin L, Ouakki M, et al. COVID-19 : Étude de séroprévalence chez des travailleurs de la santé de centres hospitaliers au Québec. Institut National
27	de Sante Publique du Quebec; 2020:20.
28	
29	135. Chen Y, Tong X, Wang J, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. <i>The Journal of Infection</i> .
30	2020;81(3):420-426. doi:10.1016/j.jinf.2020.05.067
31	136. Favara DM, Cooke A, Doffinger R, McAdam K, Corrie P, Ainsworth NL. COVID-19 Serology in Oncology Staff Study: Understanding SARS-CoV-2 in the
32	Oncology Workforce. Clinical Oncology (Royal College of Radiologists (Great Britain). 2021;33(1):e61-e63. doi:10.1016/j.clon.2020.07.015
33	
34 35	137. Fujita K, Shinpei Kada, Osamu Kanai, et al. Quantitative SARS-CoV-2 antibody screening of healthcare workers in the southern part of Kyoto city during the
36	COVID-19 peri-pandemic period. <i>medRxiv</i> . Published online May 2020.
37	138. Godbout EJ, Pryor R, Harmon M, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare workers in a low prevalence
38	region. Infection Control & Hospital Epidemiology. Published online December 2020:1-3. doi:10.1017/ice.2020.1374
39	region. Injection Control & Hospital Epidemology. I dousted online December 2020.1-5. doi:10.101//tec.2020.1574
40	139. Houlihan CF, Vora N, Byrne T, et al. Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. The Lancet.
41	2020;396(10246):e6-e7. doi:10.1016/S0140-6736(20)31484-7
42	
43	
44	
45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46	

BMJ Open

140. Insúa C, Stedile G, Figueroa V, et al. Seroprevalence of SARS-CoV-2 antibodies among physicians from a children's hospital. Archivos Argentinos De Pediatria. 2020;118(6):381-385. doi:10.5546/aap.2020.eng.381 141. Kohler PP, Kahlert CR, Sumer J, et al. Prevalence of SARS-CoV-2 antibodies among Swiss hospital workers: Results of a prospective cohort study. Infection Control & Hospital Epidemiology. Published online October 2020:1-5. doi:10.1017/ice.2020.1244 142. Kumar N, Bhartiya S, Singh T. Duration of anti-SARS-CoV-2 antibodies much shorter in India. Vaccine. 2021;39(6):886-888. doi:10.1016/j.vaccine.2020.10.094 143. Mesnil M, Joubel K, Yavchitz A, Miklaszewski N, Devys J-M. Seroprevalence of SARS-Cov-2 in 646 professionals at the Rothschild Foundation Hospital (ProSeCoV study). Anaesthesia Critical Care & Pain Medicine. 2020;39(5):595-596. doi:10.1016/j.accpm.2020.08.003 144. Missaglia R, Belingheri M, Antolini L, et al. SARS-CoV-2 pandemia in Lombardy: The impact on family Paediatricians. Italian Journal of Pediatrics. 2020;46(1):184. doi:10.1186/s13052-020-00950-0 145. Orth-Höller D, Eigentler A, Weseslindtner L, Möst J. Antibody kinetics in primary- and secondary-care physicians with mild to moderate SARS-CoV-2 infection. Emerging Microbes & Infections. 2020;9(1):1692-1694. doi:10.1080/22221751.2020.1793690 146. Plebani M, Padoan A, Fedeli U, et al. SARS-CoV-2 serosurvey in health care workers of the Veneto Region. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;58(12):2107-2111. doi:10.1515/cclm-2020-1236 147. Rudberg A-S, Havervall S, Månberg A, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. Nature Communications. 2020;11(1):5064. doi:10.1038/s41467-020-18848-0 148. Schmidt SB, Grüter L, Boltzmann M, Rollnik JD. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. Adrish M, ed. PLOS ONE. 2020;15(6):e0235417. doi:10.1371/journal.pone.0235417 149. Sotgiu G, Barassi A, Miozzo M, et al. SARS-CoV-2 specific serological pattern in healthcare workers of an Italian COVID-19 forefront hospital. BMC Pulmonary Medicine. 2020;20(1):203. doi:10.1186/s12890-020-01237-0 150. Venugopal U, Jilani N, Rabah S, et al. SARS-CoV-2 seroprevalence among health care workers in a New York City hospital: A cross-sectional analysis during the COVID-19 pandemic. International Journal of Infectious Diseases. 2020;102:63-69. doi:10.1016/j.ijid.2020.10.036 151. Racine-Brzostek SE, Yang HS, Chadburn A, et al. COVID-19 Viral and Serology Testing in New York City Health Care Workers. American Journal of Clinical Pathology. 2020;154(5):592-595. doi:10.1093/ajcp/aqaa142 152. Hoffmann S, Spallek J, Heinz-Detlef G, Schiebel J, Hufert F. Testing the backbone of the healthcare system: A prospective serological-epidemiological cohort study of healthcare workers in rural Germany. Published online September 2020. doi:10.21203/rs.3.rs-84703/v1 153. Patel MM, Thornburg NJ, Stubblefield WB, et al. Change in Antibodies to SARS-CoV-2 Over 60 Days Among Health Care Personnel in Nashville, Tennessee. JAMA. 2020;324(17):1781. doi:10.1001/jama.2020.18796 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

154. Self WH, Tenforde MW, Stubblefield WB, et al. Seroprevalence of SARS-CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network 13 Academic Medical Centers, AprilJune 2020. <i>MMWR Morbidity and Mortality Weekly Report</i> . 2020;69(35):1221-1226. doi:10.15585/mmwr.mm6935e2
155. Shah VP, Hainy CM, Swift MD, Breeher LE, Theel ES, Sampathkumar P. Unrecognized severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare personnel in a low-prevalence area. <i>Infection Control & Hospital Epidemiology</i> . Published online November 2020:1-3. doi:10.1017/ice.2020.1341
156. Bampoe S, Lucas DN, Neall G, et al. A cross-sectional study of immune seroconversion to SARS-CoV-2 in front-line maternity health professionals. <i>medRxiv</i> . Published online June 2020. doi:10.1101/2020.06.24.20139352
157. Dimcheff DE, Schildhouse RJ, Hausman MS, et al. Seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection among Veterans Affairs healthcare system employees suggests higher risk of infection when exposed to SARS-CoV-2 outside the work environment. <i>Infection Control & Hospital Epidemiology</i> .:1-7. doi:10.1017/ice.2020.1220
158. Finkenzeller T, Faltlhauser A, Dietl K-H, et al. SARS-CoV-2-Antikörper bei Intensiv- und Klinikpersonal. <i>Medizinische Klinik - Intensivmedizin und Notfallmedizin</i> . 2020;115(3):139-145. doi:10.1007/s00063-020-00761-5
159. Grant JJ, Wilmore SMS, McCann NS, et al. Seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a London NHS Trust. <i>Infection Control & Hospital Epidemiology</i> . Published online August 2020:1-3. doi:10.1017/ice.2020.402
160. Mansour M, Leven E, Muellers K, Stone K, Mendu DR, Wajnberg A. Prevalence of SARS-CoV-2 Antibodies Among Healthcare Workers at a Tertiary Academic Hospital in New York City. <i>Journal of General Internal Medicine</i> . 2020;35(8):2485-2486. doi:10.1007/s11606-020-05926-8
161. Martín V, Fernández-Villa T, Lamuedra Gil de Gomez M, et al. Prevalence of SARS-CoV-2 infection in general practitioners and nurses in primary care and nursing homes in the Healthcare Area of León and associated factors. <i>COVID19 en Atención Primaria</i> . 2020;46:35-39. doi:10.1016/j.semerg.2020.05.014
162. Meissner EG, Litwin C, Crocker T, Mack E, Card L. 460. Point-of-Care, In-Home SARS-CoV-2 IgG Antibody Testing to Assess Seroprevalence in At-Risk Health Care Workers. <i>Open Forum Infectious Diseases</i> . 2020;7(Supplement_1):S297-S297. doi:10.1093/ofid/ofaa439.653
163. Mostafa A, Kandil S, El-Sayed MH, et al. Universal COVID-19 screening of 4040 health care workers in a resource-limited setting: An Egyptian pilot model in a university with 12 public hospitals and medical centers. <i>International Journal of Epidemiology</i> . 2020;(dyaa173). doi:10.1093/ije/dyaa173
164. Paradiso AV, Summa simona D, Silvestris N, et al. COVID-19 SCREENING AND MONITORING OF ASYMPTOMATIC HEALTH WORKERS WITH A RAPID SEROLOGICAL TEST. <i>medRxiv</i> . Published online May 2020:2020.05.05.20086017. doi:10.1101/2020.05.05.20086017
165. Sydney ER, Kishore P, Laniado I, Rucker LM, Bajaj K, Zinaman MJ. Antibody evidence of SARS-CoV-2 infection in healthcare workers in the Bronx. <i>Infection Control & Hospital Epidemiology</i> . 2020;41(11):1348-1349. doi:10.1017/ice.2020.437
166. Zhou F, Li J, Lu M, et al. Tracing asymptomatic SARS-CoV-2 carriers among 3674 hospital staff: A cross-sectional survey. <i>EClinicalMedicine</i> . 2020;26. doi:10.1016/j.eclinm.2020.100510
167. Buntinx F, Claes P, Gulikers M, et al. Added value of anti-SARS-CoV-2 antibody testing in a Flemish nursing home during an acute COVID-19 outbreak in April 2020. <i>Acta Clinica Belgica</i> . 2020;0(0):1-6. doi:10.1080/17843286.2020.1834285
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

168. Reuben J, Sherman A, Ellison JA, et al. SARS-CoV-2 Seroprevalence among First Responders in the District of Columbia, May July 2020. *medRxiv*. Published online November 2020:2020.11.25.20225490. doi:10.1101/2020.11.25.20225490

169. Saberian P, Mireskandari SM, Baratloo A, et al. Antibody Rapid Test Results in Emergency Medical Services Personnel during COVID-19 Pandemic; a Cross Sectional study. *Archives of Academic Emergency Medicine*. 2020;9(1).

170. Tarabichi Y, Watts B, Collins T, et al. SARS-CoV-2 Infection among Serially Tested Emergency Medical Services Workers. *Prehospital Emergency Care*. 2020;0(0):1-7. doi:10.1080/10903127.2020.1831668

171. Vijh R, Ghafari C, Hayden A, et al. Serological survey following SARS-COV-2 outbreaks at long-term care facilities in metro Vancouver, British Columbia: Implications for outbreak management and infection control policies. *American Journal of Infection Control*. Published online October 2020. doi:10.1016/j.ajic.2020.10.009

172. Bhattacharya D, Winnett A, Fulcher JA, et al. 70. Lack of SARS-CoV-2 Antibody Seroconversion After Prompt Identification and Cohorting of Sentinel sars-cov-2-positive Residents in a Skilled Nursing Facility. *Open Forum Infectious Diseases*. 2020;7(Supplement_1):S165-S166. doi:10.1093/ofid/ofaa439.380

173. Pérez-García F, Pérez-Zapata A, Arcos N, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among hospital workers in a severely affected institution in Madrid, Spain: A surveillance cross-sectional study. *Infection Control & Hospital Epidemiology*. Published online October 2020:1-7. doi:10.1017/ice.2020.1303

174. Pérez-García F, Pérez-Zapata A, Arcos N, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among hospital workers in a severely affected institution in Madrid, Spain: A surveillance cross-sectional study. *Infection Control & Hospital Epidemiology*. 2021;42(7):803-809. doi:10.1017/ice.2020.1303

175. Mughal MS, Kaur IP, Patton CD, Mikhail NH, Vareechon C, Granet KM. The prevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG antibodies in intensive care unit (ICU) healthcare personnel (HCP) and its implications single-center, prospective, pilot study. *Infection Control & Hospital Epidemiology*. Published online June 2020:1-2. doi:10.1017/ice.2020.298

176. Rao S. Covid-19: Jayadeva says its survey hints at herd immunity. The Times of India. Published online June 2020.

 177. Shukla V, Lau CSM, Towns M, et al. COVID-19 Exposure Among First Responders in Arizona. *Journal of Occupational and Environmental Medicine*. 2020;62(12).

178. Gray A. Prevalence Of COVID-19 Antibodies In Washoe Co. Expected To Be Low. KUNR. Published online June 2020.

179. Chughtai O, Batool H, Khan M, Chughtai A. Frequency of COVID-19 IgG Antibodies among Special Police Squad Lahore, Pakistan. *Journal of the College of Physicians and Surgeons Pakistan*. 2020;30(7):735-739. doi:10.29271/jcpsp.2020.07.735

180. Gujski M, Jankowski M, Pinkas J, et al. Prevalence of Current and Past SARS-CoV-2 Infections among Police Employees in Poland, JuneJuly 2020. *Journal of Clinical Medicine*. 2020;9(10):3245. doi:10.3390/jcm9103245

181. Jerónimo Langa. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Lichinga (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Z	
3 4	182. Ivalda Macicame. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Província de Maputo (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
5 6	183. Al-Thani MH, Farag E, Bertollini R, et al. Seroprevalence of SARS-CoV-2 infection in the craft and manual worker population of Qatar. <i>medRxiv</i> . Published online November 2020:2020.11.24.20237719. doi:10.1101/2020.11.24.20237719
7 8 9	184. Epstude J, Harsch IA. Seroprevalence of COVID-19 antibodies in the cleaning and oncological staff of a municipal clinic. <i>GMS Hygiene and Infection Control;</i> 15:Doc18. Published online July 2020. doi:10.3205/DGKH000353
10 11 12	185. Hassan SS, Seigerud Å, Mühr LSA, et al. SARS-CoV-2 infections among personnel providing home care services for the elderly in Stockholm, Sweden. <i>medRxiv</i> . Published online December 2020. doi:10.1101/2020.12.18.20248511
13 14	186. Ladhani SN, Jeffery-Smith A, Patel M, et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: Prospective cohort study, England. <i>EClinicalMedicine</i> . 2020;28. doi:10.1016/j.eclinm.2020.100597
15 16 17	187. Lindahl JF, Hoffman T, Esmaeilzadeh M, et al. High seroprevalence of SARS-CoV-2 in elderly care employees in Sweden. <i>Infection Ecology & Epidemiology</i> . 2020;10(1):1789036. doi:10.1080/20008686.2020.1789036
18 19	188. Regan T. Fellowship Village Benefits from Covid-19 Antibody Tests. Senior Housing News. Published online June 2020.
20 21 22	189. Alali WQ, Bastaki H, Longenecker JC, et al. Seroprevalence of SARS-CoV-2 in migrant workers in Kuwait. <i>Journal of Travel Medicine</i> . 2020;(taaa223). doi:10.1093/jtm/taaa223
23 24 25	190. Addetia A, Crawford KHD, Dingens A, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. McAdam AJ, ed. <i>Journal of Clinical Microbiology</i> . 2020;58(11):e02107-20, /jcm/58/11/JCM.02107-20.atom. doi:10.1128/JCM.02107-20
26 27	191. Picon RV, Carreno I, da Silva AA, et al. Coronavirus disease 2019 population-based prevalence, risk factors, hospitalization, and fatality rates in southern Brazil. <i>International Journal of Infectious Diseases</i> . 2020;100:402-410. doi:10.1016/j.ijid.2020.09.028
28 29 30	192. D B, L B, P T, Pa P, A B, U L. Effectiveness of the measures aimed at containing Sars-cov-2 virus spreading in work settings: A survey in companies based in the Veneto region of Italy. <i>La Medicina del lavoro</i> . Published online October 2020. doi:10.23749/mdl.v111i5.10037
31 32 33	193. Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. <i>Nature Medicine</i> . 2020;26(8):1193-1195. doi:10.1038/s41591-020-0949-6
34 35 36	194. Chamie G, Marquez C, Crawford E, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 Disproportionately Affects the Latinx Population During Shelter-in-Place in San Francisco. <i>Clinical Infectious Diseases</i> . Published online August 2020:ciaa1234. doi:10.1093/cid/ciaa1234
37 38	195. McLaughlin C, Doll MK, Morrison KT, et al. High Community SARS-CoV-2 Antibody Seroprevalence in a Ski Resort Community, Blaine County, Idaho, US. Preliminary Results. <i>medRxiv</i> . Published online July 2020. doi:10.1101/2020.07.19.20157198
39 40 41 42	196. Muñoz L, Pífano M, Bolzán A, et al. Surveillance and Seroprevalence: Evaluation of IgG Antibodies for SARS-Cov2 by ELISA in the Popular Neighborhood Villa Azul, Quilmes, Province of Buenos Aires, Argentina.; 2020. doi:10.1590/SciELOPreprints.1147
43 44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Supplementary File 2.

Modified Joanna Briggs Institute Tool for assessing study risk of bias¹

Yes	Sample frame described and it approximated the target population
No	Sample frame did not approximate the target population (e.g., blood donors do not represent general population, doctors do not represent all health care providers)
Exclude	Sample frame not described
*Notes	The term "target population" should not be taken to infer every individual from everywhere or with similar disease or exposure characteristics. Instead, give consideration to specific population characteristics in the study, including age range, gender, morbidities, medications, and other potentially influential factors For example, a sample frame may not be appropriate to address the target population if a certain group has been used (such as those working for one organisation, or one profession) and the results then inferred to the target population (i.e. working adults). A sample frame may be appropriate when it includes almost all the members of the target population (i.e. a census, or a complete list of participants or complete registry data).

Item 2: Were study participants recruited in an appropriate way?		
Yes	Probability sampling method (simple or stratified random) or entire sample (e.g., an entire town) was used	
No	Non-probability sampling	
Exclude	Sampling method not reported	

Item 3: Was the sample size adequate?		
Yes	≥599	
No	<599	

1 2 3 4 5 6	
7 8 9 10 11 12 13	
14 15 16 17 18 19 20	
21 22 23 24 25 26	
27 28 29 30 31 32 33	
34 35 36 37 38 39 40	
41 42 43 44 45 46 47	
48 49 50 51 52 53	
54 55 56 57 58 59 60	

Exclude	Sample size not reported
*Notes	To calculate the required sample size we used an assumed prevalence of 2.5%, which was the global average estimated by the WHO in April, 2020. ² Based on guidance by the Joanna Briggs Institute and published medical statistical recommendations we selected a precision value that was half the assumed prevalence (1.25%) . ^{1,3} We calculated a minimum sample size of 599 using these inputs: Sample size calculation: $n = Z^2 P(1-P)/d^2$ Where n = sample size; Z = Z statistic for level of confidence (95%); P = expected prevalence (2.5% WHO global estimate); d = precision (1.25%) In cases where the sample size calculation was provided and the required sample for 80% power was below our threshold (n<599), this item was marked as yes.

Item 4: Were the study subjects and setting described in detail?		
Yes	Average age and distribution of gender/sex provided	
No	Neither age or gender/sex is provided, or only one of age and gender/sex is provided	

	r · · · · · ·
	0
Item 5: Was data analysis conducted with sufficient coverage of the identified sample?	
Yes	The demographic characteristics (gender/sex, age, and ethnicity) of the sample is at least somewhat representative of the population
No	The demographic characteristics (gender/sex, age, and ethnicity) of the sample is not representative of the population
Unclear	Information is not provided about demographic characteristics of the sample (gender/sex, age, and ethnicity)

Item 6: Were valid methods used for the identification of the condition?	
Yes	The test used met the FDA standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivity minimum 90%, specificity minimum 95%, as reported in the study. ⁴
No	The test used did not meet the FDA standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivity minimum 90%, specificity minimum 95%.
Exclude	Test sensitivity and specificity not reported

Item 7: Was the condition measured in a standard, reliable way for all participants?	
Yes	The same serology test was used for all participants
No	Different serology tests were used for participants
Unclear	No details were provided about which participants received which serology tests

Unclear	No details were provided about which participants received which serology tests
Item 8: Was there appropriate statistical analysis?	
Yes	Does all of the following: corrects for population characteristics or the sample is somewhat representative of the population (probability sampling), corrects for test characteristics), and provides the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.
No	Does not correct for population characteristics and the sample is not likely representative of the population (non-probability sampling), does not correct for test or provide the information necessary to correct for test characteristics, or does not provide the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.

Item 9: Was the response rate adequate, and if not, was the low response rate managed appropriately?	
Yes	Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population ⁵

1	
2	
3 4	
5	
6	
8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
21	
22 23	
24 25	
25 26	
27	
28 29	
30	
31 32	
33	
34 35	
36 37	
37 38	
39 40	
41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	

No	Response rate $< 60\%$ and the demographics of the sample were not a reasonable match to those of the target population	
Unclear	Response rate not provided and it was unclear if the demographics of the sample differed from the target population	

Item 10: Overall risk of bias

Low	The estimates are very likely correct for the target population. To obtain a low risk of bias classification, all criteria must be met or departures from the criteria must be minimal and unlikely to impact on the validity and reliability of the prevalence estimate. These include sample sizes that are just below the threshold when all other criteria are met, reporting only some of characteristics of the sample, test characteristics below the threshold but corrections for the test performance, and response rates that are just below the threshold in the context of probability based sampling of an appropriate sampling frame with population weighted seroprevalence estimates.
Moderate	The estimates are likely correct for the target population. To obtain a moderate risk of bias classification, most criteria must be met and departures from the criteria are likely to have only a small impact on the validity and reliability of the prevalence estimates.
High	The estimates are not likely correct for the target population. To obtain a high risk of bias, many criteria must not be met or departures from criteria are likely to have a major impact on the validity and reliability of the prevalence estimates.
Unclear	There was insufficient information to assess the risk of bias.

References

1. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc. 2015 Sep;13(3):147–53.

BMJ Open

- Boseley S. WHO warns that few have developed antibodies to Covid-19. The Guardian [Internet]. 2020 Apr 20; Available from: https://www.theguardian.com/society/2020/apr/20/studies-suggest-very-few-havehad-covid-19-without-symptoms
- 3. Naing L, Winn T, Ruslil B. Practical issues in calculating the sample size for prevalence studies. Arch Orofac Sci. 2006;1:9–14.
- 4. U.S. Food & Drug Administration. Emergency Use Authorization for SARS-CoV-2 Antibody Tests [Internet]. 2020 [cited 2020 May 5]. Available from: <u>https://www.fda.gov/media/137470/download</u>.
- 5. Morton MBS, Bandara DK, Robinson EM, Carr PEA. In the 21st century, what is an acceptable response rate? Aust N Z J Public Health. 2012 April; 36 (2): 106-8.

to occurrence on the second

BMJ Open

BMJ Open

Occupation and SARS-CoV-2 seroprevalence studies: a systematic review

	1
Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063771.R1
Article Type:	Original research
Date Submitted by the Author:	04-Nov-2022
Complete List of Authors:	Boucher, Emily; University of Calgary Cumming School of Medicine, Cao, Christian; University of Calgary, Cumming School of Medicine D'Mello, Sean; University of Waterloo Duarte, Nathan; McGill University, Faculty of Engineering Donnici, Claire; University of Calgary, Cumming School of Medicine Duarte, Natalie; University of Toronto, Faculty of Arts and Science Bennett, Graham; McGill University, Department of Economics Consortium, SeroTracker ; University of Calgary Adisesh, Anil; Unity Health Toronto, St. Michael's Hospital; University of Toronto, Division of Occupational Medicine Arora, Rahul; Oxford University, Institute of Biomedical Engineering Kodama, David; Unity Health Toronto, St. Michael's Hospital; University of Toronto Department of Medicine, Division of Emergency Medicine Bobrovitz, Niklas; University of Toronto Temerty Faculty of Medicine; University of Calgary, Department of Critical Care Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Infectious diseases, Public health
Keywords:	COVID-19, Public health < INFECTIOUS DISEASES, OCCUPATIONAL & INDUSTRIAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Occupation and SARS-CoV-2 seroprevalence studies: a systematic review

Emily Boucher,¹ Christian Cao¹, Sean D'Mello,² Nathan Duarte,³ Claire Donnici¹, Natalie Duarte,⁴ Graham Bennett,⁵ SeroTracker Consortium, Anil Adisesh,⁶⁻⁸ Rahul K. Arora,^{1,9} David Kodama,^{6,10} Niklas Bobrovitz^{11,12}

1. Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

- 2. Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
- 3. Faculty of Engineering, McGill University, Montreal, QC, Canada
- 4. Faculty of Arts and Science, University of Toronto, ON, Canada
- 5. Department of Economics, Faculty of Arts, McGill University, Montreal, QC, Canada
- 6. St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- 7. Division of Occupational Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
- 8. Canadian Health Solutions, Saint John, NB, Canada
- 9. Institute of Biomedical Engineering, University of Oxford, Oxford, UK
- 10. Division of Emergency Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
- 11. Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- 12. Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada

*Correspondence to Emily Boucher, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; <u>emily.boucher@ucalgry.ca</u>

BMJ Open

Word Count 1179

Key Words Covid-19, Infectious diseases, Occupational & industrial medicine

totoeetterien ont

ABSTRACT

Objective. To describe and synthesize studies of SARS-CoV-2 seroprevalence by occupation prior to the widespread vaccine rollout.

Methods. We identified studies of occupational seroprevalence from a living systematic review (PROSPERO CRD42020183634). Electronic databases, gray literature, and news media were searched for studies published January-December 2020. Seroprevalence estimates and a free text description of the occupation were extracted and classified according to the Standard Occupational Classification (SOC) 2010 system using a machine-learning algorithm. Due to heterogeneity, results were synthesized narratively.

Results. We identified 196 studies including 591,940 participants from 38 countries. Most studies (n=162; 83%) were conducted locally vs regionally or nationally. Sample sizes were generally small (median=220 participants per occupation) and 135 studies (69%) were at a high risk of bias. One or more estimates were available for 21/23 major SOC occupation groups, but over half of the estimates identified (n=359/600) were for healthcare-related occupations. 'Personal Care and Service Occupations' (median 22% [IQR 9-28%]; n=14) had the highest median seroprevalence.

Conclusions. Many seroprevalence studies covering a broad range of occupations were published in the first year of the pandemic. Results suggest considerable differences in seroprevalence between occupations, although few large, high-quality studies were done. Well-designed studies are required to improve our understanding of the occupational risk of SARS-CoV-2 and should be considered as an element of pandemic preparedness for future respiratory pathogens.

1 2		
3	1	Strengths and limitations
4 5	2	• We conducted a comprehensive search of the COVID-19 seroprevalence literature, including
6	3	non-English articles, government reports, unpublished data.
7 8	4	Occupations were classified using the Standard Occupational Classification (SOC) 2010
9	5	coding system to improve interpretability and facilitate comparison with other datasets.
10 11	6	• Seroprevalence may underestimate the true prevalence of infection because antibody titres
12	7	decline over time, but where possible we prioritized prevalence estimates for IgG antibodies,
13	8	which appear to be more robust than other immunoglobulin types.
14 15	9	• We did not adjust for differences in serologic test performance.
16	10	
17 18	11	
10		
20		
21 22		
23		
24 25		
25 26		
27		
28 29		
30		
31 32		
33		
34		
35 36		
37		
38 39		
40		
41		
42 43		
44		
45 46		
47		
48		
49 50		
51		
52 53		
55 54		
55		
56 57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		rorpeerreview only interappending induction about guidelines. And in

2 3 4	12 13	INTRODUCTION
5 6 7	14	Occupation is a social determinant of health and an important risk factor for SARS-CoV-2
7 8 9	15	infection. Essential workers in health and social care occupations have an increased risk of
10 11	16	COVID-19 compared to non-essential workers, but the risks for other occupations are not well
12 13	17	defined. ¹⁻³ Studies examining confirmed COVID-19 cases to examine occupational COVID-19
14 15 16	18	risk are affected by variable testing rates. For example, testing rates may be higher in workplaces
10 17 18	19	offering testing or paid sick leave, and are impacted by geographic (e.g., urban versus rural) and
19 20	20	socio-economic factors (e.g., deprivation), potentially biasing results. ⁴⁻⁶ Few high-quality,
21 22 23	21	prospective studies using frequent, serial PCR or antigen testing covering a broad range of
23 24 25	22	occupations having been conducted, in part due to the costs and administrative burden of such
26 27	23	studies. ^{7,8}
28 29	24	
30 31 32	25	Serologic testing for SARS-CoV-2 antibodies provides evidence of previous infection and/or
33 34	26	vaccination depending on vaccination status and the specific antigens targeted and can be used to
35 36	27	obtain more accurate estimates of the cumulative incidence of infection.9 Accurate data on the
37 38 20	28	occupational risks of COVID-19 and other respiratory infections are essential for informing the
39 40 41	29	development of occupational safety guidelines and regulations, transmission control measures
42 43	30	and resource allocation (testing, personal protective equipment (PPE), etc.). The objectives of
44 45	31	this review were to describe and synthesize studies of SARS-CoV-2 seroprevalence across a
46 47 48	32	broad range of occupations globally prior to the widespread rollout of vaccines.
49 50	33	
51	34	
51 52		
52 53	35	
54		
55		
56		
57		
58		
59		4 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		for peer review only - http://binjopen.binj.com/site/about/guidelines.xitim

BMJ Open

2 3 4	36	METHODS
5	37 29	We identified studies of accumptional coronrovalance from a living systematic review
6 7 8 9	38	We identified studies of occupational seroprevalence from a living systematic review
	39	(PROSPERO CRD42020183634) of >1000 seroprevalence studies. ¹⁰⁻¹² In brief, electronic
10 11	40	databases, grey literature, and news media were searched for cohort or cross-sectional studies
12 13 14	41	reporting antibody testing for SARS-CoV-2. Records were screened independently, in duplicate.
15 16	42	We restricted eligibility to studies in English, French or that were machine-translatable using
17 18	43	Google Translate and published January-December 2020 before vaccines were rolled-out,
19 20	44	because differential vaccination rates by occupation would obscure results. We extracted
21 22 23	45	seroprevalence estimates with a free-text description for each occupation. If multiple estimates
24 25	46	were reported, the most recent estimate using laboratory-based methods (e.g. ELISA), and anti-
26 27	47	spike and/or IgG antibodies were prioritized, because non-IgG and anti-nucleocapsid antibodies
28 29 20	48	may decline more rapidly. ¹³ Study-level risk of bias was assessed with a modified Joanna Briggs
30 31 32	49	Institute Checklist for Prevalence Studies (Supplementary File 1). ¹⁴
33 34	50	
35 36	51	For each seroprevalence estimate, we identified the relevant Standard Occupational
37 38 20	52	Classification (SOC) 2010 codes by applying the National Institute for Occupational Safety &
39 40 41	53	Health (NIOSH) Industry and Occupation Computerized Coding System (NIOCCS) to
42 43	54	occupation descriptions. ¹⁵ NIOCCS was chosen, because many studies were conducted in the
44 45	55	USA. Coding was manually verified if there was insufficient information for NIOCCS
46 47 48	56	classification, or if the probability of correct classification to the six-digit level was <0.8 based
49 50	57	on our review of a subset of the NIOCCS coded data (Supplementary File 1). Anticipating
51 52	58	substantial heterogeneity and an insufficient number of estimates relative to covariates for meta-
53 54 55 56 57	59	regression, we planned to summarize data using the median/IQR.

2		
3 4	60	
5	61	Patient and Public Involvement: It was not possible or appropriate to involve patients or the
6 7	62	public in this study.
8 9	63	
10 11	64	RESULTS
12	65	
13 14	66	We identified 196 studies of occupational seroprevalence conducted in 2020 during the first and
15 16 17	67	second waves of the pandemic (Figure 1). There were 591,940 participants from 38 countries,
18 19	68	including the USA (n=44 studies), UK (n=16) and Italy (n=15). Most studies (n=162; 83%) were
20 21	69	conducted locally (e.g. city, county) as opposed to regionally (e.g. state; n=20; 10%) or
22 23	70	nationally (n=14; 7%). Most were restricted to one occupational group (n=103), limiting direct
24 25 26	71	comparisons (i.e. using the same reference group). Sample sizes were often small (median=220,
27 28	72	IQR 64-568 participants). Overall, 135 studies (69%) were at a high risk of bias, 47 moderate
29 30	73	(24%), 2 low (1%) and 12 unclear (6%) Common reasons for bias were inadequate statistical
31 32	74	analysis (i.e. no adjustment for test or sample characteristics; 92%), non-probability sampling
33 34 35	75	(74%), and small sample-size (46%).
36 37	76	
38 39	77	At least one estimate was available for all 23 major SOC occupation groups, except for 'Legal'
40 41 42	78	and 'Military-Specific' occupations (Figure 2; all studies). Over half of the 600 estimates
43 44	79	identified (n=359) were for healthcare-related occupations. For SOC groups with three or more
45 46	80	estimates, the highest median seroprevalence was reported for 'Personal Care and Service
47 48 49	81	Occupations' (median 22% [IQR 9-28%]; n=14, e.g. 'Personal Care Aids'). The next highest was
49 50 51	82	reported for 'Building and Grounds Cleaning and Maintenance' occupations (11% [3-22%];
52 53	83	n=17, e.g. 'Maids and Housekeeping Cleaners'), and 'Healthcare Support' (11% [2-20%]; n=39,
54 55 56	84	e.g. 'Nursing Assistants') occupations. The lowest median seroprevalence was 1% (0-11%; n=6,
57 58 59		6
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2					
3 4	85	e.g. 'Athletes') for 'Arts, Design, Entertainment, Sports, and Media Occupations.' Individual			
5 6	86	estimates are listed in Supplementary File 2.			
7 8 9 10 11	87 88 89	DISCUSSION			
12 13 14 15 16 17 18 19 20 21	90 91	This review is the first comprehensive synthesis of occupational COVID-19 seroprevalence			
	92	studies world-wide. We identified 196 studies representing 21 out of 23 major SOC groups			
	93	conducted during the first and second waves of the SARS-CoV-2 pandemic in 2020, prior to the			
	94	widespread rollout of vaccines, and described occupational groups with high seroprevalence.			
22 23	95				
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	96	Seroprevalence studies may estimate the cumulative incidence of infection more accurately than			
	97	diagnostic testing studies when access to testing and test performance are poor, and also can			
	98	identify asymptomatic infections. ^{6,8} The data identified suggest considerable differences in			
	99	seroprevalence by occupation, though we did not statistically test for differences due to			
	100	considerable variation in geography, study dates and workplace determinants of infection (e.g.			
	101	PPE, ventilation). 'Caring and Personal Service' occupations had the highest median			
	102	seroprevalence (22%), which was four-times higher than the unemployed (5%) and median			
	103	seroprevalence across all occupational groups (5%). The UK Office for National Statistics			
	104	reported a slightly lower cumulative incidence for positive diagnostic or rapid tests for COVID-			
	105	19 across 25 occupational groups of 4% (mean), ⁴ but the discrepancy between the true			
	106	cumulative incidence and confirmed infections is likely greater in regions with less access to			
	107	testing: national, population-based serosurveys have estimated there are 10-20 serologically			
51 52 53	108	identifiable cases per one confirmed case. ¹²			
54 55	109				
56 57					
58 59					
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

BMJ Open

In future pandemics, large, well-reported, high-quality seroprevalence studies across a broad range of occupations are needed at an early stage to inform appropriate workplace policy. It has been suggested that 20% of the US workforce was exposed to disease or infection at work at least once a month prior to the pandemic.¹⁶ Accurate data on the occupational risks of respiratory infections, including SARS-CoV-2 are needed to inform understanding of transmission, occupational health and safety agency guidelines and allocation of resources (e.g., personal protective equipment and vaccines) during outbreaks and pandemics. For governments, there are also issues of occupational disease recognition and compensation to be considered. As such, future population-based studies on respiratory infections should collect data on occupation. In the case of epidemic infection, collaboration between academic centres with the capacity to conduct large-scale studies and government agencies with expertise in disease surveillance and access to workplace data (e.g., public health, occupational health and safety) may be beneficial.¹² Other authors have suggested the utility of occupational surveillance systems.¹⁷ However, the routine completion of the occupation field in electronic health records would also serve this purpose as well as informing patient reported outcome measures. **Strengths and Limitations** Despite the large number of studies of occupational seroprevalence conducted, many studies had methodological limitations. Only two studies were at a low risk of bias and most occupational subgroups had small sample sizes (median 220 participants). Many were limited to one major SOC group (n=103 studies), which precluded comparisons. Detailed descriptions of occupations were often lacking, potentially contributing to coding errors and misclassification, and workplace

133 determinants of infection (e.g. use of PPE) were poorly reported.

BMJ Open

2 3 4	134	
5 6 7 8	135	In conclusion, our review shows that a large number of seroprevalence studies covering a broad
	136	range of occupations were published in the first year of the pandemic. Results suggest
9 10 11	137	considerable differences in seroprevalence between occupations, although few large, well-
12 13	138	reported, high-quality studies were done. Carefully-designed, adequately powered
14 15 16 17 18 20 21 22 32 25 26 27 28 20 31 32 33 35 36 37 38 30 41 23 44 45 46 78 90 51 52 34 56 78 90 57 56 57 58 59	139	seroprevalence studies with coverage of a broad range of occupations could improve our
	140	understanding of the occupational risk of SARS-CoV-2 and other respiratory infections and
	141	should be considered an element of pandemic preparedness and response.
	142	should be considered an element of pandemic preparedness and response.
58 59 60		9 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
5 0	
50	
52	
52 53	
53 54	
55	
56	
57	
58	
59	

144 Funding Statement

SeroTracker receives funding for SARS-CoV-2 seroprevalence study evidence synthesis from
the Public Health Agency of Canada through Canada's COVID-19 Immunity Task Force (Grant
Number 2021-HQ-000056), the World Health Organization Health Emergencies Programme, the
Robert Koch Institute, and the Canadian Medical Association Joule Innovation Fund. No funding
source had any role in the design of this study, its execution, analyses, interpretation of the data,
or decision to submit results. This manuscript does not necessarily reflect the views of the World
Health Organization or any other funder.

152

1 2

153 Statement of author's contributions

This secondary analysis of the SeroTracker database was conceived by NB, EB, DK and AA.
Senior authors on this paper were NB, DK, RA and AA. The protocol was developed by EB, NB
and DK. Data cleaning was performed by CC, CD, NaD, SD and EB and verification by EB, SD,
ND and GB. Analysis was performed by EB and RA. The first draft of the manuscript was
written by EB and revised by EB, RA, NB, ND, GB, SD, CC, AA, DK. The SeroTracker
Consortium maintained the living systematic review database used in the study. All authors
reviewed and agreed to the findings, and also provided critical revisions to the paper.

161

162

167

60

163 Disclosure of potential and actual conflicts of interest

164 RKA was previously a Technical Consultant for the Bill and Melinda Gates Foundation Strategic
165 Investment Fund, is a minority shareholder of Alethea Medical, and was a former Senior Policy
166 Advisor at Health Canada. Each of these relationships is unrelated to the present work.

1

BMJ Open

2	
3	
4	
4	
4 5 6 7 8 9 10 11 12 13 14 15 16 17	
6	
7	
0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
12 13 14 15 16 17 18 19	
19	
20	
20 21	
22 23 24	
23	
22 23 24 25 26 27 28 20	
25	
25	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34 35	
25	
35 36 37	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
54	
55	
56	
57	
58	
59	

/		
- 3 1	168	JP reports grants to his institution from MedImmune, Sanofi Pasteur, Merck and AbbVie, and
5	169	personal fees for lectures from AbbVie and Astra-Zeneca, all outside of the submitted work.
7 3	170	
9 10 11	171	MPC reports grants from McGill Interdisciplinary Initiative in Infection and Immunity, grants
2 3	172	from Canadian Institutes of Health Research, during the conduct of the study; personal fees from
4 5	173	GEn1E Lifesciences, personal fees from nplex biosciences, personal fees from Kanvas
6 7 8	174	biosciences, personal fees from AstraZeneca, non-financial support from Cidara therapeutics,
19 20	175	non-financial support from Scynexis, Inc., non-financial support from Amplyx Pharmaceutics,
21 22	176	outside the submitted work. In addition, MPC has a patent for methods detecting tissue damage,
23 24 25	177	graft versus host disease, and infections using cell-free DNA profiling pending, a patent for
26 27	178	methods assessing the severity and progression of SARS-CoV-2 infections using cell-free DNA
28 29	179	pending, a patent for rapid identification of antimicrobial resistance and other microbial
30 31 32	180	phenotypes using highly-multiplexed fluorescence in situ hybridization pending, and a patent
33 34	181	highly multiplexed detection of gene expression with hybridization chain reaction pending, all
33 34 35 36	182	outside the submitted work.
37 38	183	
39	184	Ethics approval: Not applicable. This study did not involve human participants or animals.
10	185	
41 42	186	Dating sharing: Seroprevalence data can be downloaded (or requested) from
13	187	https://serotracker.com.
14	188	
15 16	189	
16 17	190	
18	190	
19		
50		
51		
52		
53 54		
55 55		
56		
57		

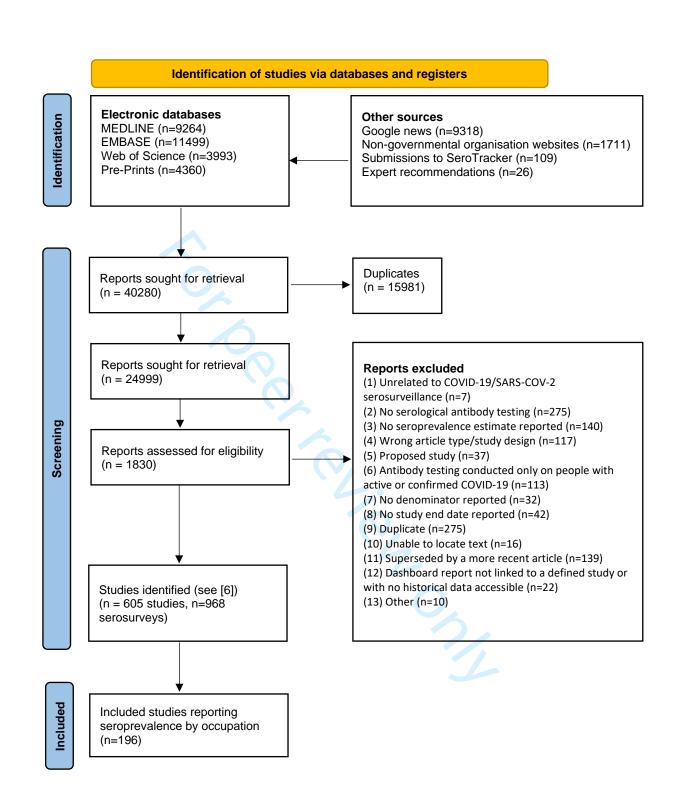
BMJ	Open
-----	------

1			
2 3	191		REFERENCES
4 5	192		
6	193	1.	Magnusson K, Nygard KM, Vold L, Telle KE. Occupational risk of COVID-19 in the 1st
7	194		vs 2nd wave of infection. medRxiv. 2020 Jan 1.
8 9	195		
10	196	2.	Mutambudzi M, Niedwiedz C, Macdonald EB, Leyland A, Mair F, Anderson J, Celis-
11	197		Morales C, Cleland J, Forbes J, Gill J, Hastie C. Occupation and risk of severe COVID-
12 13	198		19: prospective cohort study of 120 075 UK Biobank participants. Occupational and
14	199		Environmental Medicine. 2021 May 1;78(5):307-14.
15	200		
16	201	3.	Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo CG, Ma W, Mehta RS, Warner ET,
17 18	202		Sikavi DR, Lo CH, Kwon S. Risk of COVID-19 among front-line health-care workers
19	203		and the general community: a prospective cohort study. The Lancet Public Health. 2020
20	204		Sep 1;5(9):e475-83.
21 22	205		
22	206	4.	Seo E, Mun E, Kim W, Lee C. Fighting the COVID-19 pandemic: onsite mass workplace
24	207		testing for COVID-19 in the Republic of Korea. Annals of occupational and
25 26	208		environmental medicine. 2020;32.
20 27	209		
28	210	5.	
29	211		geographic disparities and impact of coronavirus disease 2019. The Journal of infectious
30 31	212		diseases. 2020 Dec 15;222(12):1951-4.
32	213	6	Duarta M. D'Malla C. Duarta MA. Dagas C. Var Walt I. Dillai A.A. Liu M. Williamaan T.
33	214	0.	Duarte N, D'Mello S, Duarte NA, Rocco S, Van Wyk J, Pillai AA, Liu M, Williamson T,
34 35	215		Arora RK. Uptake of SARS-CoV-2 workplace testing programs, March 2020 to March
36	216		2021. medRxiv. 2021 Jan 1.
37	217	7	
38	218	7.	Office for National Statistics. Coronavirus (COVID-19) Infection Survey: characteristics
39 40	219		of people testing positive for COVID-19 in England. 2021 Feb 22. Available from:
41	220		https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsa
42	221		nddiseases/articles/coronaviruscovid19infectionsinthecommunityinengland/characteristic
43 44	222		sofpeopletestingpositiveforcovid19inengland22february2021
44	223	_	
46	224	8.	Pearce N, Rhodes S, Stocking K, Pembrey L, van Veldhoven K, Brickley EB, Robertson
47 48	225 226		S, Davoren D, Nafilyan V, Windsor-Shellard B, Fletcher T. Occupational differences in COVID-19 incidence, severity, and mortality in the United Kingdom: Available data and
40 49	226 227		framework for analyses. Wellcome open research. 2021;6.
50	228		numework for analyses. Wencome open research. 2021,0.
51 52	229	9	Duarte N, Yanes-Lane M, Arora RK, Bobrovitz N, Liu M, Bego MG, Yan T, Cao C,
52 53	230	2.	Gurry C, Hankins CA, Cheng MP. Adapting Serosurveys for the SARS-CoV-2 Vaccine
54	231		Era. Open Forum Infect Dis. 2021 Dec 23;9(2):ofab632.
55 56	232		1
56 57			
58			
59 60			12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only i http://onljopen.onlj.com/site/about/guidelines.knum

2		
3 4 5 6	233 234 235	 Arora RK, Joseph A, Van Wyk J, Rocco S, Atmaja A, May E, et al SeroTracker: a global SARS-CoV-2 seroprevalence dashboard. The Lancet Infectious Diseases. The Lancet Infectious Diseases; 2021;21(4):e75–6.
7	236	
8	237	11. [dataset] SeroTracker Consortium. Data from: Our Data. November 7, 2021.
9 10	238	https://serotracker.com/data
11	239	
12	240	12. Bobrovitz N, Arora RK, Cao C, Boucher E, Liu M, Donnici C, Yanes-Lane M, Whelan
13	241	M, Perlman-Arrow S, Chen J, Rahim H. Global seroprevalence of SARS-CoV-2
14 15	242	antibodies: a systematic review and meta-analysis. PloS one. 2021 Jun
16	243	23;16(6):e0252617.
17	244	
18 19	245	13. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, et al. Persistence of serum and
20	246	saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci
21	247	Immunol. 2020 Oct 8;5(52):eabe5511.
22 23	248	
23 24	249	14. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for
25	250	systematic reviews of observational epidemiological studies reporting prevalence and
26	251	incidence data. Int J Evid Based Healthc. 2015;13(3):147–153.
27 28	252	
29	253	15. NIOSH (2021). NIOSH Industry and Occupation Computerized Coding System
30	254	(NIOCCS). U.S. Department of Health and Human Services, Public Health Service,
31 32	255	Centers for Disease Control and Prevention, National Institute for Occupational Safety
33	256	and Health, Division of Field Studies & Engineering, Health Informatics Branch.
34	257	https://csams.cdc.gov/nioccs/About.aspx. Date accessed Sept 1, 2021.
35 36	258	
37	259	16. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers
38	260	exposed to infection or disease: a key factor in containing risk of COVID-19 infection.
39 40	261	PloS one. 2020 Apr 28;15(4):e0232452.
40 41	262	1 105 one. 2020 Apr 20,15(4).00252452.
41 42 43	263	17. Marinaccio A, Boccuni F, Rondinone BM, Brusco A, D'Amario S, Iavicoli S.
44 45	264 265	Occupational factors in the COVID-19 pandemic in Italy: compensation claims applications support establishing an occupational surveillance system. Occupational and
46	266	Environmental Medicine. 2020 Dec 1;77(12):818-21.
47	267	
48 49	268	
50	269	
51		
52 53		
55 54		
55		
56 57		
58		
59		Ter neer review only http://hmienen.hmi.com/cite/about/guidelines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure Legends

Figure 1. PRISMA flow diagram


Figure 2. Seroprevalence by SOC 2010 major occupation group. *Estimates are a mix of

'Healthcare Practitioners and Technical Occupations' and 'Healthcare Support Occupations' (see

next page)

Supplementary File 1. Supplementary methods

Supplementary File 2. Summary of included studies and references

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

	Total BMJ Open Median, IQR		QR	Seropreva	Page №% of 119		
SOC 2010 Major Occupation Group	Estimates		Study dates, midpoint	Sample size	(Median, IQR)	(Scale 0-75%)	Low-Moderate RoB
Architecture and Engineering Occupations (17-0000)	1	1	15/08 (15/08-15/08)	21 (21-21)	42.9 (42.9-42.9)	T	0 (0%)
I Bersonal Care and Service Occupations (39-0000)	14	7	03/05 (02/04-02/06)	127 (54-302)	21.5 (9.32-27.76)	⊢ <u> </u> ⊣ •	3 (21%)
– Bistallation, Maintenance, and Repair Occupations (49-0000)	1	1	19/06 (19/06-19/06)	134 (134-134)	16.4 (16.4-16.4)	1	0 (0%)
duilding and Grounds Cleaning and Maintenance Occupations (37-0000)	17	8	13/07 (09/06-16/08)	102 (42-226)	10.8 (3.3-21.7)	H I	6 (35%)
Healthcare Support Occupations (31-0000)	39	12	05/06 (19/05-21/06)	263 (122-562)	10.7 (2-20.05)	+	12 (31%)
6 Business and Financial Operations Occupations (13-0000)	2	2	05/07 (18/06-22/07)	462 (252-671)	8.27 (5.3-11.23)	(D	2 (100%)
glanagement Occupations (11-0000)	10	6	17/06 (01/05-02/08)	44 (23-145)	8.17 (6.7-19.93)	H	3 (30%)
B ood Preparation and Serving Related Occupations (35-0000)	6	4	17/06 (11/05-23/07)	58 (12-108)	6.35 (2.37-24.03)	+ <mark> -</mark>	2 (33%)
Healthcare Practitioners and Technical Occupations (29-0000) Healthcare Practitioners and Technical Occupations, 5-digit codes**	222	23	13/06 (13/05-13/07)	215 (64-482)	5.91 (1.83-11.71)	k ∥ → •	84 (38%)
12 Miscellaneous Health Technologists and Technicians	4	3	26/08 (09/08-12/09)	60 (20-121)	12.96 (9.09-27.54)	⊢ —→	1 (25%)
13 Registered Nurses 14	78	18	05/06 (05/05-05/07)	329 (71-1000)	8.44 (3.68-15.5)	+ 	22 (28%)
1 Clinical Laboratory Technologists and Technicians	18	12	15/06 (19/05-11/07)	204 (86-284)	6.22 (2.07-11.94)	H II I⊐I •	12 (67%)
1 ⊕ hysicians and Surgeons	65	21	09/06 (10/05-09/07)	214 (59-564)	5.88 (1.85-11.8)	+ II →• •	23 (35%)
1 ≩mergency Medical Technicians and Paramedics	9	6	13/06 (27/05-30/06)	157 (56-243)	5.41 (5.2-11)	н) •	4 (44%)
18 Therapists	15	4	08/06 (19/05-28/06)	121 (61-235)	3.75 (0-9.45)	d a	7 (47%)
19 20 ^{Physician Assistants}	9	2	27/06 (26/05-28/07)	230 (156-320)	3.48 (0.64-9.43)	(F	3 (33%)
2 Pharmacists	9	7	29/06 (14/06-14/07)	113 (29-213)	0.5 (0-3.45)	• •••	4 (44%)
althcare Occupations (mixed)*	94	25	05/06 (29/04-12/07)	375 (110-1012)	5.66 (2.35-11.6)	+ <mark>∥</mark> → •• •	23 (24%)
Sales and Related Occupations (41-0000)	23	8	21/08 (22/06-19/10)	643 (236-1184)	5.3 (1.2-8.8)	• 1 -1 • •	6 (26%)
24 Education, Training, and Library Occupations (25-0000)	6	5	05/07 (12/06-27/07)	238 (73-1305)	5.07 (2.71-17.22)	H H	3 (50%)
дорани и страна и страни и страниции и с Бактивники и страниции и стр	3	3	13/07 (25/06-30/07)	80 (66-100)	5 (2.5-5)	н	1 (33%)
∑or employed (mixed)*	37	14	23/06 (12/05-04/08)	382 (116-905)	4.9 (2.7-14.97)	⊢ ⊣ •	28 (76%)
Shice and Administrative Support Occupations (43-0000)	39	18	14/06 (18/05-11/07)	120 (32-522)	4.88 (1.36-13.36)	₩ 	20 (51%)
29 First responders (mixed)*	6	1	18/05 (13/05-22/05)	219 (72-599)	4.67 (1.6-7.34)	ф.	1 (17%)
30 Community and Social Service Occupations (21-0000)	6	2	30/05 (18/05-11/06)	104 (49-188)	4.45 (2.13-6.1)	н <mark>)</mark> •	1 (17%)
Brotective Service Occupations (33-0000)	28	9	04/07 (21/05-16/08)	190 (46-555)	4.29 (2.17-7.47)	H ⊣ • •	6 (21%)
Bansportation and Material Moving Occupations (53-0000)	23	7	08/08 (08/06-08/10)	230 (80-364)	3.5 (1.8-11.8)	H H •	8 (35%)
Price, Physical, and Social Science Occupations (19-0000)	11	7	06/07 (11/06-30/07)	343 (174-570)	2.6 (1.66-6.46)	K H	4 (36%)
35 Production Occupations (51-0000) 36	4	3	23/05 (26/04-19/06)	764 (342-1132)	1.52 (1.45-4.93)		2 (50%)
Arts, Design, Entertainment, Sports, and Media Occupations (27-0000)	6	5	07/07 (04/06-09/08)	164 (47-823)	1.39 (0.18-11.02)	(+	3 (50%)
Gemputer and Mathematical Occupations (15-0000)	only - http 1	o://bmjope	en.bmj.com/site/abo 03/05 (03/05-03/05)	ut/guidelines.: 47 (47-47)	xhtml 0 (0-0)	1	1 (100%)
39 nstruction and Extraction Occupations (47-0000)	1	1	03/05 (03/05-03/05)	42 (42-42)	0 (0-0)	L	1 (100%)

1 2 3	1	S1 Materials
4 5 6	2	
0 7 8	3	Table of Contents
9	4	Supplementary files2
10	5	S1 File. PRISMA checklist
11	6	S2 File. Search strategy4
12 13	7	S3 File. Tool for assessing study risk of bias8
13	8	S4 File. Details of occupational coding11
15 16	9	S4 File. Details of occupational coding
10	10	
18	11	
19		
20		
21		
22 23		
23 24		
25		
26		
27		
28		
29 30		
31		
32		
33		
34 35		
35 36		
37		
38		
39		
40 41		
42		
43		
44		
45		
46 47		
47		
49		
50		
51		
52 53		
53 54		
55		
56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

12 Supplementary files13 S1 File. PRISMA checklist

Section/topic	#	Checklist item	Reported on page
TITLE	-		
Title	1	Identify the report as a systematic review, meta-analysis, or both.	0
ABSTRACT			
Structured	2	Provide a structured summary including, as applicable: background; objectives; data	1
summary		sources; study eligibility criteria, participants, and interventions; study appraisal and	
		synthesis methods; results; limitations; conclusions and implications of key findings;	
		systematic review registration number.	
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3, lines 14-30
Objectives	4	Provide an explicit statement of questions being addressed with reference to	3, line 30-32
		participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS	-		2.11. 20
Protocol and	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address),	3, line 39
registration	(and, if available, provide registration information including registration number.	4 11
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for	4, lines 39-45
cinteria		eligibility, giving rationale.	
Information	7	Describe all information sources (e.g., databases with dates of coverage, contact with	4, lines 39-40
sources	'	study authors to identify additional studies) in the search and date last searched.	4, mies 37-40
Search	8	Present full electronic search strategy for at least one database, including any limits	Suppl. File 2
Sourch	Ŭ	used, such that it could be repeated.	Supplier no 2
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic	4, lines 41-43
-		review, and, if applicable, included in the meta-analysis).	
Data collection	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in	4, lines 41-49, 57-5
process		duplicate) and any processes for obtaining and confirming data from investigators.	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources)	4, lines 44-45 (see
		and any assumptions and simplifications made.	reference to
D. 1	10		previous study)
Risk of bias in	12	Describe methods used for assessing risk of bias of individual studies (including	4, see reference and
individual studies		specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Suppl. File 1
Summary	13	State the principal summary measures (e.g., risk ratio, difference in means).	4, lines 57-78
measures	15	State the principal summary measures (e.g., fisk ratio, unreferee in means).	4, mes 57 76
Synthesis of	14	Describe the methods of handling data and combining results of studies, if done,	4, lines 57-58
results		including measures of consistency (e.g., I ²) for each meta-analysis.	,
Risk of bias	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g.,	4, lines 47-48
across studies		publication bias, selective reporting within studies).	
Additional	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-	NA
analyses		regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review,	Suppl File 1
Study selection	17	with reasons for exclusions at each stage, ideally with a flow diagram.	Suppi i ne i
Study	18	For each study, present characteristics for which data were extracted (e.g., study size,	Suppl. File 2
characteristics	10	PICOS, follow-up period) and provide the citations.	Supplier no 2
Risk of bias	19	Present data on risk of bias of each study and, if available, any outcome level	Suppl. File 2
within studies		assessment (see item 12).	**
Results of	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple	Suppl. File 2
individual studies		summary data for each intervention group (b) effect estimates and confidence intervals,	
~		ideally with a forest plot.	
Synthesis of	21	Present results of each meta-analysis done, including confidence intervals and	NA – see narrative
results		measures of consistency.	synthesis on page 5 & Figure 1
Risk of bias	22	Present results of any assessment of risk of bias across studies (see Item 15).	5. lines 72-75
across studies	22	resent results of any assessment of fisk of blas across shufles (see frem 13).	Figure 1
Additional	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses,	NA
analysis	25	meta-regression [see Item 16]).	- 111
DISCUSSION			
	24		C 11 110 110
Summary of	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and	6, lines 110-118
evidence		outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	

BMJ Open

Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	6, lines 131-13
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and	6, lines 119-12
FUNDING		implications for future research.	
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic raviay.	9
		of data); role of funders for the systematic review.	

S2 File. Search strategy

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily Dates: January 1, 2020 to December 31, 2020

Notes: Covid-19 search terms were adapted from Ovid Expert Searches

1 esp Coronavirus/ 2 esp Coronavirus/ms Infections/ 3 (coronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or neov* or covid* or surs-cov* or surseov* or surseovarius* or Severe Acute Respiratory Syndrome Coronavirus*).tw.k1.[EB2] 4 or/1-3 5 4 not (MRRS or MERS-COV or Middle East respiratory syndrome or camle* or dromedar* or equine or coronary or coronal or covidence* or eavidence* or eavidence* or eavies or TGEV or felior or proceine or RCV or PED or OF OV or SADS-COV or SADS-COV or covid or camic or CCV or or zononic or avirus in or envid* or coronavirus* or coronavirus? or surs-cov-2* or surseov-2* or coronavirus.9 or eaviel 9 or covid 10 or covid 10° covid 0° c	#	Search terms
3 foronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or neov* or covid* or sars-cov* or or solutions*).tw,K1(EB2) 4 or1.3 5 4 not ((MERS or MERS-CoV or Middle East respiratory syndrome or calles or TGEV or feline or portione or BCoV or PED or PEDV or PED or PEDV or PDV or PDV or PDV or CoV or ADS-CoV or conine or CCoV or zonoine or calles or or virus in influenza or HIN or HSN or HSV or or PDV or FCOV or SADS-CoV or conine or CCoV or zonoine or sars* or virus).tw,Kf. or exp pneumonia/) and Wuhan.tw,Kf. 6 ((paeumonia or covid* or coronavirus* or coronaviru	1	exp Coronavirus/
Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*).tw.kf.[EB2] 4 or/1.3 5 4 not (MERS or MERS-CoV or Middle East respiratory syndrome or came!* or dromedar* or equine or coronary or coronal or crevidence* or covidence* or covidence avirus of HV or bovine or calves or TGEV or falme or porcise or BCoV or FED or FED ver FED ver or BDV. or FEO or fOV or SADS-CoV or canine or CCov or zoonotic or avian influenza or HIN or HSN1 or HSN6 or IBV).mp. or (animals/ not humans/)) 6 ((pneumonia or covid*) or coronavirus* or corona virus* or neov* or 2019-neov or sars* or virus).tw.kf. or exp pneumonia/) and Wuhan.tw.kf. 7 (2019-neov* or 2019nCov* or neov19 or neov-19 or 2019-neov! CoV or sars-cov2* or sars-cov-2* or sars-cov-2* or sars-cov-2* or sars-cov-2* or coronavirus.2 or coronavirus.3 or Sars-coronavirus.2 or sars-cov-2* or coronavirus* or coronavirus* or coronavirus.3 or coronavirus or Pandemi*2)) or ((covid or covid-19) and pandemic*2) or (coronavirus* and pneumonia).tw.kf. 7 COVID-19.rx.px.cx. or severe acute respiratory syndrome coronavirus 2.os. 9 or/6.8 10 5 or 9 11 immunoglobulins (or antibodies or antibodies (or exp immunoglobulin isotypes/ or immunoglobulin or or immunoglobulin e/ or immunoglobulin isotypes/ or immunoglobulin or or immunoglobulin e/ or immunoglobulin insty or exp enzyme-linked immunosopt assay/ or neutralization tests/ 13 immunoassay/ or fuor orimunuosasay/ or exp immunoglobulin isotypes' or IgG or IgM or IgA or neutralif visor seroogicit test/ or complement fixation tests/ or secologi	2	exp Coronavirus Infections/
5 4 not ((MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidence* or covidence or influenza virus or HU or bovine or calves or TGEV or felline or porcine or BCV or FDP or FDEV or SVD SC OV or canine or CCv or zononic or avian influenza or H1N1 or HSN1 or response or 2019-ncov* or 2019-ncov* or 2019-ncov* or or 2019-ncov* or 2019-ncov* or 2019-ncov* or 2019-ncov* or 2019-ncov* or sars* or virus).tw.kf. or exp pneumonia/) and Wuhan.tw.kf. 7 C2019-ncov* or 2019/nCov* or ncov-19 or covi-19 or 2019-ncov (CoV or surs-cov-2* or sars-cov-2* or sars-covarius-2* or sars-covarie* or sarsarsars-2* or sarsarsars-2* or sars-covarie* or sars-c	3	
covidence* or coviden or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or FD or FDE or FDE or Or PDCOV or FIPV or FOV or SADS-CoV or canine or CCov or zonotic or avian influenza or HIN1 or H5N1 or H5N6 or H8V).mp. or (animals/ not humans/) 6 ((meumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov or sars-cov-2* or coronavirus-2 or Sars-coronavirus-2 or Sars-coronavirus-2 or sold 2019 or (novel or new ronavau) adj2 (COV or FCV or cOV or or or coronavirus-2 or sold 2019 or (novel or new ronavau) adj2 (COV or COV or or or or or coronavirus-2* or coronavirus-2* or coronavirus-2* or coronavirus-2* or coronavirus-2* or coronavirus-9 or covid or covid or covid-1019 or (novel or new ronavau) adj2 (COV or COV or or or or or or coronavirus* or coronavirus-9 or covid or or coronavirus-9 or covid or covid or covid-19* or covid-19* or or nonavau) adj2 (COV or FCV or or sold or covid or coronavirus-9 or covid or exp annuoglobulin s/ or covid-19* or covid-19* or immunoglobulin d/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or explorescenter or complement fixation tests/ or explorescenter or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or explorescenter or complement fixation or hemagglutination inhibition tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition or immunoglobulin d/ errorweit linked immunosorbent or erzyme-linked immunosorbent or erzyme-linked immunosorbent assay or inconscentent or complement fixation or hemag	4	or/1-3
Wuhan tw.kf. 7 (2019-necv* or 2019nCov* or neov19 or neov-19 or 2019-novel CoV or sars-cov2* o	5	covidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or
or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus 2 or coronavirus 2 or coronavirus or Sars-coronavirus3 or corona virus or Pandemi*2)) or ((covid or covid-19) and pandemic*2) or (coronavirus* and pneumonia)).tx,kf. 8 COVID-19.rx.px.ox. or severe acute respiratory syndrome coronavirus 2.os. 9 ori6-8 10 5 or 9 11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunoassyl or fluoroimmunoassyl/ or exp immunoblotting/ or immunoscrobent techniques/ or sex persyme-linked immunosorbent rests/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or serologic/ (etst) or complement fixation tests/ or neutralizion tests/ or serologic/ (etst) or complement fixation tests/ or neutralizion tests/ or serologic/ (etst) or complement fixation tests/ or neutralizion tests/ or serologic/ (etst) or complement fixation tests/ or neutralizion tests/ or serologic/ (etst) or serologic/ (etst) or complement fixation tests/ or immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation tests/ or serologic/ (etst) or serologic/ (etst) or serologic/ (etst) or cound/ (etal)	6	Wuhan.tw,kf.
9 or/6-8 10 5 or 9 11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin gor or exp immunoglobulin isotypes/ or immunoglobulin d/ or immunoglobulin d/ or immunoglobulin 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunoassay/ or gu enzyme-linked immunosorbent tochniques/ or exp enzyme-linked immunosorbent tochniques/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or neutralization tests/ or neutralization tests/ or serologic tests/ or complement fixation or immunoglobulin* or inmunoslobul or western blot or neutrali*)tw.kf. 15 (antibd* or immunoglobulin* or immune globulin* or titet* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or sero-grevalence/ 19 (cerconver* or seroprevalence or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or inciden* or inciden* or prevalen* or diagnostic).mp. 21 (cerconver* or sero	7	or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or coronavirus 2 or coronavirus2* or corona or coronavirus-19 or covid19 or covid-19 or covid 2019 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus* or corona virus or Pandemi*2)) or ((covid or covid19* or covid-19) and pandemic*2) or (coronavirus* and
Instruction 10 5 or 9 11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunoassay/ or fluoroimmunoassay/ or exp immunoblotting/ or immunooryme techniques/ or exp enzyme-linked immunosorbent assay/ or exp enzyme-linked immunosorbent to testify or neutralization tests/ complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or serologic/di (antibod* or immunoglobulin* or immunoblot or western blot or neutrali*).tw,kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero- epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26	8	COVID-19.rx,px,ox. or severe acute respiratory syndrome coronavirus 2.os.
11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin g/ or immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin d/ or immunoglobulin e/ or immunoglobulin g/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunoassay/ or exp enzyme-linked immunosorbassay/ or immunosorbent techniques/ or exp enzyme-linked immunosorbent assay/ or immunosorbent tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or Serology/di 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or wetern blot or neutrali*).tw.kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw.kf. 16 or/11-14 17 seroenyer* or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or sero-survey).tw.kf. 20 (inciden* or prevalen* or sellent or asymptomatic or serosurvey	9	or/6-8
complex/ or immune sera/ or exp immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin d/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunosorbent asay/ or exp enzyme-linked immunosorbent techniques/ or expologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or Serology/di 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or immunoglobulin* or its/ or setser blot or neutrali*).tw,kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. 16 or/11-14 17 seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-survey or sero-survey.tw,kf. 20 (inciden* or prevalence or sero-prevalence or seroincidence or sero-incidence or seroepidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 <td< td=""><td>10</td><td>5 or 9</td></td<>	10	5 or 9
 immunoassay/ or fluoroimmunoassay/ or exp immunoblotting/ or immunoenzyme techniques/ or exp enzyme-linked immunosorbent assay/ or immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or Serology/di fenzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or immunoblot or western blot or neutrali*).tw.kf. (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. or/11-14 seroepidemiologic studies/ incidence/ or prevalence/ (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-survey or sero-survey).tw,kf. (seroconver* or seroprevalence or sero-prevalence or sero-survey).tw,kf. (and (16 and 23) 10 and (16 and 23) 10 and 15 (and 15 (11	
immunosorbent assay/ or exp enzyme-linked immunospot assay/ or immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or Serology/di 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or western blot or neutrali*).tw.kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw.kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit	12	serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/
hemagglutination inhibition or immunoblot or western blot or neutrali*).tw,kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	13	immunosorbent assay/ or exp enzyme-linked immunospot assay/ or immunosorbent techniques/ or serologic tests/ or
serolog* or saliva).tw,kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	14	
17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	15	(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf.
18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	16	or/11-14
19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-pidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	17	seroepidemiologic studies/
epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	18	incidence/ or prevalence/
21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	19	epidemiolog*).mp.
22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-pidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	20	(inciden* or prevalen* or count* or rate*).mp.
or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	21	
24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	22	
25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	23	or/17-21
26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	24	10 and (16 and 23)
27 or/24-26 28 limit 27 to yr="2020-Current"	25	10 and 15
28 limit 27 to yr="2020-Current"	26	10 and 22
	27	or/24-26
29 remove duplicates from 28	28	limit 27 to yr="2020-Current"
	29	remove duplicates from 28

Database: Embase

Dates: January 1, 2020 to December 31, 2020

Notes: Covid-19 search terms were adapted from Ovid Expert Searches

#	Searches
1	exp Coronavirus/
2	exp Coronavirus Infections/
3	(coronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or ncov* or covid* or sars-cov* or sarscov* or Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*).tw,kw.
4	or/1-3
5	4 not ((MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or IBV).mp. or (animals/ not humans/))
6	((pneumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov or sars*).tw,kw. or exp pneumonia/) and Wuhan.tw,kw.
7	(2019-ncov or ncov19 or ncov-19 or 2019-novel CoV or sars-cov2 or sars-cov-2 or sarscov2 or sarscov-2 or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or coronavirus-19 or covid19 or covid-19 or covid 2019 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus* or corona virus or Pandemi*2)) or ((covid or covid19 or covid-19) and pandemic*2) or (coronavirus* and pneumonia)).tw,kw.
8	(coronavirus disease 2019 or severe acute respiratory syndrome coronavirus 2).sh,dj.
9	6 or 7 or 8
10	5 or 9
11	virus antibody/ec [Endogenous Compound]
12	neutralizing antibody/ec [Endogenous Compound]
13	exp immunoglobulin/ or exp immunoglobulin A antibody/ or exp immunoglobulin class/ or exp immunoglobulin M antibody/ or exp immunoglobulin G antibody/ or exp immunoglobulin antibody/
14	11 or 12 or 13
15	serology/
16	serodiagnosis/ or complement fixation test/ or hemagglutination inhibition test/ or hemolytic plaque assay/
17	fluorescent antibody technique/
18	immunofluorescence test/ or viral disease immunofluorescence assay/
19	enzyme linked immunosorbent assay/
20	western blotting/
21	(enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunoassay or immunofluorescence or fluorescent antibody or complement fixation or hemagglutination inhibition or hemolytic plaque assay or immunoblot or western blot or neutrali*).tw,kw.
22	(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serolog* or serum or saliva).tw.kw.
23	15 or 16 or 17 or 18 or 19 or 20 or 21
24	14 or 23
25	exp seroepidemiology/
26	*prevalence/
27	*incidence/
28	(seroconver* or seroprevalence or sero-prevalence or seroincidence or sero-incidence or seroepidemiolog* or sero- epidemiolog* or inciden* or prevalen* or count* or rate* or serosurvey or sero-survey or screen* or diagnostic).mp.
29	(seroconver* or seroprevalence or sero-prevalence or seroincidence or sero-incidence or seroepidemiolog* or sero- epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kw.
30	25 or 26 or 27 or 28
31	10 and (24 and 30)
32	10 and 22
_	10 and 29
33	31 or 32 or 33
33 34 35	

Database: Web of Science Core Collection Date: January 1, 2020 to December 31, 2020

#	Searches
1	TS=(coronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or ncov* or covid* or sars-cov* or sars-cov* or Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*)
2	TS=(MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or IBV)
3	#1 NOT #2
4	TS=((pneumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov or sars* or virus) AND Wuhan)
5	TS=(2019-ncov* or 2019nCov* or ncov19 or ncov-19 or 2019-novel CoV or sars-cov2* or sars-cov-2* or sarscov2* or sarscov2* or sarscov-2* or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or corona or coronavirus-19 or covid19 or covid-19 or covid 2019 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus*)) or (coronavirus* and pneumonia)).
6	TS=(COVID-19 or "severe acute respiratory syndrome coronavirus")
7	#6 OR #5 OR #4 OR #3
8	TS=(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutralization or sera or serolog* or saliva or serum).
9	TS=("enzyme linked immunosorbent assay" or "enzyme-linked immunosorbent assay" or "immunoenzyme" or ELISA or "lateral flow immunoassay" or LFIA or "immunofluorescence assay" or immunochromatography or "complement fixation test" or "hemagglutination inhibition" or immunoblot or "western blot" or "neutralization assay")
10	#9 OR #8
11	TI=(seroconversion or seroprevalence or seroincidence or seroepidemiolog* or incidence or prevalence or asymptomatic or sero-survey*) or AK=(seroconversion or seroprevalence or seroincidence or seroepidemiolog* or incidence or prevalence or asymptomatic or sero-survey*)
12	ALL=(prevalence or incidence or seroconversion or seroconvert or seroprevalence or seroincidence or seroepidemiolog* or serosurvey or sero-survey or survey or screen* or diagnostic test)
13	#12 AND #10 AND #7
14	#11 AND #7
15	TI=(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutralization or sera or serolog* or saliva or serum).
16	#15 AND #7
17	#16 OR #14 OR #13

1/ #	16 OR #14 OR #13
	ise: Europe PMC [Secondary search for pre-prints] January 1, 2020 to December 31, 2020
#	Searches
	("2019-nCoV" OR "2019nCoV" OR "COVID-19" OR "SARS-CoV-2" OR "COVID19" OR "COVID" OR "SARS-nCoV" OR ("wuhan" AND "coronavirus") OR "Coronavirus" OR "Corona virus" OR "corona-virus" OR "corona viruses" OR "coronaviruses" OR "SARS-CoV" OR "Severe Acute Respiratory Syndrome Coronavirus" OR ("SARS" AND "coronavirus")) AND ABSTRACT:(sera* OR sero* OR immun* OR Ig* OR "enzyme-linked immunosorbent assay" OR ELISA OR "neutralization assay" OR seroprevalence) AND (SRC:"PPR")

Sources: Health organizations

Dates: January 1, 2020 to December 31, 2020

Source		Search strategy
WHO Situation Reports	1	"antibod", "sero", "immun", "ELISA"
National Institutes of Health	1	("COVID" OR "SARS-CoV-2")
	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:nih.gov -site:ncbi.nlm.nih.gov
	3	2 AND 3
United States Centres for Disease Control and	1	("COVID" OR "SARS-CoV-2")
Prevention	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:cdc.gov
	5	2 AND 3
European Centres for Disease Control and Prevention	1	("COVID" OR "SARS-CoV-2")
Control and Prevention	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:ecdc.europa.eu
	5	2 AND 3

Sources: Google News

Dates: January	1, 2020 to December 31, 2020
----------------	------------------------------

	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")				
	3	allintext:(1 AND 2) site:ecdc.europa.eu				
	5	2 AND 3				
Sources: Google News Dates: January 1, 2020 to December 31, 2020						
Source		Search strategy				
Google news	1	(antibody OR antibodies OR surveillance OR screen OR serology OR serological OR serosurvey OR ELISA OR LFIA OR assay OR blood OR serum OR immune OR immunity OR herd immunity OR random test)				
Google news	1	serosurvey OR ELISA OR LFIA OR assay OR blood OR serum OR immune OR				
Google news	1	serosurvey OR ELISA OR LFIA OR assay OR blood OR serum OR immune OR				

S3 File. Tool for assessing study risk of bias

Item 1: Was the sample frame appropriate to address the target population?					
Yes	Sample frame described and it approximated the target population				
No	Sample frame did not approximate the target population (e.g., blood donors do not represent general population, doctors do not represent all health care providers)				
Exclude	Sample frame not described				
*Notes	The term "target population" should not be taken to infer every individual from everywhere or with similar disease or exposure characteristics. Instead, give consideration to specific population characteristics in the study, including age range, gender, morbidities, medications, and other potentially influential factors. For example, a sample frame may not be appropriate to address the target population if a certain group has been used (such as those working for one organisation, or one profession) and the results then inferred to the target population (i.e. working adults). A sample frame may be appropriate when it includes almost all the members of the target population (i.e. a census, or a complete list of participants or complete registry data).				
	0				

Yes I	
105 1	Probability sampling method (simple or stratified random) or entire sample (e.g., an entire town) was used
No	Non-probability sampling
Exclude S	Sampling method not reported

Item 3: Was the sample size adequate?			
Yes	≥599		
No	<599		
Exclude	Sample size not reported		
*Notes	To calculate the required sample size we used an assumed prevalence of 2.5%, which was the global average estimated by the WHO in April, 2020. ¹ Based on guidance by the Joanna Briggs Institute and published medical statistical recommendations we selected a precision value that was half the assumed prevalence (1.25%) [2,3]. We calculated a minimum sample size of 599 using these inputs: Sample size calculation: $n = \frac{Z^2 P(1-P)}{d^2}$ Where n = sample size; Z = Z statistic for level of confidence (95%); P = expected prevalence (2.5% WHO global estimate); d = precision (1.25%) In cases where the sample size calculation was provided and the required sample for 80% power was below our threshold		

Item 4: Were the study subjects and setting described in detail?		
Yes	Average age and distribution of gender/sex provided	
No	Neither age or gender/sex is provided, or only one of age and gender/sex is provided	

Page 27 of 119

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
39 40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
28	

Item 5: Was data analysis conducted with sufficient coverage of the identified sample?			
Yes	The demographic characteristics (gender/sex, age, and ethnicity) of the sample is at least somewhat representative of the population		
No	The demographic characteristics (gender/sex, age, and ethnicity) of the sample is not representative of the population		
Unclear Information is not provided about demographic characteristics of the sample (gender/sex, age, and ethnicity)			

Item 6: Were	Item 6: Were valid methods used for the identification of the condition?			
Yes	The test used met the FDA standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivity minimum 90%, specificity minimum 95%, as reported in the study [4].			
No	The test used did not meet the FDA standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivity minimum 90%, specificity minimum 95%.			
Exclude	Test sensitivity and specificity not reported			

Item 7: Was the condition measured in a standard, reliable way for all participants?				
Yes	The same serology test was used for all participants			
No	Different serology tests were used for participants			
Unclear	No details were provided about which participants received which serology tests			

Yes	Does all of the following: corrects for population characteristics or the sample is somewhat representative of the population (probability sampling), corrects for test characteristics), and provides the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.
No	Does not correct for population characteristics and the sample is not likely representative of the population (non-probability sampling), does not correct for test or provide the information necessary to correct for test characteristics, or does not provide the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.

Item 9: Was the response rate adequate, and if not, was the low response rate managed appropriately?				
Yes	Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population [5]			
No	Response rate < 60% and the demographics of the sample were not a reasonable match to those of the target population			
Unclear	Unclear Response rate not provided and it was unclear if the demographics of the sample differed from the target population			

Item 10: Overall risk of bias			
Low	The estimates are very likely correct for the target population. To obtain a low risk of bias classification, all criteria must be met or departures from the criteria must be minimal and unlikely to impact on the validity and reliability of the prevalence estimate. These include sample sizes that are just below the threshold when all other criteria are met,		

	reporting only some of characteristics of the sample, test characteristics below the threshold but corrections for the test performance, and response rates that are just below the threshold in the context of probability based sampling of an appropriate sampling frame with population weighted seroprevalence estimates.
Moderate	The estimates are likely correct for the target population. To obtain a moderate risk of bias classification, most criteria must be met and departures from the criteria are likely to have only a small impact on the validity and reliability of the prevalence estimates.
High	The estimates are not likely correct for the target population. To obtain a high risk of bias, many criteria must not be met or departures from criteria are likely to have a major impact on the validity and reliability of the prevalence estimates.
Unclear	There was insufficient information to assess the risk of bias.

to beet eview only

S5 File. Details of occupational coding

For each seroprevalence estimate, we identified the relevant Standard Occupational Classification

(SOC) 2010 codes. This was done by applying the National Institute for Occupational Safety & Health

(NIOSH) Industry and Occupation Computerized Coding System (NIOCCS) to text occupation descriptions extracted by members of the research team. There is no standard cut-off for manually

verifying results from the National Institute for Occupational Safety & Health (NIOSH) Industry and

Occupation Computerized Coding System (NIOCCS). However, NIOCCS reports the probability of

correct classification to the six-digit level. After manually verifying a subset of records from the first

round of classification, we decided to manual perform a second round of classification for any observations for which the probability of correct classification was <0.8. This cut-off was chosen based

on the observation that that most codes with a probability of correct classification to of >0.8 to the

six-digit level were correctly coded at the two- and three-digit level, which we used in our main analyses and are more likely to be coded correctly than the more granular, 6-digit codes and

consideration of the number of records that could feasibly be verified manually Toppet for the work

References for supplementary files

- 1. Boseley S. WHO warns that few have developed antibodies to Covid-19. The Guardian [Internet]. 2020 Apr 20; Available from: https://www.theguardian.com/society/2020/apr/20/studies-suggest-very-few-have-had-covid-19-without-symptoms
- Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational 2. epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc. 2015 Sep;13(3):147-53.
- 3. Naing L, Winn T, Ruslil B. Practical issues in calculating the sample size for prevalence studies. Arch Orofac Sci. 2006:1:9-14.
- 4. U.S. Food & Drug Administration. Emergency Use Authorization for SARS-CoV-2 Antibody Tests [Internet]. 2020 [cited 2020 May 5]. Available from: https://www.fda.gov/media/137470/download.
 - 5. Morton MBS, Bandara DK, Robinson EM, Carr PEA. In the 21st century, what is an acceptable response rate? Aust N Z J Public Health. 2012 April; 36 (2): 106-8.
- Bobrovitz N, Arora RK, Cao C, Boucher E, Liu M, Donnici C, Yanes-Lane M, Whelan M, Perlman-Arrow S, Chen J, Rahim H. Global seroprevalence of SARS-CoV-2 antibodies: A systematic review and meta-analysis. PloS one. 2021 Jun 23;16(6):e0252617.

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\3\\14\\15\\16\\17\\18\\9\\20\\21\\22\\32\\4\\25\\26\\7\\28\\9\\30\\31\\2\\33\\4\\35\\36\\37\\38\\9\\40\\1\\42\\43\end{array}$			
40 41			
42 43			
44 45			
46			
47 48			
49 50			
51			
52			

Supplementary File I. List of all estimates, included studies and references

SOC 2010 Major Group	Study	Ν	SOC 2010 Occupation Title	Study Type	Study Dates	Country	Serum positive prevalence (95% CIs)	Overall Risk of Bias (JBI)
Not employed (mixed)*	Merkely et al., 2020 ¹	n=209	Homemaker (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	0.73% (0- 1.74%)	Moderate
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=37	Homemaker (Unpaid)	Prospective cohort	04/15 - 08/15	India	18.9%	High
Not employed (mixed)*	Biggs et al., 2020 ³	n=157	Retired (Unpaid)	Cross-sectional survey	04/28 - 05/03	United States of America	1.91%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=5381	Retired (Unpaid)	Prospective cohort	05/04 - 06/23	France	4.3% (3.5- 5%)	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=2767	Retired (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	1.09% (0.66- 1.52%)	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=1635	Retired (Unpaid)	Cross-sectional survey	04/06 - 06/30	Switzerland	4.3%	Low
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=10	Retired (Unpaid)	Prospective cohort	04/15 - 08/15	India	20%	High
Not employed (mixed)*	Alemu et al., 2020 ⁶	n=32	Student (Unpaid)	Cross-sectional survey	04/23 - 04/28	Ethiopia	15.6%	Moderate
Not employed (mixed)*	Biggs et al., 2020 ³	n=16	Student (Unpaid)	Cross-sectional survey	04/28 - 05/03	United States of America	12.5%	Moderate
Not employed (mixed)*	Brehm et al., 2020 ⁷	n=73	Student (Unpaid)	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	2.7%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=81	Student (Unpaid)	Prospective cohort	05/04 - 06/23	France	7.2% (0.1- 12.6%)	Moderate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Not employed (mixed)*	Iversen et al., 2020 ⁸	n=688	Student (Unpaid)	Cross-sectional survey	04/15 - 04/22	Denmark	14.97%	Low
Not employed (mixed)*	Lumley et al., 2020 ⁹	n=620	Student (Unpaid)	Prospective cohort	04/23 - 11/30	The United Kingdom	6.77%	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=774	Student (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	0.69% (0- 1.49%)	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=666	Student (Unpaid)	Cross-sectional survey	04/06 - 06/30	Switzerland	10.5%	Low
Not employed (mixed)*	Shakiba et al., 2020 ¹⁰	n=114	Student (Unpaid)	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	17.5% (11.3- 23.7%)	Moderate
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=14	Student (Unpaid)	Prospective cohort	04/15 - 08/15	India	21.4%	High
Not employed (mixed)*	Tilley et al., 2020 ¹¹	n=790	Student (Unpaid)	Cross-sectional survey	04/29 - 05/08	United States of America	4% (3-5.1%)	Moderate
Not employed (mixed)*	Tsitsilonis et al., 2020 ¹²	n=1395	Student (Unpaid)	Cross-sectional survey	06/15 - 07/15	Greece	0.42% (0.03- 1.5%)	Moderate
Not employed (mixed)*	Arnaldo et al., 2020 ¹³	n=513	Military, Rank Not Specified	Cross-sectional survey	07/06 - 07/13	Mozambique	3.7%	High
Not employed (mixed)*	Arnaldo et al., 2020 ¹⁴	n=116	Military, Rank Not Specified	Cross-sectional survey	11/02 - 11/12	Mozambique	1.7%	High
Not employed (mixed)*	Mabunda et al., 2020 ¹⁵	n=324	Military, Rank Not Specified	Cross-sectional survey	09/21 - 10/02	Mozambique	2.8%	High
Not employed (mixed)*	Mahomed et al., 2020 ¹⁶	n=116	Military, Rank Not Specified	Cross-sectional survey	11/26 - 12/03	Mozambique	18.1%	High
Not employed (mixed)*	Payne et al., 2020 ¹⁷	n=382	Military, Rank Not Specified	Cross-sectional survey	04/20 - 04/24	United States of America	59.7%	High
Not employed (mixed)*	World et al., 2020 ¹⁸	n=6900	Military, Rank Not Specified	Cross-sectional survey	08/15 - 10/15	Republic of Korea	0.36%	Unclear
Management Occupations (11- 0000)	Shakiba et al., 2020 ¹⁰	n=16	Farmers, Ranchers, and Other Agricultural Managers	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	19.7% (9.1- 31%)	Moderate
Management Occupations (11-	Favara et al., 2020 ¹⁹	n=43	Medical and Health Services Managers	Cross-sectional survey	07/13 - 07/13	The United Kingdom	9.3%	High

1 2	
3 4	
5 6	
7 8	
9	
10 11	
12 13	
14	
15 16	
17 18	
19	
20 21	
22 23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45	
46 47	

0000)								
Management Occupations (11- 0000)	Galan et al., 2020 ²⁰	n=170	Medical and Health Services Managers	Cross-sectional survey	04/14 - 04/27	Spain	27.6%	High
Management Occupations (11- 0000)	Hunter et al., 2020 ²¹	n=44	Medical and Health Services Managers	Cross-sectional survey	04/29 - 05/08	United States of America	4.55%	High
Management Occupations (11- 0000)	Leidner et al., 2020 ²²	n=257	Medical and Health Services Managers	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.11%	High
Management Occupations (11- 0000)	Martin et al., 2020 ²³	n=2078	Medical and Health Services Managers	Cross-sectional survey	05/29 - 07/13	The United Kingdom	6.79%	Moderate
Management Occupations (11- 0000)	Siddiqui et al., 2020 ²	n=15	Medical and Health Services Managers	Prospective cohort	04/15 - 08/15	India	20%	High
Management Occupations (11- 0000)	Baracco et al., 2020 ²⁴	n=45	Managers, All Other	Cross-sectional survey	04/23 - 05/05	Italy	6.67%	High
Management Occupations (11- 0000)	Goenka et al., 2020 ²⁵	n=71	Managers, All Other	Cross-sectional survey	07/12 - 08/23	India	7.04%	Moderate
Management Occupations (11- 0000)	Goenka et al., 2020 ²⁶	n=13	Managers, All Other	Cross-sectional survey	08/01 - 08/31	India	38.46%	High
Business and Financial Operations Occupations (13- 0000)	Satpati et al., 2020 ²⁷	n=43	Management Analysts	Cross-sectional survey	07/26 - 08/08	India	2.33%	Moderat
Business and Financial	Poustchi et al., 2020 ²⁸	n=880	Financial Specialists	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	14.2% (12.1- 16.5%)	Moderat

Page 35 of 119)
1	
2	

Operations Occupations (13- 0000)								
Computer and Mathematical Occupations (15- 0000)	Biggs et al., 2020 ³	n=47	Computer User Support Specialists	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Architecture and Engineering Occupations (17- 0000)	Siddiqui et al., 2020 ²	n=21	Engineers	Prospective cohort	04/15 - 08/15	India	42.9%	High
Life, Physical, and Social Science Occupations (19- 0000)	Jones et al., 2020 ²⁹	n=245	Medical Scientists	Cross-sectional survey	01/15 - 06/15	The United Kingdom	1.9%	High
Life, Physical, and Social Science Occupations (19- 0000)	Anna et al., 2020 ³⁰	n=505	Medical Scientists, Except Epidemiologists	Prospective cohort	04/28 - 07/31	France	8.71%	Moderate
Life, Physical, and Social Science Occupations (19- 0000)	Erber et al., 2020 ³¹	n=635	Medical Scientists, Except Epidemiologists	Cross-sectional survey	04/14 - 05/29	Germany	1.24%	High
Life, Physical, and Social Science Occupations (19- 0000)	Favara et al., 2020 ¹⁹	n=38	Medical Scientists, Except Epidemiologists	Cross-sectional survey	07/13 - 07/13	The United Kingdom	2.6%	High
Life, Physical, and Social Science Occupations (19- 0000)	Hanrath et al., 2020 ³²	n=468	Medical Scientists, Except Epidemiologists	Cross-sectional survey	05/29 - 07/06	The United Kingdom	6.2%	High
Life, Physical, and Social Science Occupations (19- 0000)	Leidner et al., 2020 ²²	n=2654	Medical Scientists, Except Epidemiologists	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.22%	High

BMJ Open

Life, Physical, and Social Science Occupations (19- 0000)	Martin et al., 2020 ²³	n=1154	Medical Scientists, Except Epidemiologists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	9.71%	Moderate
Life, Physical, and Social Science Occupations (19- 0000)	Rosser et al., 2020 ³³	n=102	Medical Scientists, Except Epidemiologists	Cross-sectional survey	04/20 - 05/20	United States of America	0.98%	High
Life, Physical, and Social Science Occupations (19- 0000)	Silva et al., 2020 ³⁴	n=69	Chemists	Cross-sectional survey	06/05 - 07/31	Brazil	4%	High
Life, Physical, and Social Science Occupations (19- 0000)	Tsitsilonis et al., 2020 ¹²	n=250	Physical Scientists, All Other	Cross-sectional survey	06/15 - 07/15	Greece	1.42% (0- 7.24%)	Moderate
Community and Social Service Occupations (21- 0000)	Jones et al., 2020 ²⁹	n=211	Healthcare Social Workers	Cross-sectional survey	01/15 - 06/15	The United Kingdom	6.3%	High
Community and Social Service Occupations (21- 0000)	Leidner et al., 2020 ²²	n=235	Social Workers, All Other	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.4%	High
Community and Social Service Occupations (21- 0000)	Rosser et al., 2020 ³³	n=117	Social Workers, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.71%	High
Community and Social Service Occupations (21- 0000)	Sabourin et al., 2020 ³⁵	n=91	Social Workers, All Other	Cross-sectional survey	07/15 - 08/15	United States of America	5.49%	High
Community and Social Service	Yogo et al., 2020 ³⁶	n=35	Social Workers, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High

Page 37	of 119
---------	--------

 BMJ Open

Occupations (21- 0000)								
Community and Social Service Occupations (21- 0000)	Biggs et al., 2020 ³	n=6	Religious Workers	Cross-sectional survey	04/28 - 05/03	United States of America	16.67%	Moderate
Education, Training, and Library Occupations (25- 0000)	Campos et al., 2020 ³⁷	n=2715	Postsecondary Teachers	Cross-sectional survey	05/13 - 07/10	Portugal	2.6%	High
Education, Training, and Library Occupations (25- 0000)	Goncalves et al., 2020 ³⁸	n=1636	Postsecondary Teachers	Cross-sectional survey	06/15 - 06/30	Portugal	3.05%	Moderate
Education, Training, and Library Occupations (25- 0000)	Tsitsilonis et al., 2020 ¹²	n=312	Postsecondary Teachers	Cross-sectional survey	06/15 - 07/15	Greece	1.2% (0.14- 3.7%)	Moderate
Education, Training, and Library Occupations (25- 0000)	Fontanet et al., 2020 ³⁹	n=42	Elementary and Middle School Teachers	Retrospective cohort	04/28 - 04/30	France	7.1%	Moderate
Education, Training, and Library Occupations (25- 0000)	Siddiqui et al., 2020 ²	n=8	Elementary and Middle School Teachers	Prospective cohort	04/15 - 08/15	India	25%	High
Education, Training, and Library Occupations (25- 0000)	Torres et al., 2020 ⁴⁰	n=165	Elementary and Middle School Teachers	Cross-sectional survey	05/04 - 05/19	Chile	20.6% (14.7- 27.6%)	High

1 2 3 4 5 6 7 8 9	
10 11 12 13 14 15 16 17 18 19	
20 21 22 23 24 25 26 27 28	
29 30 31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47	

Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Halatoko et al., 2020 ⁴¹	n=55	Fine Artists, Including Painters, Sculptors, and Illustrators	Cross-sectional survey	04/23 - 05/08	Togo	0%	High
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Slusser et al., 2020 ⁴²	n=5603	Athletes, Coaches, Umpires, and Related Workers	Cross-sectional survey	04/08 - 04/21	United States of America	0.7% (0.28- 1.15%)	Unclear
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Vince et al., 2020 ⁴³	n=272	Athletes, Coaches, Umpires, and Related Workers	Prospective cohort	05/29 - 07/31	Croatia	14%	Moderate
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Vince et al., 2020 ⁴³	n=43	Coaches and Scouts	Prospective cohort	05/29 - 07/31	Croatia	16.3%	Moderate
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Mack et al., 2020 ⁴⁴	n=1007	Umpires, Referees, and Other Sports Officials	Prospective cohort	06/16 - 06/30	Germany	2.09% (1.37- 3.17%)	High
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Khan et al., 2020 ⁴⁵	n=44	Media and Communication Workers	Cross-sectional survey	07/01 - 07/15	India	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=566	Healthcare Practitioners and Technical Occupations	Cross-sectional survey	05/18 - 06/13	United States of America	4.6% (3- 6.7%)	Moderate

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ⁴⁵	n=355	Healthcare Practitioners and Technical Occupations	Cross-sectional survey	07/01 - 07/15	India	4.8% (3- 7.6%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=402	Healthcare Practitioners and Technical Occupations	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	1.49%	High
Healthcare Occupations (mixed)*	Hanrath et al., 2020 ³²	n=102	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/06	The United Kingdom	6.62%	High
Healthcare Occupations (mixed)*	Jones et al., 2020 ²⁹	n=413	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/15 - 06/15	The United Kingdom	7.8%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ²³	n=550	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/13	The United Kingdom	10.36%	Moderate
Healthcare Occupations (mixed)*	Amendola et al., 2020 ⁴⁷	n=117	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 04/15	Italy	4.27%	High
Healthcare Occupations (mixed)*	Arnaldo et al., 2020 ⁴⁸	n=543	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/10 - 08/21	Mozambique	3.7%	High

Healthcare Occupations (mixed)*	Bal et al., 2020 ⁴⁹	n=190	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/10 - 05/28	France	3.68%	High
Healthcare Occupations (mixed)*	Barallat et al., 2020 ⁵⁰	n=429	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/22	Spain	7.69%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=35	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	11%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=20	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	15%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=44	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	11%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=99	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	12%	High
Healthcare Occupations (mixed)*	Biggs et al., 2020 ³	n=59	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/28 - 05/03	United States of America	10.17%	Moderate

Healthcare Occupations (mixed)*	Blairon et al., 2020 ⁵²	n=588	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/25 - 06/19	Belgium	19.2%	High
Healthcare Occupations (mixed)*	Borraz et al., 2020 ⁵³	n=289	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/20 - 04/21	Spain	5.88%	High
Healthcare Occupations (mixed)*	Brunner et al., 2020 ⁵⁴	n=762	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/29	United States of America	4.5%	High
Healthcare Occupations (mixed)*	Brunner et al., 2020 ⁵⁴	n=764	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/29	United States of America	2%	High
Healthcare Occupations (mixed)*	Carozzi et al., 2020 ⁵⁵	n=17098	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/01 - 04/30	Italy	3.1%	High
Healthcare Occupations (mixed)*	Carrat et al., 2020 ⁴	n=568	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	05/04 - 06/23	France	11.6% (8.3- 14.4%)	Moderat
Healthcare Occupations (mixed)*	Cavlek et al., 2020 ⁵⁶	n=558	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/25 - 05/24	Croatia	1.25%	High

High

Unclear

Moderate

Moderate

Moderate

Moderate

Moderate

Healthcare Occupations (mixed)*	Chibwana et al., 2020 ⁵⁷	n=500	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	05/22 - 06/19	Malawi	12.3% (8. 16.5%)
Healthcare Occupations (mixed)*	Coffman et al., 2020 ⁵⁸	n=1100	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	07/01 - 07/31	United States of America	2.2%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=118	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	8.47%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=27	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	14.81%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=24	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	12.5%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=1068	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	5.43%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=174	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	5.75%

44

Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=319	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	11.29%	Moder
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=5698	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	7.2%	Moder
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=412	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	4.61%	Modera
Healthcare Occupations (mixed)*	Denyer et al., 2020 ⁶⁰	n=5850	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/12 - 05/18	Japan	1.79%	Unclea
Healthcare Occupations (mixed)*	Dimeglio et al., 2020 ⁶¹	n=8758	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/10	France	3.2% (2.8- 3.5%)	High
Healthcare Occupations (mixed)*	Erber et al., 2020 ³¹	n=603	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/14 - 05/29	Germany	2.8%	High
Healthcare Occupations (mixed)*	Fuereder et al., 2020 ⁶²	n=62	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Retrospective cohort	04/01 - 06/04	Austria	3.2% (0.4- 11.2%)	High

Healthcare Occupations (mixed)*	Fusco et al., 2020 ⁶³	n=115	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/23 - 04/02	Italy	1.74%	High
Healthcare Occupations (mixed)*	Geraci et al., 2020 ⁶⁴	n=230	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/16 - 05/20	United States of America	2.17%	High
Healthcare Occupations (mixed)*	Gudo et al., 2020 ⁶⁵	n=1427	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/17 - 06/30	Mozambique	7% (6-9%)	High
Healthcare Occupations (mixed)*	Hackner et al., 2020 ⁶⁶	n=130	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/01 - 04/30	Austria	2.3%	High
Healthcare Occupations (mixed)*	Halatoko et al., 2020 ⁴¹	n=370	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/23 - 05/08	Togo	1.4%	High
Healthcare Occupations (mixed)*	Haq et al., 2020 ⁶⁷	n=76	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/15 - 06/29	Pakistan	35.5% (24.8- 47.3%)	Moderate
Healthcare Occupations (mixed)*	He et al., 2020 ⁶⁸	n=1059	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Repeated cross sectional study	05/13 - 06/10	China	9.3%	High

Healthcare Occupations (mixed)*	Herzberg et al., 2020 ⁶⁹	n=871	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	04/14 - 06/16	Germany	2.64%	High
Healthcare Occupations (mixed)*	Jeremias et al., 2020 ⁷⁰	n=100	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/30	United States of America	12%	High
Healthcare Occupations (mixed)*	Jespersen et al., 2020 ⁷¹	n=17948	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/18 - 06/19	Denmark	3.36% (2.38- 3.82%)	Modera
Healthcare Occupations (mixed)*	Kassem et al., 2020 ⁷²	n=74	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/01 - 06/14	Egypt	12.2%	High
Healthcare Occupations (mixed)*	Kern et al., 2020 ⁷³	n=1316	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/09 - 04/16	Germany	1.06% (0.58- 1.78%)	High
Healthcare Occupations (mixed)*	Khalil et al., 2020 ⁷⁴	n=190	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/15 - 05/28	The United Kingdom	22%	High
Healthcare Occupations (mixed)*	Kumar et al., 2020 ⁷⁵	n=635	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Repeated cross sectional study	07/11 - 07/24	India	0%	High

Healthcare Occupations (mixed)*	Lackermair et al., 2020 ⁷⁶	n=151	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/02 - 04/06	Germany	2.6% (0.8- 7.1%)	High
Healthcare Occupations (mixed)*	Lahner et al., 2020 ⁷⁷	n=1084	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/07 - 04/27	Italy	0.7%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁸	n=116	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/07 - 04/21	China	0%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁸	n=304	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/07 - 04/21	China	0%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁹	n=3832	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/29 - 04/29	China	4% (3.4- 4.7%)	Moderat
Healthcare Occupations (mixed)*	Lorenzo et al., 2020 ⁸⁰	n=38	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/02 - 05/31	Italy	5.3%	High
Healthcare Occupations (mixed)*	Mahomed et al., 2020 ⁸¹	n=569	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/31 - 10/12	Mozambique	0.7%	High

Healthcare Occupations (mixed)*	Mahumane et al., 2020 ⁸²	n=380	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	11/02 - 11/17	Mozambique	1.3%	High
Healthcare Occupations (mixed)*	Majdoubi et al., 2020 ⁸³	n=276	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/17 - 06/19	Canada	0.6% (0- 2.71%)	High
Healthcare Occupations (mixed)*	Majiya et al., 2020 ⁸⁴	n=185	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/26 - 06/30	Nigeria	25.41%	Modera
Healthcare Occupations (mixed)*	Majiya et al., 2020 ⁸⁴	n=43	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/26 - 06/30	Nigeria	37.21%	Modera
Healthcare Occupations (mixed)*	Malfertheiner et al., 2020 ⁸⁵	n=139	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/15 - 06/07	Germany	0%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ⁸⁶	n=326	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 05/18	Belgium	11%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ²³	n=4631	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/13	The United Kingdom	13.65%	Modera

Healthcare Occupations (mixed)*	Melo et al., 2020 ⁸⁷	n=471	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/01 - 06/30	Brazil	13.59%	High
Healthcare Occupations (mixed)*	Morcuende et al., 2020 ⁸⁸	n=6	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/21	United States of America	0%	High
Healthcare Occupations (mixed)*	Moscola et al., 2020 ⁸⁹	n=8156	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/20 - 06/23	United States of America	11.6%	High
Healthcare Occupations (mixed)*	Nishida et al., 2020 ⁹⁰	n=49	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderate
Healthcare Occupations (mixed)*	Olalla et al., 2020 ⁹¹	n=498	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 04/25	Spain	2.2%	High
Healthcare Occupations (mixed)*	Pallett et al., 2020 ⁹²	n=504	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	04/08 - 06/12	The United Kingdom	10.6% (7.6- 13.6%)	High
Healthcare Occupations (mixed)*	Pere et al., 2020 ⁹³	n=3569	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/02 - 06/26	France	11.9%	High

Healthcare Occupations (mixed)*	Poulikakos et al., 202094	n=281	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/06	The United Kingdom	6%	High
Healthcare Occupations (mixed)*	Psichogiou et al., 2020 ⁹⁵	n=1495	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/13 - 05/15	Greece	1.26% (0.43- 3.26%)	Moder
Healthcare Occupations (mixed)*	Satpati et al., 2020 ²⁷	n=18	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	07/26 - 08/08	India	5.56%	Modera
Healthcare Occupations (mixed)*	Seetharam et al., 2020 ⁹⁶	n=728	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/16 - 08/29	India	27.3% (24.1- 30.6%)	Unclea
Healthcare Occupations (mixed)*	Shakiba et al., 2020 ¹⁰	n=43	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	14.5% (4.5- 25%)	Modera
Healthcare Occupations (mixed)*	Shields et al., 2020 ⁹⁷	n=516	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/24 - 04/25	The United Kingdom	24.4%	High
Healthcare Occupations (mixed)*	Silva et al., 2020 ⁹⁸	n=61	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/09 - 04/29	Brazil	4.91%	High

Healthcare Occupations (mixed)*	Solodky et al., 2020 ⁹⁹	n=85	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/16	France	5.88%	High
Healthcare Occupations (mixed)*	Soriano et al., 2020 ¹⁰⁰	n=108	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Retrospective cohort	04/26 - 05/16	Spain	13%	High
Healthcare Occupations (mixed)*	Statistica et al., 2020 ¹⁰¹	n=64660	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/25 - 07/15	Italy	2.5%	Unclear
Healthcare Occupations (mixed)*	Steensels et al., 2020 ¹⁰²	n=3056	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/22 - 04/30	Belgium	6.4% (5.5- 7.3%)	High
Healthcare Occupations (mixed)*	Stock et al., 2020 ¹⁰³	n=98	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/04 - 04/20	United States of America	15.3%	High
Healthcare Occupations (mixed)*	Takita et al., 2020 ¹⁰⁴	n=175	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/20 - 05/20	Japan	4% (1.62- 8.07%)	High
Healthcare Occupations (mixed)*	Tong et al., 2020 ¹⁰⁵	n=191	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/12 - 05/15	China	0%	High

Healthcare Occupations (mixed)*	Trieu et al., 2020 ¹⁰⁶	n=607	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/06 - 04/09	Norway	5.27%	High
Healthcare Occupations (mixed)*	Tu et al., 2020 ¹⁰⁷	n=325	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross sectional study with prospective cohort follow up of a subset of the sample	03/19 - 03/20	China	43.08%	High
Healthcare Occupations (mixed)*	Valdivia et al., 2020 ¹⁰⁸	n=1153	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/13 - 04/30	Spain	3.5%	High
Healthcare Occupations (mixed)*	Vasquez et al., 2020 ¹⁰⁹	n=1147	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/19 - 06/06	Peru	58.3%	High
Healthcare Occupations (mixed)*	Viegas et al., 2020 ¹¹⁰	n=1443	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/03 - 08/21	Mozambique	2.63%	High
Healthcare Occupations (mixed)*	Vlachoyiannopoulosa et al., 2020 ¹¹¹	n=321	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/25 - 05/10	Greece	2.18%	High
Healthcare Occupations (mixed)*	Volta et al., 2020 ¹¹²	n=76	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/27 - 04/27	Italy	11.8%	High

Healthcare Occupations (mixed)*	Ward et al., 2020 ¹¹³	n=5416	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	09/15 - 09/28	The United Kingdom	10.67%	Moderate
Healthcare Occupations (mixed)*	Ward et al., 2020 ¹¹³	n=1692	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	09/15 - 09/28	The United Kingdom	6.68%	Moderate
Healthcare Occupations (mixed)*	Xiong et al., 2020 ¹¹⁴	n=797	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/12 - 03/17	China	4.39%	Unclear
Healthcare Occupations (mixed)*	Zhang et al., 2020 ¹¹⁵	n=63	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/21 - 02/16	China	0%	High
Healthcare Occupations (mixed)*	Zhao et al., 2020 ¹¹⁶	n=1060	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/14 - 02/21	China	8.3%	High
First responders (mixed)*	Ahmad et al., 2020 ¹¹⁷	n=40	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	04/21 - 05/22	United States of America	20%	High
First responders (mixed)*	Halbrook et al., 2020 ¹¹⁸	n=679	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/19 - 08/31	United States of America	8.1%	Moderate

First responders (mixed)*	Iwuji et al., 2020 ¹¹⁹	n=683	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/12 - 05/13	United States of America	0.7%	High
First responders (mixed)*	Magyar et al., 2020 ¹²⁰	n=70	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/01 - 05/14	United States of America	4.29%	High
First responders (mixed)*	Martinez et al., 2020 ¹²¹	n=79	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	04/16 - 04/17	United States of America	5.06%	High
First responders (mixed)*	Staletovich et al., 2020 ¹²²	n=359	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/17 - 05/22	United States of America	0%	Unclea
Healthcare Practitioners and Technical Occupations (29- 0000)	Hibino et al., 2020 ¹²³	n=806	Health Diagnosing and Treating Practitioners	Cross-sectional survey	06/01 - 07/30	Japan	0.74% (0.27- 1.61%)	Unclea
Healthcare Practitioners and Technical Occupations (29- 0000)	Jones et al., 2020 ²⁹	n=856	Dentists, General	Cross-sectional survey	01/15 - 06/15	The United Kingdom	7.9%	High
Life, Physical, and Social Science	Calcagno et al., 2020 ¹²⁴	n=343	Life, Physical, and Social Science Occupations	Cross-sectional survey	04/17 - 05/20	Italy	6.71%	Moder

Occupations (19- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=49	Dietitians and Nutritionists	Cross-sectional survey	07/12 - 08/23	India	18.37%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=6	Dietitians and Nutritionists	Cross-sectional survey	08/01 - 08/31	India	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=321	Pharmacists	Cross-sectional survey	05/18 - 06/13	United States of America	4.4% (2.4- 7.2%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=5	Pharmacists	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=29	Pharmacists	Cross-sectional survey	04/17 - 05/20	Italy	3.45%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=17	Pharmacists	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=189	Pharmacists	Cross-sectional survey	05/29 - 07/06	The United Kingdom	4.76%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=109	Pharmacists	Cross-sectional survey	06/15 - 06/29	India	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mahomed et al., 2020 ⁸¹	n=404	Pharmacists	Cross-sectional survey	08/31 - 10/12	Mozambique	0.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ²³	n=113	Pharmacists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=213	Pharmacists	Cross-sectional survey	04/20 - 05/20	United States of America	1.88%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=652	Physicians and Surgeons	Cross-sectional survey	05/14 - 05/28	Brazil	5.8%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=372	Physicians and Surgeons	Cross-sectional survey	05/13 - 07/08	United States of America	1.61%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=63	Physicians and Surgeons	Cross-sectional survey	06/12 - 06/19	Japan	3.2% (0.88- 11%)	Moderate
Healthcare Practitioners and	Noor et al., 2020 ¹³⁰	n=157	Physicians and Surgeons	Cross-sectional survey	07/13 - 07/15	Pakistan	17.83%	Moderate

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Singhal et al., 2020 ¹³¹	n=208	Physicians and Surgeons	Cross-sectional survey	06/01 - 06/30	India	12.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=23	Anesthesiologists	Cross-sectional survey	03/01 - 04/21	United States of America	13.04%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=3	Obstetricians and Gynecologists	Cross-sectional survey	03/01 - 04/21	United States of America	100%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=23	Pediatricians, General	Cross-sectional survey	04/14 - 04/16	Spain	4.3%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1944	Psychiatrists	Cross-sectional survey	04/15 - 04/22	Denmark	1.85%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=301	Surgeons	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.66%	High
Healthcare Practitioners and Technical	Akinbami et al., 2020 ⁴⁶	n=2297	Physicians and Surgeons, All Other	Cross-sectional survey	05/18 - 06/13	United States of America	6.1% (5.1- 7.1%)	Moderat

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=18	Physicians and Surgeons, All Other	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	27.78%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Amendola et al., 202047	n=214	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/15	Italy	4.67%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=417	Physicians and Surgeons, All Other	Cross-sectional survey	04/23 - 05/05	Italy	17%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Barallat et al., 2020 ⁵⁰	n=1821	Physicians and Surgeons, All Other	Cross-sectional survey	05/04 - 05/22	Spain	11.81%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Bianchi et al., 2020 ¹³³	n=34	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 05/15	Italy	5.88%	Unclear
Healthcare Practitioners and Technical Occupations (29- 0000)	Blairon et al., 2020 ⁵²	n=323	Physicians and Surgeons, All Other	Cross-sectional survey	05/25 - 06/19	Belgium	11.8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=275	Physicians and Surgeons, All Other	Cross sectional study with prospective cohort follow up of a	03/20 - 07/17	Germany	3.3%	Moderate

				subset of the sample				
Healthcare Practitioners and Technical Occupations (29- 0000)	Brousseau et al., 2020 ¹³⁴	n=432	Physicians and Surgeons, All Other	Cross-sectional survey	07/06 - 09/24	Canada	7.2%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=700	Physicians and Surgeons, All Other	Cross-sectional survey	04/17 - 05/20	Italy	7.86%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=64	Physicians and Surgeons, All Other	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Chen et al., 2020 ¹³⁵	n=17	Physicians and Surgeons, All Other	Cross-sectional survey	02/19 - 02/19	China	41.18%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Erber et al., 2020 ³¹	n=860	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 05/29	Germany	1.63%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹³⁶	n=15	Physicians and Surgeons, All Other	Prospective cohort	06/01 - 06/07	The United Kingdom	13.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹⁹	n=82	Physicians and Surgeons, All Other	Cross-sectional survey	07/13 - 07/13	The United Kingdom	10.9%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Fujita et al., 2020 ¹³⁷	n=42	Physicians and Surgeons, All Other	Cross-sectional survey	04/10 - 04/20	Japan	4.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=564	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 04/27	Spain	39.36%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=490	Physicians and Surgeons, All Other	Cross-sectional survey	07/27 - 10/02	United States of America	1.43%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=255	Physicians and Surgeons, All Other	Cross-sectional survey	07/12 - 08/23	India	3.92%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=29	Physicians and Surgeons, All Other	Cross-sectional survey	08/01 - 08/31	India	20.69%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=899	Physicians and Surgeons, All Other	Cross-sectional survey	05/29 - 07/06	The United Kingdom	7.01%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=72	Physicians and Surgeons, All Other	Cross-sectional survey	03/26 - 04/08	The United Kingdom	22%	High
Healthcare Practitioners and	Hunter et al., 2020 ²¹	n=279	Physicians and Surgeons, All Other	Cross-sectional survey	04/29 - 05/08	United States of America	1.08%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Insua et al., 2020 ¹⁴⁰	n=116	Physicians and Surgeons, All Other	Cross-sectional survey	06/08 - 06/09	Argentina	0.9% (0.1- 5.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=4698	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/22	Denmark	4.07%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=113	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/22	Denmark	7.08%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Jeremias et al., 2020 ⁷⁰	n=79	Physicians and Surgeons, All Other	Cross-sectional survey	03/01 - 04/30	United States of America	11.4%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	6.66%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	3.33%	High
Healthcare Practitioners and Technical	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	3.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=980	Physicians and Surgeons, All Other	Cross-sectional survey	06/15 - 06/29	India	2.8% (1.9- 4%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Kohler et al., 2020 ¹⁴¹	n=268	Physicians and Surgeons, All Other	Cross-sectional survey	03/19 - 04/03	Switzerland	1.49%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kumar et al., 2020 ¹⁴²	n=201	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/30	India	7% (4.2- 11.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=1081	Physicians and Surgeons, All Other	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=1859	Physicians and Surgeons, All Other	Prospective cohort	04/23 - 11/30	The United Kingdom	10.11%	Moderate
Healthcare Practitioners and Technical	Martin et al., 2020 ²³	n=1243	Physicians and Surgeons, All Other	Cross-sectional survey	05/29 - 07/13	The United Kingdom	10.3%	Moderat

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Mesnil et al., 2020 ¹⁴³	n=111	Physicians and Surgeons, All Other	Cross-sectional survey	06/08 - 06/22	France	11%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Missaglia et al., 2020 ¹⁴⁴	n=377	Physicians and Surgeons, All Other	Cross-sectional survey	04/01 - 04/30	Italy	14.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=272	Physicians and Surgeons, All Other	Cross-sectional survey	05/13 - 07/08	United States of America	2.94%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Moscola et al., 2020 ⁸⁹	n=3746	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 06/23	United States of America	8.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=149	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	1.3% (0.37- 4.8%)	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=46	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=40	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderat

Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=59	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	1.7% (0.3- 9%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=925	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0.43% (0.17-1.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Noor et al., 2020 ¹³⁰	n=303	Physicians and Surgeons, All Other	Cross-sectional survey	07/13 - 07/15	Pakistan	19.8%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Orth-Holler et al., 2020 ¹⁴⁵	n=377	Physicians and Surgeons, All Other	Cross-sectional survey	03/20 - 03/27	Austria	0.3% (0.01-1.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Plebani et al., 2020 ¹⁴⁶	n=2337	Physicians and Surgeons, All Other	Cross-sectional survey	02/22 - 05/29	Italy	3.6% (2.8- 4.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=2533	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.07%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rudberg et al., 2020 ¹⁴⁷	n=439	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 05/08	Sweden	19.1%	Moderate
Healthcare Practitioners and	Schmidt et al., 2020 ¹⁴⁸	n=34	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 04/30	Germany	8.82%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=115	Physicians and Surgeons, All Other	Cross-sectional survey	04/02 - 04/16	Italy	6.09%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=157	Physicians and Surgeons, All Other	Cross-sectional survey	03/01 - 05/01	United States of America	25%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=110	Physicians and Surgeons, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	1.82%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brzostek et al., 2020 ¹⁵¹	n=998	Physician Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	28.3%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Hoffmann et al., 2020 ¹⁵²	n=156	Physician Assistants	Prospective cohort	07/01 - 07/31	Germany	1.3%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=156	Physician Assistants	Cross-sectional survey	05/13 - 07/08	United States of America	0.64%	Moderat
Healthcare Practitioners and Technical	Morcuende et al., 2020 ⁸⁸	n=6	Physician Assistants	Cross-sectional survey	03/01 - 04/21	United States of America	9.43%	High

 BMJ Open

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=53	Physician Assistants	Cross-sectional survey	03/01 - 04/21	United States of America	9.43%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Patel et al., 2020 ¹⁵³	n=230	Physician Assistants	Prospective cohort	06/02 - 06/27	United States of America	3.48%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=919	Physician Assistants	Cross-sectional survey	04/03 - 06/19	United States of America	5.66%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Shah et al., 2020 ¹⁵⁵	n=248	Physician Assistants	Cross-sectional survey	05/25 - 07/09	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Shah et al., 2020 ¹⁵⁵	n=320	Physician Assistants	Cross-sectional survey	05/25 - 07/09	United States of America	0.63%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=386	Occupational Therapists	Prospective cohort	04/23 - 11/30	The United Kingdom	11.4%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=235	Physical Therapists	Cross-sectional survey	05/18 - 06/13	United States of America	10.6% (7- 15.3%)	Moderate

Page 66 of 119

1
2
3 4
5
6
7
8
9 10
11
12
13
14 15
16
17
18
19 20
20 21
22
23
24
25 26
27
28
29
30 21
31 32
33
34
35 36
30 37
38
39
40
41 42
42
44
45
46
47

Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=15	Physical Therapists	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Cooper et al., 2020 ⁵⁹	n=84	Physical Therapists	Cross-sectional survey	06/10 - 08/07	The United Kingdom	10.71%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=159	Physical Therapists	Cross-sectional survey	05/14 - 05/28	Brazil	10.7%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=409	Respiratory Therapists	Cross-sectional survey	05/18 - 06/13	United States of America	8.3% (5.8- 11.4%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Brunner et al., 2020 ⁵⁴	n=42	Respiratory Therapists	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=25	Respiratory Therapists	Cross-sectional survey	07/27 - 10/02	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hunter et al., 2020 ²¹	n=94	Respiratory Therapists	Cross-sectional survey	04/29 - 05/08	United States of America	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=135	Respiratory Therapists	Cross-sectional survey	04/20 - 05/20	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=235	Respiratory Therapists	Cross-sectional survey	04/03 - 06/19	United States of America	4.26%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=121	Respiratory Therapists	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=253	Therapists, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.58%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Schmidt et al., 2020 ¹⁴⁸	n=80	Therapists, All Other	Cross-sectional survey	04/20 - 04/30	Germany	3.75%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=22	Therapists, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	4.55%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=13	Veterinarians	Cross-sectional survey	04/17 - 05/20	Italy	0%	Moderate
Healthcare Practitioners and	Akinbami et al., 2020 ⁴⁶	n=6426	Registered Nurses	Cross-sectional survey	05/18 - 06/13	United States of America	7.7% (7.1-8.4%)	Moderate

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=70	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=9	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	33.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=76	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	26.32%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=21	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	14.29%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=43	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	27.91%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Amendola et al., 2020 ⁴⁷	n=216	Registered Nurses	Cross-sectional survey	04/15 - 04/15	Italy	6.02%	High
Healthcare Practitioners and Technical	Bampoe et al., 2020 ¹⁵⁶	n=52	Registered Nurses	Cross-sectional survey	05/11 - 06/05	The United Kingdom	13.5% (5.6- 25.8%)	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Bampoe et al., 2020 ¹⁵⁶	n=40	Registered Nurses	Cross-sectional survey	05/11 - 06/05	The United Kingdom	12.5% (4.2- 26.8%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=1014	Registered Nurses	Cross-sectional survey	04/23 - 05/05	Italy	17.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Barallat et al., 2020 ⁵⁰	n=2243	Registered Nurses	Cross-sectional survey	05/04 - 05/22	Spain	10.64%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=444	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	2.3%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Brousseau et al., 2020 ¹³⁴	n=1189	Registered Nurses	Cross-sectional survey	07/06 - 09/24	Canada	11.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=1833	Registered Nurses	Cross-sectional survey	04/17 - 05/20	Italy	8.18%	Moderate
Healthcare Practitioners and Technical	Chau et al., 2020 ¹²⁶	n=144	Registered Nurses	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Chen et al., 2020 ¹³⁵	n=25	Registered Nurses	Cross-sectional survey	02/19 - 02/19	China	8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Cooper et al., 2020 ⁵⁹	n=3471	Registered Nurses	Cross-sectional survey	06/10 - 08/07	The United Kingdom	7.52%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=370	Registered Nurses	Cross-sectional survey	05/14 - 05/28	Brazil	11.4%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=412	Registered Nurses	Cross-sectional survey	06/08 - 07/08	United States of America	7%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Erber et al., 2020 ³¹	n=958	Registered Nurses	Cross-sectional survey	04/14 - 05/29	Germany	2.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹³⁶	n=45	Registered Nurses	Prospective cohort	06/01 - 06/07	The United Kingdom	28.89%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹⁹	n=237	Registered Nurses	Cross-sectional survey	07/13 - 07/13	The United Kingdom	16.5%	High

Page 71 of 119

 BMJ Open

Healthcare Practitioners and Technical Occupations (29- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=251	Registered Nurses	Prospective cohort	06/29 - 07/29	Germany	12%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=887	Registered Nurses	Prospective cohort	06/29 - 07/29	Germany	20%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Fujita et al., 2020 ¹³⁷	n=50	Registered Nurses	Cross-sectional survey	04/10 - 04/20	Japan	6%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=687	Registered Nurses	Cross-sectional survey	04/14 - 04/27	Spain	30.71%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=937	Registered Nurses	Cross-sectional survey	07/27 - 10/02	United States of America	1.39%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=224	Registered Nurses	Cross-sectional survey	07/12 - 08/23	India	9.38%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=43	Registered Nurses	Cross-sectional survey	08/01 - 08/31	India	34.88%	High
Healthcare Practitioners and	Grant et al., 2020 ¹⁵⁹	n=1345	Registered Nurses	Cross-sectional survey	05/15 - 06/05	The United Kingdom	34.7%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Grant et al., 2020 ¹⁵⁹	n=108	Registered Nurses	Cross-sectional survey	05/15 - 06/05	The United Kingdom	25%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=749	Registered Nurses	Cross-sectional survey	05/29 - 07/06	The United Kingdom	8.99%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=209	Registered Nurses	Cross-sectional survey	06/15 - 06/29	Pakistan	38.8% (32.1- 45.7%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=106	Registered Nurses	Cross-sectional survey	03/26 - 04/08	The United Kingdom	24%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=22	Registered Nurses	Cross-sectional survey	03/26 - 04/08	The United Kingdom	23%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hunter et al., 2020 ²¹	n=317	Registered Nurses	Cross-sectional survey	04/29 - 05/08	United States of America	2.2%	High
Healthcare Practitioners and Technical	Iversen et al., 2020 ⁸	n=9963	Registered Nurses	Cross-sectional survey	04/15 - 04/22	Denmark	4.03%	Low

Page 7	3 of	119
--------	------	-----

 BMJ Open

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1786	Registered Nurses	Cross-sectional survey	04/15 - 04/22	Denmark	4.65%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Jeremias et al., 2020 ⁷⁰	n=1043	Registered Nurses	Cross-sectional survey	03/01 - 04/30	United States of America	9.5%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Jones et al., 2020 ²⁹	n=1962	Registered Nurses	Cross-sectional survey	01/15 - 06/15	The United Kingdom	10.5%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	10.71%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	7.14%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	3.57%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	0%	Hig

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=321	Registered Nurses	Cross-sectional survey	06/15 - 06/29	India	2.8% (1.5- 5.3%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Kohler et al., 2020 ¹⁴¹	n=398	Registered Nurses	Cross-sectional survey	03/19 - 04/03	Switzerland	0.75%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kumar et al., 2020 ¹⁴²	n=308	Registered Nurses	Cross-sectional survey	06/01 - 06/30	India	6.8% (4.5- 10.2%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=110	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=3504	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.34%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=4528	Registered Nurses	Prospective cohort	04/23 - 11/30	The United Kingdom	13.21%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mansour et al., 2020 ¹⁶⁰	n=285	Registered Nurses	Cross-sectional survey	03/24 - 04/04	United States of America	32.63%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=580	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.52%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=74	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	9.46%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=676	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.92%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=337	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.93%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=339	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Meissner et al., 2020 ¹⁶²	n=439	Registered Nurses	Cross-sectional survey	04/14 - 05/06	United States of America	1.37%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=410	Registered Nurses	Cross-sectional survey	05/13 - 07/08	United States of America	1.46%	Moderat
Healthcare Practitioners and	Moscola et al., 2020 ⁸⁹	n=11468	Registered Nurses	Cross-sectional survey	04/20 - 06/23	United States of America	13.1%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Mostafa et al., 2020 ¹⁶³	n=4040	Registered Nurses	Cross-sectional survey	04/22 - 05/14	Egypt	1.31%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=489	Registered Nurses	Cross-sectional survey	06/12 - 06/19	Japan	0.2% (0.04-1.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Noor et al., 2020 ¹³⁰	n=460	Registered Nurses	Cross-sectional survey	07/13 - 07/15	Pakistan	39.78%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Paradiso et al., 2020 ¹⁶⁴	n=606	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	03/26 - 04/17	Italy	0.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Plebani et al., 2020 ¹⁴⁶	n=3230	Registered Nurses	Cross-sectional survey	02/22 - 05/29	Italy	4.7% (4- 5.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Poustchi et al., 2020 ²⁸	n=1245	Registered Nurses	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	15.9% (13.9- 18%)	Moderate
Healthcare Practitioners and Technical	Rudberg et al., 2020 ¹⁴⁷	n=636	Registered Nurses	Cross-sectional survey	04/14 - 05/08	Sweden	21.9%	Moderate

 BMJ Open

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Schmidt et al., 2020 ¹⁴⁸	n=154	Registered Nurses	Cross-sectional survey	04/20 - 04/30	Germany	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=1445	Registered Nurses	Cross-sectional survey	04/03 - 06/19	United States of America	5.05%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Siddiqui et al., 2020 ²	n=59	Registered Nurses	Prospective cohort	04/15 - 08/15	India	10.2%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Siddiqui et al., 2020 ²	n=70	Registered Nurses	Prospective cohort	04/15 - 08/15	India	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=64	Registered Nurses	Cross-sectional survey	04/02 - 04/16	Italy	7.8% (1.2- 14.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Sydney et al., 2020 ¹⁶⁵	n=81	Registered Nurses	Cross-sectional survey	04/28 - 05/04	United States of America	18.52%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=83	Registered Nurses	Cross-sectional survey	04/14 - 04/16	Spain	4.8%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=23	Registered Nurses	Cross-sectional survey	04/14 - 04/16	Spain	8.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=142	Registered Nurses	Cross-sectional survey	03/01 - 05/01	United States of America	28%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=1129	Registered Nurses	Cross-sectional survey	05/20 - 06/08	United States of America	2.48%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=12	Registered Nurses	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Zhou et al., 2020 ¹⁶⁶	n=2406	Registered Nurses	Cross-sectional survey	03/16 - 03/25	China	1.37%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=141	Nurse Practitioners	Cross-sectional survey	07/27 - 10/02	United States of America	1.42%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=214	Nurse Practitioners	Cross-sectional survey	06/08 - 07/08	United States of America	3.7%	Modera
Healthcare Practitioners and	Akinbami et al., 2020 ⁴⁶	n=719	Health Technologists and Technicians	Cross-sectional survey	05/18 - 06/13	United States of America	4.2% (2.8- 5.9%)	Modera

Page 79 of 119	
----------------	--

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

45 46 47

Technical Occupations (29-0000) Blairon et al., 2020⁵² Healthcare Health Technologists Cross-sectional Belgium 6.6% n=61 05/25 -High Practitioners and 06/19 and Technicians survey Technical Occupations (29-0000) Yogo et al., 2020³⁶ Healthcare n=65 Health Technologists Cross-sectional 05/20 -United States 4.62% High Practitioners and and Technicians 06/08 of America survey Technical Occupations (29-0000) Silva et al., 202034 Healthcare n=224 Clinical Laboratory 06/05 -7.59% Cross-sectional Brazil High Technologists and 07/31 Practitioners and survey Technicians Technical Occupations (29-0000) Healthcare Costa et al., 2020128 Medical and Clinical Cross-sectional 05/14 -Brazil 3% Moderate n=66 Laboratory 05/28 Practitioners and survey Technical Technologists Occupations (29-0000) Healthcare Akinbami et al., 2020⁴⁶ n=293 Medical and Clinical Cross-sectional 05/18 -United States 3.4% (1.7-Moderate of America Practitioners and Laboratory Technicians survey 06/13 6.2%) Technical Occupations (29-0000) 5.5% (3.4-Healthcare Akinbami et al., 2020⁴⁶ n=365 Medical and Clinical Cross-sectional 05/18 -United States Moderate Practitioners and 06/13 Laboratory Technicians of America 8.3%) survey Technical Occupations (29-0000) Alharbi et al., 2020125 Medical and Clinical High Healthcare n=80 Cross-sectional 04/18 -Saudi Arabia 20% Practitioners and Laboratory Technicians 06/17 survey Technical

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=256	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/23 - 05/05	Italy	12.1%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=105	Medical and Clinical Laboratory Technicians	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=216	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/17 - 05/20	Italy	6.94%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=157	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/17 - 05/20	Italy	11.46%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=33	Medical and Clinical Laboratory Technicians	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=192	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/14 - 04/27	Spain	21.35%	High
Healthcare Practitioners and Technical	Goenka et al., 2020 ²⁵	n=72	Medical and Clinical Laboratory Technicians	Cross-sectional survey	07/12 - 08/23	India	15.28%	Moderat

Page 81 of 119

 BMJ Open

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=32	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/15 - 06/29	Pakistan	50% (31.8- 68.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1292	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/15 - 04/22	Denmark	1.93%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=397	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/15 - 06/29	India	2.5% (1.4- 4.6%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=452	Medical and Clinical Laboratory Technicians	Prospective cohort	04/23 - 11/30	The United Kingdom	8.63%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=140	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=225	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/20 - 05/20	United States of America	0.44%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=342	Radiologic Technologists	Cross-sectional survey	04/15 - 04/22	Denmark	3.51%	Low

Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ²³	n=241	Radiologic Technologists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	9.96%	Mode
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=1158	Emergency Medical Technicians and Paramedics	Cross-sectional survey	05/18 - 06/13	United States of America	5.2% (4- 6.6%)	Mode
Healthcare Practitioners and Technical Occupations (29- 0000)	Buntinx et al., 2020 ¹⁶⁷	n=10	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/14 - 04/16	Belgium	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=157	Emergency Medical Technicians and Paramedics	Cross-sectional survey	06/15 - 06/29	Pakistan	42% (34.2- 50.1%)	Mod
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=323	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/15 - 04/22	Denmark	4.95%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Mesnil et al., 2020 ¹⁴³	n=212	Emergency Medical Technicians and Paramedics	Cross-sectional survey	06/08 - 06/22	France	11%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Reuben et al., 2020 ¹⁶⁸	n=10	Emergency Medical Technicians and Paramedics	Cross-sectional survey	05/28 - 07/15	United States of America	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Saberian et al., 2020 ¹⁶⁹	n=243	Emergency Medical Technicians and Paramedics	Cross-sectional survey	03/20 - 05/20	Iran (Islamic Republic of)	41.56%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=56	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/03 - 06/19	United States of America	5.36%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Tarabichi et al., 2020 ¹⁷⁰	n=111	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/20 - 05/19	United States of America	5.41%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=188	Health Technologists and Technicians, All Other	Cross-sectional survey	04/23 - 05/05	Italy	13.8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=22	Health Technologists and Technicians, All Other	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=99	Health Technologists and Technicians, All Other	Cross-sectional survey	07/12 - 08/23	India	12.12%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=16	Health Technologists and Technicians, All Other	Cross-sectional survey	08/01 - 08/31	India	68.75%	High
Healthcare Support	Jeremias et al., 2020 ⁷⁰	n=155	Healthcare Support Occupations	Cross-sectional survey	03/01 - 04/30	United States of America	5.8%	High

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Ward et al., 2020 ¹¹³	n=979	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	09/15 - 09/28	The United Kingdom	11.09% (8.96- 13.59%)	Modera
Healthcare Support Occupations (31- 0000)	Ward et al., 2020 ¹¹³	n=257	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	09/15 - 09/28	The United Kingdom	8.95%	Modera
Healthcare Support Occupations (31- 0000)	Vijh et al., 2020 ¹⁷¹	n=169	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	05/04 - 05/14	Canada	26.63%	High
Healthcare Support Occupations (31- 0000)	Akinbami et al., 2020 ⁴⁶	n=641	Nursing Assistants	Cross-sectional survey	05/18 - 06/13	United States of America	12.8% (10.3- 15.6%)	Modera
Healthcare Support Occupations (31- 0000)	Bampoe et al., 2020 ¹⁵⁶	n=108	Nursing Assistants	Cross-sectional survey	05/11 - 06/05	The United Kingdom	15.7% (9.5- 24%)	High
Healthcare Support Occupations (31- 0000)	Baracco et al., 2020 ²⁴	n=257	Nursing Assistants	Cross-sectional survey	04/23 - 05/05	Italy	22.2%	High
Healthcare Support Occupations (31- 0000)	Barallat et al., 2020 ⁵⁰	n=832	Nursing Assistants	Cross-sectional survey	05/04 - 05/22	Spain	13.94%	High
Healthcare Support Occupations (31- 0000)	Bhattacharya et al., 2020 ¹⁷²	n=121	Nursing Assistants	Cross-sectional survey	06/01 - 06/15	United States of America	1.65%	High
Healthcare Support	Brousseau et al., 2020 ¹³⁴	n=132	Nursing Assistants	Cross-sectional survey	07/06 - 09/24	Canada	16.7%	High

Page 85 of 119)
----------------	---

 BMJ Open

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Brunner et al., 2020 ⁵⁴	n=95	Nursing Assistants	Cross-sectional survey	05/04 - 05/29	United States of America	1.05%	High
Healthcare Support Occupations (31- 0000)	Brzostek et al., 2020 ¹⁵¹	n=570	Nursing Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	39.5%	Moderat
Healthcare Support Occupations (31- 0000)	Brzostek et al., 2020 ¹⁵¹	n=263	Nursing Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	45.6%	Moderat
Healthcare Support Occupations (31- 0000)	Calcagno et al., 2020 ¹²⁴	n=476	Nursing Assistants	Cross-sectional survey	04/17 - 05/20	Italy	9.24%	Moderat
Healthcare Support Occupations (31- 0000)	Costa et al., 2020 ¹²⁸	n=553	Nursing Assistants	Cross-sectional survey	05/14 - 05/28	Brazil	10.5%	Moderat
Healthcare Support Occupations (31- 0000)	Galan et al., 2020 ²⁰	n=472	Nursing Assistants	Cross-sectional survey	04/14 - 04/27	Spain	33.26%	High
Healthcare Support Occupations (31- 0000)	Garcia et al., 2020 ¹⁷³	n=2424	Nursing Assistants	Cross-sectional survey	05/01 - 05/30	Spain	22.4%	High
Healthcare Support Occupations (31- 0000)	Garcia et al., 2020 ¹⁷⁴	n=2424	Nursing Assistants	Cross-sectional survey	05/01 - 05/30	Spain	22.4%	High
Healthcare Support	Hanrath et al., 2020 ³²	n=1434	Nursing Assistants	Cross-sectional survey	05/29 - 07/06	The United Kingdom	11.44%	High

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Iversen et al., 2020 ⁸	n=501	Nursing Assistants	Cross-sectional survey	04/15 - 04/22	Denmark	1.2%	Low
Healthcare Support Occupations (31- 0000)	Khan et al., 2020 ¹²⁷	n=624	Nursing Assistants	Cross-sectional survey	06/15 - 06/29	India	2.4% (1.5- 4%)	Mode
Healthcare Support Occupations (31- 0000)	Mughal et al., 2020 ¹⁷⁵	n=121	Nursing Assistants	Cross-sectional survey	05/14 - 05/19	United States of America	0.83%	High
Healthcare Support Occupations (31- 0000)	Rao et al., 2020 ¹⁷⁶	n=1000	Nursing Assistants	Cross-sectional survey	05/23 - 06/06	India	1%	Uncle
Healthcare Support Occupations (31- 0000)	Rudberg et al., 2020 ¹⁴⁷	n=428	Nursing Assistants	Cross-sectional survey	04/14 - 05/08	Sweden	25.5%	Mode
Healthcare Support Occupations (31- 0000)	Siddiqui et al., 2020 ²	n=28	Nursing Assistants	Prospective cohort	04/15 - 08/15	India	10.7%	High
Healthcare Support Occupations (31- 0000)	Yogo et al., 2020 ³⁶	n=154	Nursing Assistants	Cross-sectional survey	05/20 - 06/08	United States of America	3.24%	High
Healthcare Support Occupations (31- 0000)	Brousseau et al., 2020 ¹³⁴	n=201	Orderlies	Cross-sectional survey	07/06 - 09/24	Canada	17.9%	High
Healthcare Support	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Page 87	of 119
---------	--------

 BMJ Open

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	33.33%	High
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	11.11%	High
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	22.22%	High
Healthcare Support Occupations (31- 0000)	Hanrath et al., 2020 ³²	n=122	Orderlies	Cross-sectional survey	05/29 - 07/06	The United Kingdom	9.02%	High
Healthcare Support Occupations (31- 0000)	Lumley et al., 2020 ⁹	n=377	Orderlies	Prospective cohort	04/23 - 11/30	The United Kingdom	15.38%	Moder
Healthcare Support Occupations (31- 0000)	Rosser et al., 2020 ³³	n=3959	Medical Assistants	Cross-sectional survey	04/20 - 05/20	United States of America	1.39%	High
Healthcare Support Occupations (31- 0000)	Yogo et al., 2020 ³⁶	n=106	Phlebotomists	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Support Occupations (31- 0000)	Cavlek et al., 2020 ⁵⁶	n=300	Healthcare Support Workers, All Other	Cross-sectional survey	04/25 - 05/24	Croatia	0.67%	High
Healthcare Support	Erber et al., 2020^{31}	n=383	Healthcare Support Workers, All Other	Cross-sectional survey	04/14 - 05/29	Germany	2.34%	High

Page 88 d	of 119
-----------	--------

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Khan et al., 2020 ¹²⁷	n=141	Healthcare Support Workers, All Other	Cross-sectional survey	06/15 - 06/29	India	0%	Moderat
Protective Service Occupations (33- 0000)	Shukla et al., 2020 ¹⁷⁷	n=1713	Protective Service Occupations	Cross-sectional survey	04/24 - 05/21	United States of America	1.46%	Moderat
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=18	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	0%	High
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=47	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	14.89%	High
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=13	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	7.69%	High
Protective Service Occupations (33- 0000)	Akinbami et al., 2020 ⁴⁶	n=330	Firefighters	Cross-sectional survey	05/18 - 06/13	United States of America	6.7% (4.2- 9.9%)	Moderat
Protective Service Occupations (33- 0000)	Gray et al., 2020 ¹⁷⁸	n=132	Firefighters	Cross-sectional survey	05/01 - 05/31	United States of America	14%	High
Protective Service Occupations (33- 0000)	Reuben et al., 2020 ¹⁶⁸	n=62	Firefighters	Cross-sectional survey	05/28 - 07/15	United States of America	4.84%	High
Protective Service Occupations (33- 0000)	Sabourin et al., 2020 ³⁵	n=42	Firefighters	Cross-sectional survey	07/15 - 08/15	United States of America	2.38%	High
Protective Service Occupations (33- 0000)	Tarabichi et al., 2020 ¹⁷⁰	n=185	Firefighters	Cross-sectional survey	04/20 - 05/19	United States of America	5.41%	High

Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=7	Fire Inspectors and Investigators	Cross-sectional survey	04/16 - 04/17	United States of America	14.29%	High
Protective Service Occupations (33- 0000)	Akinbami et al., 2020 ⁴⁶	n=785	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/18 - 06/13	United States of America	4% (2.7- 5.6%)	Moderate
Protective Service Occupations (33- 0000)	Chughtai et al., 2020 ¹⁷⁹	n=154	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/20 - 05/30	Pakistan	15.6%	High
Protective Service Occupations (33- 0000)	Gudo et al., 2020 ⁶⁵	n=564	Police and Sheriff's Patrol Officers	Cross-sectional survey	06/17 - 06/30	Mozambique	6% (4-8%)	High
Protective Service Occupations (33- 0000)	Gujski et al., 2020 ¹⁸⁰	n=4026	Police and Sheriff's Patrol Officers	Cross-sectional survey	06/22 - 07/08	Poland	4.2%	Moderat
Protective Service Occupations (33- 0000)	Halatoko et al., 2020 ⁴¹	n=196	Police and Sheriff's Patrol Officers	Cross-sectional survey	04/23 - 05/08	Togo	0%	High
Protective Service Occupations (33- 0000)	Langa et al., 2020 ¹⁸¹	n=471	Police and Sheriff's Patrol Officers	Cross-sectional survey	09/28 - 10/09	Mozambique	1.5%	High
Protective Service Occupations (33- 0000)	Macicame et al., 2020 ¹⁸²	n=456	Police and Sheriff's Patrol Officers	Cross-sectional survey	09/14 - 09/30	Mozambique	4.39%	High
Protective Service Occupations (33- 0000)	Mahomed et al., 2020 ⁸¹	n=554	Police and Sheriff's Patrol Officers	Cross-sectional survey	08/31 - 10/12	Mozambique	2.9%	High
Protective Service Occupations (33- 0000)	Reuben et al., 2020 ¹⁶⁸	n=220	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/28 - 07/15	United States of America	3.64%	High
Protective Service Occupations (33- 0000)	Sabourin et al., 2020 ³⁵	n=125	Police and Sheriff's Patrol Officers	Cross-sectional survey	07/15 - 08/15	United States of America	4%	High

Protective Service Occupations (33- 0000)	Shukla et al., 2020 ¹⁷⁷	n=1643	Police and Sheriff's Patrol Officers	Cross-sectional survey	04/24 - 05/21	United States of America	1.52%	Moderate
Protective Service Occupations (33- 0000)	Siddiqui et al., 2020 ²	n=27	Police and Sheriff's Patrol Officers	Prospective cohort	04/15 - 08/15	India	7.4%	High
Protective Service Occupations (33- 0000)	Viegas et al., 2020 ¹¹⁰	n=559	Police and Sheriff's Patrol Officers	Cross-sectional survey	08/03 - 08/21	Mozambique	3.94%	High
Protective Service Occupations (33- 0000)	Denyer et al., 2020 ⁶⁰	n=38216	Security Guards	Cross-sectional survey	05/12 - 05/18	Japan	0.23%	Unclear
Protective Service Occupations (33- 0000)	Mahumane et al., 2020 ⁸²	n=407	Security Guards	Cross-sectional survey	11/02 - 11/17	Mozambique	4.9%	High
Protective Service Occupations (33- 0000)	Siddiqui et al., 2020 ²	n=9	Security Guards	Prospective cohort	04/15 - 08/15	India	0%	High
Protective Service Occupations (33- 0000)	Silva et al., 2020 ³⁴	n=32	Security Guards	Cross-sectional survey	06/05 - 07/31	Brazil	34%	High
Protective Service Occupations (33- 0000)	Thani et al., 2020 ¹⁸³	n=61	Security Guards	Cross-sectional survey	07/26 - 09/09	Qatar	60.1%	Moderat
Food Preparation and Serving Related Occupations (35- 0000)	Thani et al., 2020 ¹⁸³	n=93	Food Preparation and Serving Related Occupations	Cross-sectional survey	07/26 - 09/09	Qatar	29.2%	Moderat
Food Preparation and Serving Related Occupations (35- 0000)	Siddiqui et al., 2020 ²	n=8	Cooks, All Other	Prospective cohort	04/15 - 08/15	India	37.5%	High
Food Preparation and Serving	Brunner et al., 2020 ⁵⁴	n=8	Food Preparation Workers	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High

Page 91	of 119
---------	--------

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26 27

28

29

30

31

32

33

34

35

0000)

Building and

Grounds Cleaning

and Maintenance

Chau et al., 2020¹²⁶

Related Occupations (35-0000) Rosser et al., 2020³³ Healthcare n=335 Healthcare Support Cross-sectional 04/20 -United States 3.58% High Support Occupations survey 05/20 of America Occupations (31-0000) Food Preparation Biggs et al., 2020^3 n=24 Food Servers. Cross-sectional 04/28 -United States 4.17% Moderate and Serving 05/03 Nonrestaurant survey of America Related Occupations (35-0000) Food Preparation Leidner et al., 2020²² n=113 Food Servers. Cross sectional 04/08 -United States 1.77% High 05/22and Serving Nonrestaurant study with of America prospective cohort Related follow up of a Occupations (35-0000) subset of the sample Food Preparation Hanrath et al., 2020^{32} n=340 Other Food Preparation Cross-sectional 05/29 -The United 8.53% High and Serving 07/06 and Serving Related survey Kingdom Workers Related Occupations (35-0000) Building and Martin et al., 2020²³ n=528 Building and Grounds Cross-sectional 05/29 -The United 8.14% Moderate Grounds Cleaning Cleaning and survey 07/13 Kingdom and Maintenance Maintenance Occupations (37-Occupations 0000) Brousseau et al., 2020¹³⁴ Building and n=102 Building Cleaning and Cross-sectional 07/06 -Canada 10.8% High Grounds Cleaning Pest Control Workers 09/24 survey and Maintenance Occupations (37-

BMJ Open

Cross-sectional

survey

08/23 -

08/30

Viet Nam

0%

High

Building Cleaning and

Pest Control Workers

n=42

Occupations (37- 0000)								
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=57	Building Cleaning and Pest Control Workers	Prospective cohort	06/29 - 07/29	Germany	19.3%	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Chau et al., 2020 ¹²⁶	n=6	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Epstude et al., 2020 ¹⁸⁴	n=45	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	06/15 - 06/30	Germany	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Thani et al., 2020 ¹⁸³	n=105	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	07/26 - 09/09	Qatar	54.5%	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Brunner et al., 2020 ⁵⁴	n=23	Maids and Housekeeping Cleaners	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Goenka et al., 2020 ²⁵	n=226	Maids and Housekeeping Cleaners	Cross-sectional survey	07/12 - 08/23	India	26.11%	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Goenka et al., 2020 ²⁶	n=10	Maids and Housekeeping Cleaners	Cross-sectional survey	08/01 - 08/31	India	10%	High

Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Hanrath et al., 2020 ³²	n=515	Maids and Housekeeping Cleaners	Cross-sectional survey	05/29 - 07/06	The United Kingdom	13.2%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Khan et al., 2020 ¹²⁷	n=276	Maids and Housekeeping Cleaners	Cross-sectional survey	06/15 - 06/29	India	3.3% (1.7- 6.2%)	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Leidner et al., 2020 ²²	n=137	Maids and Housekeeping Cleaners	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	8.03%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Moscola et al., 2020 ⁸⁹	n=7314	Maids and Housekeeping Cleaners	Cross-sectional survey	04/20 - 06/23	United States of America	20.9%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Shakiba et al., 2020 ¹⁰	n=159	Maids and Housekeeping Cleaners	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	25% (13.6- 37.5%)	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Shields et al., 2020 ⁹⁷	n=29	Maids and Housekeeping Cleaners	Cross-sectional survey	04/24 - 04/25	The United Kingdom	34.5%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Siddiqui et al., 2020 ²	n=46	Maids and Housekeeping Cleaners	Prospective cohort	04/15 - 08/15	India	21.7%	High

Personal Care and Service Occupations (39- 0000)	Biggs et al., 2020 ³	n=10	Hairdressers, Hairstylists, and Cosmetologists	Cross-sectional survey	04/28 - 05/03	United States of America	10%	Moderate
Personal Care and Service Occupations (39- 0000)	Biggs et al., 2020 ³	n=48	Childcare Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Personal Care and Service Occupations (39- 0000)	Chen et al., 2020 ¹³⁵	n=11	Personal Care Aides	Cross-sectional survey	02/19 - 02/19	China	9.09%	High
Personal Care and Service Occupations (39- 0000)	Galan et al., 2020 ²⁰	n=337	Personal Care Aides	Cross-sectional survey	04/14 - 04/27	Spain	27.89%	High
Personal Care and Service Occupations (39- 0000)	Galan et al., 2020 ²⁰	n=168	Personal Care Aides	Cross-sectional survey	04/14 - 04/27	Spain	27.38%	High
Personal Care and Service Occupations (39- 0000)	Godbout et al., 2020 ¹³⁸	n=86	Personal Care Aides	Cross-sectional survey	07/27 - 10/02	United States of America	2.32%	High
Personal Care and Service Occupations (39- 0000)	Hassan et al., 2020 ¹⁸⁵	n=403	Personal Care Aides	Cross-sectional survey	05/11 - 06/17	Sweden	20.1%	High
Personal Care and Service Occupations (39- 0000)	Kumar et al., 2020 ¹⁴²	n=292	Personal Care Aides	Cross-sectional survey	06/01 - 06/30	India	18.5% (14.5- 23.3%)	High
Personal Care and Service Occupations (39- 0000)	Ladhani et al., 2020 ¹⁸⁶	n=208	Personal Care Aides	Prospective cohort	04/10 - 04/13	The United Kingdom	75% (68.7- 80.4%)	High

Personal Care and Service Occupations (39- 0000)	Lindahl et al., 2020 ¹⁸⁷	n=1005	Personal Care Aides	Cross-sectional survey	04/01 - 04/20	Sweden	22.9% (20.4- 25.7%)	High
Personal Care and Service Occupations (39- 0000)	Regan et al., 2020 ¹⁸⁸	n=305	Personal Care Aides	Cross-sectional survey	04/15 - 05/06	United States of America	23.6%	Unclear
Personal Care and Service Occupations (39- 0000)	Siddiqui et al., 2020 ²	n=5	Personal Care Aides	Prospective cohort	04/15 - 08/15	India	40%	High
Personal Care and Service Occupations (39- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=72	Personal Care Aides	Cross-sectional survey	03/01 - 05/01	United States of America	28%	Moderat
Personal Care and Service Occupations (39- 0000)	Viegas et al., 2020 ¹¹⁰	n=85	Personal Care Aides	Cross-sectional survey	08/03 - 08/21	Mozambique	1.18%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹³	n=928	Sales and Related Occupations	Cross-sectional survey	07/06 - 07/13	Mozambique	6.5%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ⁴⁸	n=1123	Sales and Related Occupations	Cross-sectional survey	08/10 - 08/21	Mozambique	1.6%	High
Sales and Related Occupations (41- 0000)	Langa et al., 2020 ¹⁸¹	n=871	Sales and Related Occupations	Cross-sectional survey	09/28 - 10/09	Mozambique	0.2%	High
Sales and Related Occupations (41- 0000)	Mabunda et al., 2020 ¹⁵	n=1585	Sales and Related Occupations	Cross-sectional survey	09/21 - 10/02	Mozambique	8.3%	High
Sales and Related Occupations (41- 0000)	Macicame et al., 2020 ¹⁸²	n=1288	Sales and Related Occupations	Cross-sectional survey	09/14 - 09/30	Mozambique	4.97%	High

Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ⁸¹	n=1556	Sales and Related Occupations	Cross-sectional survey	08/31 - 10/12	Mozambique	0.8%	High
Sales and Related Occupations (41- 0000)	Mahumane et al., 2020 ⁸²	n=643	Sales and Related Occupations	Cross-sectional survey	11/02 - 11/17	Mozambique	1.9%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹⁴	n=472	Sales and Related Occupations	Cross-sectional survey	11/16 - 11/21	Mozambique	6.8%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹⁴	n=460	Sales and Related Occupations	Cross-sectional survey	11/02 - 11/12	Mozambique	5.9%	High
Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ¹⁶	n=517	Sales and Related Occupations	Cross-sectional survey	11/26 - 12/03	Mozambique	8.9%	High
Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ¹⁶	n=1001	Sales and Related Occupations	Cross-sectional survey	11/07 - 11/21	Mozambique	4.5%	High
Sales and Related Occupations (41- 0000)	Biggs et al., 2020 ³	n=19	Retail Sales Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderat
Sales and Related Occupations (41- 0000)	Poustchi et al., 2020 ²⁸	n=753	Cashiers	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	16.1% (12.9- 19.2%)	Moderat
Sales and Related Occupations (41- 0000)	Alali et al., 2020 ¹⁸⁹	n=525	Cashiers	Cross-sectional survey	05/23 - 06/26	Kuwait	38.1% (34- 42.3%)	High
Sales and Related Occupations (41- 0000)	Denyer et al., 2020 ⁶⁰	n=19075	Retail Salespersons	Cross-sectional survey	05/12 - 05/18	Japan	0.04%	Unclear
Sales and Related Occupations (41- 0000)	Kern et al., 2020 ⁷³	n=300	Retail Salespersons	Cross-sectional survey	04/09 - 04/16	Germany	0.33% (0.01- 1.84%)	High

Sales and Related Occupations (41- 0000)	Khan et al., 2020 ⁴⁵	n=132	Retail Salespersons	Cross-sectional survey	07/01 - 07/15	India	5.3% (2.5- 10.7%)	Moderate
Sales and Related Occupations (41- 0000)	Thani et al., 2020 ¹⁸³	n=171	Retail Salespersons	Cross-sectional survey	07/26 - 09/09	Qatar	40.3%	Moderat
Sales and Related Occupations (41- 0000)	Siddiqui et al., 2020 ²	n=4	Sales Representatives, Wholesale and Manufacturing, Except Technical and Scientific Products	Prospective cohort	04/15 - 08/15	India	25%	High
Sales and Related Occupations (41- 0000)	Biggs et al., 2020 ³	n=34	Real Estate Sales Agents	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderat
Sales and Related Occupations (41- 0000)	Gudo et al., 2020 ⁶⁵	n=1493	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	Cross-sectional survey	06/17 - 06/30	Mozambique	10% (8-11%)	High
Sales and Related Occupations (41- 0000)	Viegas et al., 2020 ¹¹⁰	n=1246	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	5.22%	High
Sales and Related Occupations (41- 0000)	Shakiba et al., 2020 ¹⁰	n=46	Sales and Related Workers, All Other	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	8.7% (0.8- 20%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Calcagno et al., 2020 ¹²⁴	n=539	Office and Administrative Support Occupations	Cross-sectional survey	04/17 - 05/20	Italy	3.34%	Moderat
Office and Administrative Support Occupations (43- 0000)	Costa et al., 2020 ¹²⁸	n=120	Office and Administrative Support Occupations	Cross-sectional survey	05/14 - 05/28	Brazil	14.2%	Moderat

Office and Administrative Support Occupations (43- 0000)	Rosser et al., 2020 ³³	n=972	Office and Administrative Support Occupations	Cross-sectional survey	04/20 - 05/20	United States of America	1.34%	High
Office and Administrative Support Occupations (43- 0000)	Tsitsilonis et al., 2020 ¹²	n=504	Office and Administrative Support Occupations	Cross-sectional survey	06/15 - 07/15	Greece	0.48% (0- 2.37%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Khan et al., 2020 ⁴⁵	n=37	Hotel, Motel, and Resort Desk Clerks	Cross-sectional survey	07/01 - 07/15	India	10.8% (4.1- 25.5%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Brunner et al., 2020 ⁵⁴	n=26	Receptionists and Information Clerks	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Favara et al., 2020 ¹³⁶	n=10	Receptionists and Information Clerks	Prospective cohort	06/01 - 06/07	The United Kingdom	0%	High
Office and Administrative Support Occupations (43- 0000)	Moscola et al., 2020 ⁸⁹	n=9645	Receptionists and Information Clerks	Cross-sectional survey	04/20 - 06/23	United States of America	12.6%	High
Office and Administrative Support Occupations (43- 0000)	Biggs et al., 2020 ³	n=11	Shipping, Receiving, and Traffic Clerks	Cross-sectional survey	04/28 - 05/03	United States of America	18.18%	Modera
Office and Administrative	Silva et al., 2020 ³⁴	n=82	Stock Clerks and Order Fillers	Cross-sectional survey	06/05 - 07/31	Brazil	4.88%	High

Page 99	of 119
---------	--------

Support Occupations (43- 0000)								
Office and Administrative Support Occupations (43- 0000)	Khan et al., 2020 ⁴⁵	n=186	Secretaries and Administrative Assistants	Cross-sectional survey	07/01 - 07/15	India	3.8% (1.8- 7.7%)	Moderate
Office and Administrative Support Occupations (43- 0000)	Alemu et al., 2020 ⁶	n=48	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	04/23 - 04/28	Ethiopia	2.1%	Moderate
Office and Administrative Support Occupations (43- 0000)	Barallat et al., 2020 ⁵⁰	n=1181	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	05/04 - 05/22	Spain	6.52%	High
Office and Administrative Support Occupations (43- 0000)	Lumley et al., 2020 ⁹	n=1557	Executive Secretaries and Executive Administrative Assistants	Prospective cohort	04/23 - 11/30	The United Kingdom	6.74%	Moderate
Office and Administrative Support Occupations (43- 0000)	Reuben et al., 2020 ¹⁶⁸	n=18	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	05/28 - 07/15	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Akinbami et al., 2020 ⁴⁶	n=964	Medical Secretaries	Cross-sectional survey	05/18 - 06/13	United States of America	8% (6.4- 9.9%)	Moderate
Office and Administrative Support	Alharbi et al., 2020 ¹²⁵	n=8	Medical Secretaries	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	25%	High

Occupations (43- 0000)								
Office and Administrative Support Occupations (43- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=357	Medical Secretaries	Cross-sectional survey	06/08 - 07/08	United States of America	4.2%	Modera
Office and Administrative Support Occupations (43- 0000)	Erber et al., 2020 ³¹	n=557	Medical Secretaries	Cross-sectional survey	04/14 - 05/29	Germany	3.78%	High
Office and Administrative Support Occupations (43- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=240	Medical Secretaries	Prospective cohort	06/29 - 07/29	Germany	7.1%	Modera
Office and Administrative Support Occupations (43- 0000)	Goenka et al., 2020 ²⁵	n=75	Medical Secretaries	Cross-sectional survey	07/12 - 08/23	India	8%	Modera
Office and Administrative Support Occupations (43- 0000)	Goenka et al., 2020 ²⁵	n=75	Medical Secretaries	Cross-sectional survey	07/12 - 08/23	India	8%	Modera
Office and Administrative Support Occupations (43- 0000)	Iversen et al., 2020 ⁸	n=2631	Medical Secretaries	Cross-sectional survey	04/15 - 04/22	Denmark	2.7%	Low
Office and Administrative Support Occupations (43- 0000)	Leidner et al., 2020 ²²	n=793	Medical Secretaries	Cross sectional study with prospective cohort follow up of a	04/08 - 05/22	United States of America	3.15%	High

				subset of the sample				
Office and Administrative Support Occupations (43- 0000)	Mesnil et al., 2020 ¹⁴³	n=184	Medical Secretaries	Cross-sectional survey	06/08 - 06/22	France	14.13%	High
Office and Administrative Support Occupations (43- 0000)	Nishida et al., 2020 ⁹⁰	n=98	Medical Secretaries	Cross-sectional survey	06/12 - 06/19	Japan	1% (0.18- 5.6%)	Modera
Office and Administrative Support Occupations (43- 0000)	Noor et al., 2020 ¹³⁰	n=91	Medical Secretaries	Cross-sectional survey	07/13 - 07/15	Pakistan	43.96%	Modera
Office and Administrative Support Occupations (43- 0000)	Thani et al., 2020 ¹⁸³	n=82	Medical Secretaries	Cross-sectional survey	07/26 - 09/09	Qatar	31.6%	Modera
Office and Administrative Support Occupations (43- 0000)	Zhou et al., 2020 ¹⁶⁶	n=505	Medical Secretaries	Cross-sectional survey	03/16 - 03/25	China	1.39%	Modera
Office and Administrative Support Occupations (43- 0000)	Chau et al., 2020 ¹²⁶	n=20	Data Entry Keyers	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Office and Administrative Support Occupations (43- 0000)	Jones et al., 2020 ²⁹	n=1233	Office Clerks, General	Cross-sectional survey	01/15 - 06/15	The United Kingdom	6.1%	High

Office and Administrative Support Occupations (43- 0000)	Rosser et al., 2020 ³³	n=218	Office Clerks, General	Cross-sectional survey	04/20 - 05/20	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Satpati et al., 2020 ²⁷	n=47	Office Clerks, General	Cross-sectional survey	07/26 - 08/08	India	4.26%	Moderat
Office and Administrative Support Occupations (43- 0000)	Baracco et al., 2020 ²⁴	n=194	Office and Administrative Support Workers, All Other	Cross-sectional survey	04/23 - 05/05	Italy	14.4%	High
Office and Administrative Support Occupations (43- 0000)	Brzostek et al., 2020 ¹⁵¹	n=286	Office and Administrative Support Workers, All Other	Cross-sectional survey	04/17 - 05/07	United States of America	45.5%	Moderat
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	14.28%	High
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	14.28%	High
Farming, Fishing, and Forestry Occupations (45- 0000)	Satpati et al., 2020 ²⁷	n=53	Agricultural Workers	Cross-sectional survey	07/26 - 08/08	India	0%	Modera
Farming, Fishing, and Forestry Occupations (45- 0000)	Addetia et al., 2020 ¹⁹⁰	n=120	Fishers and Related Fishing Workers	Retrospective cohort	05/01 - 05/31	United States of America	5%	High
Farming, Fishing, and Forestry Occupations (45- 0000)	Arnaldo et al., 2020 ¹³	n=80	Fishers and Related Fishing Workers	Cross-sectional survey	07/06 - 07/13	Mozambique	5%	High
Construction and Extraction Occupations (47- 0000)	Biggs et al., 2020 ³	n=42	Construction Trades Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Modera
Installation, Maintenance, and Repair Occupations (49- 0000)	Blairon et al., 2020 ⁵²	n=134	Other Installation, Maintenance, and Repair Occupations	Cross-sectional survey	05/25 - 06/19	Belgium	16.4%	High
Production Occupations (51- 0000)	Picon et al., 2020 ¹⁹¹	n=40	Butchers and Other Meat, Poultry, and Fish Processing Workers	Cross-sectional survey	06/13 - 06/17	Brazil	15%	Modera
Production Occupations (51- 0000)	Picon et al., 2020 ¹⁹¹	n=1087	Miscellaneous Food Processing Workers	Cross-sectional survey	06/13 - 06/17	Brazil	1.47%	Modera
Production Occupations (51- 0000)	Bontadi et al., 2020 ¹⁹²	n=1267	Production Workers, All Other	Cross-sectional survey	04/11 - 04/29	Italy	1.58%	High

Production Occupations (51- 0000)	Xu et al., 2020 ¹⁹³	n=442	Production Workers, All Other	Cross-sectional survey	03/09 - 04/10	China	1.4% (0.6- 2.9%)	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ¹³	n=248	Transportation and Material Moving Occupations	Cross-sectional survey	07/06 - 07/13	Mozambique	4.8%	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ⁴⁸	n=367	Transportation and Material Moving Occupations	Cross-sectional survey	08/10 - 08/21	Mozambique	7.4%	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ¹⁴	n=112	Transportation and Material Moving Occupations	Cross-sectional survey	11/16 - 11/21	Mozambique	16.1%	High
Transportation and Material Moving Occupations (53- 0000)	Biggs et al., 2020 ³	n=14	Transportation and Material Moving Occupations	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Gudo et al., 2020 ⁶⁵	n=554	Transportation and Material Moving Occupations	Cross-sectional survey	06/17 - 06/30	Mozambique	3% (1-4%)	High
Transportation and Material Moving Occupations (53- 0000)	Langa et al., 2020 ¹⁸¹	n=230	Transportation and Material Moving Occupations	Cross-sectional C	09/28 - 10/09	Mozambique	0.4%	High
Transportation and Material Moving Occupations (53- 0000)	Mabunda et al., 2020 ¹⁵	n=473	Transportation and Material Moving Occupations	Cross-sectional survey	09/21 - 10/02	Mozambique	8.7%	High
Transportation and Material Moving Occupations (53- 0000)	Macicame et al., 2020 ¹⁸²	n=282	Transportation and Material Moving Occupations	Cross-sectional survey	09/14 - 09/30	Mozambique	3.19%	High

Transportation and Material Moving Occupations (53- 0000)	Mahomed et al., 2020 ⁸¹	n=334	Transportation and Material Moving Occupations	Cross-sectional survey	08/31 - 10/12	Mozambique	1.5%	High
Transportation and Material Moving Occupations (53- 0000)	Mahumane et al., 2020 ⁸²	n=287	Transportation and Material Moving Occupations	Cross-sectional survey	11/02 - 11/17	Mozambique	1%	High
Transportation and Material Moving Occupations (53- 0000)	Thani et al., 2020 ¹⁸³	n=435	Transportation and Material Moving Occupations	Cross-sectional survey	07/26 - 09/09	Qatar	53.4%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Halatoko et al., 2020 ⁴¹	n=212	Air Transportation Workers	Cross-sectional survey	04/23 - 05/08	Togo	0.9%	High
Transportation and Material Moving Occupations (53- 0000)	Viegas et al., 2020 ¹¹⁰	n=623	Air Transportation Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	2.25%	High
Transportation and Material Moving Occupations (53- 0000)	Viegas et al., 2020 ¹¹⁰	n=362	Air Transportation Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	3.31%	High
Transportation and Material Moving Occupations (53- 0000)	Khan et al., 2020 ¹²⁷	n=57	Ambulance Drivers and Attendants, Except Emergency Medical Technicians	Cross-sectional survey	06/15 - 06/29	India	3.5% (0.9- 13.3%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Martinez et al., 2020 ¹²¹	n=30	Heavy and Tractor- Trailer Truck Drivers	Cross-sectional survey	04/16 - 04/17	United States of America	16.67%	High
Transportation and Material Moving Occupations (53- 0000)	Siddiqui et al., 2020 ²	n=9	Heavy and Tractor- Trailer Truck Drivers	Prospective cohort	04/15 - 08/15	India	11.1%	High

Transportation and Material Moving Occupations (53- 0000)	Halatoko et al., 2020 ⁴¹	n=122	Taxi Drivers and Chauffeurs	Cross-sectional survey	04/23 - 05/08	Togo	0.8%	High
Transportation and Material Moving Occupations (53- 0000)	Poustchi et al., 2020 ²⁸	n=718	Taxi Drivers and Chauffeurs	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	14.1% (11.4- 16.9%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Alemu et al., 2020 ⁶	n=8	Parking Lot Attendants	Cross-sectional survey	04/23 - 04/28	Ethiopia	12.5%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Alemu et al., 2020 ⁶	n=110	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	04/23 - 04/28	Ethiopia	10%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Khan et al., 2020 ⁴⁵	n=97	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	07/01 - 07/15	India	2.1% (0.5- 7.9%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Satpati et al., 2020 ²⁷	n=63	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	07/26 - 08/08	India	12.7%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=6295	Unemployed	Prospective cohort	05/04 - 06/23	France	4.9% (4.1- 5.6%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=1457	Unemployed	Prospective cohort	05/04 - 06/23	France	8.3% (6.4- 10%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=306	Unemployed	Prospective cohort	05/04 - 06/23	France	7.2% (2.3- 11.1%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=125	Unemployed	Prospective cohort	05/04 - 06/23	France	3.8% (0.5- 6.3%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=402	Unemployed	Prospective cohort	05/04 - 06/23	France	7.8% (4.7-10.4%)	Moderate

Not employed	Chamie et al., 2020 ¹⁹⁴	n=230	Unemployed	Cross-sectional	04/25 -	United States	4.3%	Moderat
(mixed)*			1 0	survey	04/28	of America		
Not employed (mixed)*	McLaughlin et al., 2020 ¹⁹⁵	n=241	Unemployed	Cross-sectional survey	05/04 - 05/19	United States of America	19.3% (14.6- 24.5%)	Modera
Not employed (mixed)*	Merkely et al., 2020 ¹	n=1095	Unemployed	Cross-sectional survey	05/01 - 05/16	Hungary	0.43% (0.16- 0.84%)	Modera
Not employed (mixed)*	Munoz et al., 2020 ¹⁹⁶	n=905	Unemployed	Cross-sectional survey	07/15 - 07/16	Argentina	20%	Modera
Not employed (mixed)*	Richard et al., 2020 ⁵	n=549	Unemployed	Cross-sectional survey	04/06 - 06/30	Switzerland	6%	Low
Not employed (mixed)*	Satpati et al., 2020 ²⁷	n=47	Unemployed	Cross-sectional survey	07/26 - 08/08	India	2.13%	Moder
Not employed (mixed)*	Ward et al., 2020 ¹¹³	n=59369	Unemployed	Cross-sectional survey	09/15 - 09/28	The United Kingdom	3.35%	Moder
<i>Morbidity and Mor</i> 4. Carrat F, Lamba	is JB, Breakwell L, et al. Estim <i>rtality Weekly Report</i> . 2020;69(Illerie X de, Rahib D, et al. Sero	29):965-970. oprevalence o	doi:10.15585/mmwr.m f SARS-CoV-2 among	adults in three regions of	f France fo	llowing the lockd	-	
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wisi	<i>rtality Weekly Report</i> . 2020;69(Illerie X de, Rahib D, et al. Sero ly. <i>medRxiv</i> . Published online S niak A, Perez-Saez J, et al. Sero	29):965-970. oprevalence of eptember 202 oprevalence of	doi:10.15585/mmwr.m f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig0	adults in three regions of 3. doi:10.1101/2020.09.	f France fo 16.2019569 for infectio	llowing the lockd	lown and associat	ed risk fa
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wisi Switzerland: A pop 6. Alemu BN, Add	rtality Weekly Report. 2020;69(Illerie X de, Rahib D, et al. Serce ly. medRxiv. Published online S niak A, Perez-Saez J, et al. Serce pulation-based study. medRxiv. lissie A, Mamo G, et al. Sero-P	29):965-970. oprevalence of eptember 202 oprevalence of Published on	doi:10.15585/mmwr.m f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig line December 2020. do	adults in three regions of 3. doi:10.1101/2020.09. 3 antibodies, risk factors oi:10.1101/2020.12.16.2	f France fo 16.2019569 for infectio 0248180	llowing the lockd 3 on and associated	lown and associat symptoms in Get	ed risk fa
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wist Switzerland: A pop 6. Alemu BN, Add doi:10.1101/2020. 7. Brehm T, Schwi	rtality Weekly Report. 2020;69(Illerie X de, Rahib D, et al. Serce ly. medRxiv. Published online S niak A, Perez-Saez J, et al. Serce pulation-based study. medRxiv. lissie A, Mamo G, et al. Sero-P	29):965-970. oprevalence of oprevalence of Published on <i>revalence of A</i>	doi:10.15585/mmwr.m f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig0 line December 2020. d Anti-SARS-CoV-2 Antib f SARS-CoV-2 antibod	adults in three regions of 3. doi:10.1101/2020.09. G antibodies, risk factors oi:10.1101/2020.12.16.2 <i>podies in Addis Ababa, E</i> lies among hospital work	f France for 16.2019569 for infection 0248180 <i>thiopia</i> . Mineters in a Generation	llowing the lockd 3 on and associated crobiology; 2020	lown and associat symptoms in Ge).	ed risk fa neva,
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wist Switzerland: A pop 6. Alemu BN, Add doi:10.1101/2020. 7. Brehm T, Schwi study. Internationa 8. Iversen K, Bund	rtality Weekly Report. 2020;69(illerie X de, Rahib D, et al. Serce ly. medRxiv. Published online S niak A, Perez-Saez J, et al. Serce pulation-based study. medRxiv. lissie A, Mamo G, et al. Serce-P 10.13.337287 inge D, Lampalzer S, et al. Serce	29):965-970. oprevalence of eptember 202 oprevalence of Published on <i>revalence of A</i> oprevalence of <i>conmental Het</i> . Risk of COV	doi:10.15585/mmwr.n f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig0 line December 2020. d <i>Anti-SARS-CoV-2 Antil</i> f SARS-CoV-2 antibod <i>alth</i> . 2021;232:113671 /ID-19 in health-care v	adults in three regions of 3. doi:10.1101/2020.09. G antibodies, risk factors oi:10.1101/2020.12.16.2 <i>bodies in Addis Ababa, E</i> lies among hospital work . doi:10.1016/j.ijheh.202	f France for 16.2019569 for infection 0248180 <i>thiopia</i> . Min ters in a Ge 0.113671	llowing the lockd 3 on and associated crobiology; 2020 rman tertiary care	lown and associat symptoms in Ger). e center: A sequer	ed risk fa neva, ntial follo

9. Lumley SF, O'Donnell D, Stoesser NE, et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. New England Journal of Medicine. Published online December 2020:NEJMoa2034545. doi:10.1056/NEJMoa2034545 10. Shakiba M, Nazemipour M, Salari A, et al. Seroprevalence of SARS-CoV-2 in Guilan Province, Iran, April 2020. Emerging Infectious Disease journal. 2021;27(2). doi:10.3201/eid2702.201960 11. Tilley K, Ayvazyan V, Martinez L, et al. A Cross-Sectional Study Examining the Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in a University Student Population. Journal of Adolescent Health. 2020;67(6):763-768. doi:10.1016/j.jadohealth.2020.09.001 12. Tsitsilonis OE, Paraskevis D, Lianidou E, et al. Seroprevalence of Antibodies against SARS-CoV-2 among the Personnel and Students of the National and Kapodistrian University of Athens, Greece: A Preliminary Report. Life. 2020;10(9):214. doi:10.3390/life10090214 13. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Pemba (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 14. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Nas Cidades de Xai-Xai E Chókwè (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 15. Nedio Mabunda. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Beira (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 16. Mussagy Mahomed. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Maxixe E Vila de Massinga (InCOVID 2020). República de Moçambique Ministério da Saúde: 2020. 17. Payne DC, Smith-Jeffcoat SE, Nowak G, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members - USS Theodore Roosevelt, April 2020. MMWR Morbidity and mortality weekly report. 2020;69(23):714-721. doi:10.15585/mmwr.mm6923e4 18. COVID-19 Serology Tests Still Show Low Antibody Rate of 0.07%. KBS World Radio. 19. Favara DM, McAdam K, Cooke A, et al. SARS-CoV-2 antigen and antibody prevalence among UK staff working with cancer patients during the COVID-19 pandemic. medRxiv. Published online September 2020:2020.09.18.20197590. doi:10.1101/2020.09.18.20197590 20. Galán MI, Velasco M, Casas ML, et al. Hospital-Wide SARS-CoV-2 seroprevalence in health care workers in a Spanish teaching hospital. Enfermedades Infecciosas y Microbiología Clínica. Published online December 2020:S0213005X20304183. doi:10.1016/j.eimc.2020.11.015 21. Hunter BR, Dbeibo L, Weaver CS, et al. Seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies among healthcare workers with differing levels of coronavirus disease 2019 (COVID-19) patient exposure. Infection Control & Hospital Epidemiology. Published online August 2020:1-2. doi:10.1017/ice.2020.390 22. Leidner R, Frary A, Cramer J, et al. Longitudinal SARS-CoV-2 serosurveillance of over ten thousand health care workers in the Providence Oregon cohort. medRxiv. Published online August 2020:2020.08.16.20176107. doi:10.1101/2020.08.16.20176107 23. Martin CA, Patel P, Goss C, et al. Demographic and occupational determinants of anti-SARS-CoV-2 IgG seropositivity in hospital staff. Journal of Public Health. 2020;(fdaa199). doi:10.1093/pubmed/fdaa199 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3 4	24. Baracco A, Perotti G, Filippin A, et al. SARS-CoV-2 Antibody Prevalence in Health Care Workers of Lodi Hospital, the COVID-19 Italian Epicentre. Social Science Research Network; 2020.
5 6 7	25. Goenka M, Afzalpurkar S, Goenka U, et al. Seroprevalence of COVID-19 Amongst Health Care Workers in a Tertiary Care Hospital of a Metropolitan City from India. <i>The Journal of the Association of Physicians of India</i> . 2020;68(11):14-19.
8 9 10	26. Goenka MK, Shah BB, Goenka U, et al. COVID-19 prevalence among health-care workers of Gastroenterology department: An audit from a tertiary-care hospital in India. <i>JGH Open</i> . 2021;5(1):56-63. doi:10.1002/jgh3.12447
11 12 13	27. Satpati P, Sarangi S, Gantait K, et al. Sero-Surveillance (IgG) of SARS-CoV-2 Among Asymptomatic General Population of Paschim Medinipur, West Bengal, India. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.09.12.20193219
14 15	28. Poustchi H, Darvishian M, Mohammadi Z, et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: A population-based cross-sectional study. <i>The Lancet Infectious Diseases</i> . 2020;0(0). doi:10.1016/S1473-3099(20)30858-6
16 17 18	29. Jones CR, Hamilton FW, Thompson A, Morris TT, Moran E. SARS-CoV-2 IgG seroprevalence in healthcare workers and other staff at North Bristol NHS Trust: A sociodemographic analysis. <i>Journal of Infection</i> . 2020;0(0). doi:10.1016/j.jinf.2020.11.036
19 20 21	30. Anna F, Goyard S, Lalanne AI, et al. High seroprevalence but short-lived immune response to SARS-CoV-2 infection in Paris. <i>medRxiv</i> . Published online November 2020:2020.10.25.20219030. doi:10.1101/2020.10.25.20219030
22 23 24	31. Erber J, Kappler V, Haller B, et al. Strategies for infection control and prevalence of anti-SARS-CoV-2 IgG in 4,554 employees of a university hospital in Munich, Germany. Published online October 2020. doi:10.1101/2020.10.04.20206136
25 26	32. Hanrath AT, Loeff IS van der, Lendrem DW, et al. SARS-CoV-2 testing of 11,884 healthcare workers at an acute NHS hospital trust in England: A retrospective analysis. <i>medRxiv</i> . Published online December 2020:2020.12.22.20242362. doi:10.1101/2020.12.22.20242362
27 28 29 30	33. Rosser JI, Röltgen K, Dymock M, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence in healthcare personnel in northern California early in the coronavirus disease 2019 (COVID-19) pandemic. <i>Infection Control & Hospital Epidemiology</i> . Published online December 2020:1-7. doi:10.1017/ice.2020.1358
31 32 33	34. Silva VO, de Oliveira EL, Castejon MJ, et al. Prevalence of antibodies against sars-cov-2 in professionals of a public health laboratory at são paulo, sp, brazil. <i>medRxiv</i> . Published online October 2020. doi:10.1101/2020.10.19.20213421
34 35 36	35. Sabourin KR, Schultz J, Romero J, et al. Risk Factors of SARS-CoV-2 Antibodies in Arapahoe County First Responders - the COVID-19 Arapahoe SErosurveillance Study (CASES) Project. <i>Journal of Occupational and Environmental Medicine</i> . Published online December 2020. doi:10.1097/JOM.00000000002099
37 38	36. Yogo N, Greenwood KL, Thompson L, et al. Point prevalence survey to evaluate the seropositivity for coronavirus disease 2019 (COVID-19) among high-risk healthcare workers. <i>Infection Control and Hospital Epidemiology</i> . Published online December 2020:1-6. doi:10.1017/ice.2020.1370
39 40 41	37. Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. <i>European Journal of Immunology</i> . 2020;50(12):2025-2040. doi:10.1002/eji.202048970
42 43 44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
47	

38. Gonçalves J, Sousa RL, Jacinto MJ, et al. Evaluating SARS-CoV-2 Seroconversion Following Relieve of Confinement Measures. Frontiers in Medicine. 2020;7. doi:10.3389/fmed.2020.603996 39. Fontanet A, Grant R, Tondeur L, et al. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission. medRxiv, Published online June 2020:2020.06.25.20140178. doi:10.1101/2020.06.25.20140178 40. Torres JP, Piñera C, De La Maza V, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Prevalence in Blood in a Large School Community Subject to a Coronavirus Disease 2019 Outbreak: A Cross-sectional Study. Clinical Infectious Diseases. Published online July 2020:ciaa955. doi:10.1093/cid/ciaa955 41. Halatoko WA, KONU YR, Gbeasor-Komlanvi FA, et al. Prevalence of SARS-CoV-2 among high-risk populations in LomÉ (Togo) in 2020. medRxiv. Published online August 2020:2020.08.07.20163840. doi:10.1101/2020.08.07.20163840 42. Slusser S. MLB antibody study: 0.7% of those tested had been exposed to coronavirus. San Francisco Chronicle. Published online May 2020. 43. Vince A, Zadro R, Šostar Z, et al. SARS-CoV-2 Seroprevalence in a Cohort of Asymptomatic, RT-PCR Negative Croatian First League Football Players. medRxiv. Published online November 2020:2020.10.30.20223230. doi:10.1101/2020.10.30.20223230 44. Mack D, Gärtner BC, Rössler A, et al. Prevalence of SARS-CoV-2 IgG antibodies in a large prospective cohort study of elite football players in Germany (MayJune 2020): Implications for a testing protocol in asymptomatic individuals and estimation of the rate of undetected cases. *Clinical Microbiology and Infection*. 2020;27(3):473.e1-473.e4. doi:10.1016/j.cmi.2020.11.033 45. Khan SMS, Qurieshi MA, Haq I, et al. Seroprevalence of SARS-CoV-2 specific IgG antibodies in District Srinagar, northern India A cross-sectional study. PLOS ONE. 2020;15(11):e0239303. doi:10.1371/journal.pone.0239303 46. Akinbami LJ, Vuong N, Petersen LR, et al. SARS-CoV-2 Seroprevalence among Healthcare, First Response, and Public Safety Personnel, Detroit Metropolitan Area, Michigan, USA, MayJune 2020 - Volume 26, Number 12December 2020 - Emerging Infectious Diseases journal - CDC. Published online December 2020. doi:10.3201/eid2612.203764 47. Amendola A, Tanzi E, Folgori L, et al. Low seroprevalence of SARS-CoV-2 infection among healthcare workers of the largest children hospital in Milan during the pandemic wave. Infection Control & Hospital Epidemiology. Published online August 2020:1-2. doi:10.1017/ice.2020.401 48. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Quelimane (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 49. Bal A, Brengel-Pesce K, Gaymard A, et al. Clinical and microbiological assessments of COVID-19 in healthcare workers: A prospective longitudinal study. medRxiv. Published online November 2020:2020.11.04.20225862. doi:10.1101/2020.11.04.20225862 50. Fernández-Rivas G, Quirant-Sánchez B, González V, et al. Seroprevalence of SARS-CoV-2 IgG Specific Antibodies among Healthcare Workers in the Northern Metropolitan Area of Barcelona, Spain, after the first pandemic wave. medRxiv. Published online June 2020:2020.06.24.20135673. doi:10.1101/2020.06.24.20135673 51. Bardai G, Ouellet J, Engelhardt T, Bertolizio G, Wu Z, Rauch F. Prevalence of SARS-CoV-2 infections in a pediatric orthopedic hospital. von Ungern-Sternberg B, ed. Pediatric Anesthesia. 2021;31(2):247-248. doi:10.1111/pan.14047 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3 4 5	52. Blairon L, Mokrane S, Wilmet A, et al. Large-scale, molecular and serological SARS-CoV-2 screening of healthcare workers in a 4-site public hospital in Belgium after COVID-19 outbreak. <i>Journal of Infection</i> . Published online July 2020:S0163445320305144. doi:10.1016/j.jinf.2020.07.033
6 7	53. Moreno Borraz LA, Giménez López M, Carrera Lasfuentes P, et al. Prevalencia de infección por coronavirus SARS-CoV-2 en pacientes y profesionales de un hospital de media y larga estancia en España. <i>Revista Española de Geriatría y Gerontología</i> . 2020;56(2):75-80. doi:10.1016/j.regg.2020.10.005
8 9 10	54. Brunner WM, Hirabayashi L, Krupa NL, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG results among healthcare workers in a rural upstate New York hospital system. <i>Infection Control & Hospital Epidemiology</i> . Published online October 2020:1-4. doi:10.1017/ice.2020.1296
11 12 13	55. Carozzi FM, Cusi MG, Pistello M, et al. Detection of asymptomatic SARS-CoV-2 infections among healthcare workers: Results from a large-scale screening program based on rapid serological testing. <i>medRxiv</i> . Published online August 2020. doi:10.1101/2020.07.30.20149567
14 15	56. Vilibic-Cavlek T, Stevanovic V, Tabain I, et al. Severe acute respiratory syndrome coronavirus 2 seroprevalence among personnel in the healthcare facilities of Croatia, 2020. <i>Revista da Sociedade Brasileira de Medicina Tropical</i> . 2020;53. doi:10.1590/0037-8682-0458-2020
16 17 18	57. Chibwana MG, Jere KC, kamng'ona R, et al. High SARS-CoV-2 seroprevalence in Health Care Workers but relatively low numbers of deaths in urban Malawi. <i>medRxiv</i> . Published online August 2020:2020.07.30.20164970. doi:10.1101/2020.07.30.20164970
19 20 21	58. Coffman B. New Co-Immunity Project data show COVID-19 infection among health care workers may be lower than the general population UofL News. <i>UofLNews</i> . Published online August 2020.
22 23	59. Cooper DJ, Lear S, Watson L, et al. A prospective study of risk factors associated with seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a large UK teaching hospital. <i>medRxiv</i> . Published online November 2020:2020.11.03.20220699. doi:10.1101/2020.11.03.20220699
24 25	60. Denyer S. Japanese firm's blanket testing of employees could serve as model. LMT Online. Published online June 2020.
26 27 28	61. Dimeglio C, Herin F, Miedougé M, et al. Screening for SARS-CoV-2 antibodies among healthcare workers in a university hospital in southern France. <i>Journal of Infection</i> . 2020;0(0). doi:10.1016/j.jinf.2020.09.035
29 30 31	62. Fuereder T, Berghoff AS, Heller G, et al. SARS-CoV-2 seroprevalence in oncology healthcare professionals and patients with cancer at a tertiary care centre during the COVID-19 pandemic. <i>ESMO Open.</i> 2020;5(5). doi:10.1136/esmoopen-2020-000889
32 33	63. Fusco FM, Pisaturo M, Iodice V, et al. COVID-19 among healthcare workers in a specialist infectious diseases setting in Naples, Southern Italy: Results of a cross-sectional surveillance study. <i>Journal of Hospital Infection</i> . 2020;105(4):596-600. doi:10.1016/j.jhin.2020.06.021
34 35	64. Geraci L. Antibody tests show just 2% exposure rate to COVID-19. The Lancaster News. Published online May 2020.
36 37	65. Eduardo Samo Gudo. Inquérito Sero-epidemiológico de SARS-CoV-2 na Cidade de Nampula. República de Moçambique Ministério da Saúde; 2020:19.
38 39 40	66. Hackner K, Errhalt P, Willheim M, et al. Diagnostic accuracy of two commercially available rapid assays for detection of IgG and IgM antibodies to SARS-CoV-2 compared to ELISA in a low-prevalence population. <i>Research Square</i> . Published online August 2020. doi:10.21203/rs.3.rs-50887/v1
41 42 43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46 47	

1 2 3

4

5

6

7 8

9

10 11

12

13 14

15

16

17

18

19 20

21

22 23

24

25 26

27

28

29

30 31

32

33 34

35

36 37

38

39

40

45 46 47

67. Haq M, Rehman A, Noor M, et al. Seroprevalence and Risk Factors of SARS CoV-2 in Health Care Workers of Tertiary-Care Hospitals in the Province of Khyber Pakhtunkhwa, Pakistan. medRxiv. Published online September 2020:2020.09.29.20203125. doi:10.1101/2020.09.29.20203125 68. He L, Zeng Y, Zeng C, et al. Positive Rate of Serology and RT-PCR for COVID-19 among healthcare workers during different periods in Wuhan, China. Journal of Infection. Published online August 2020. doi:10.1016/j.jinf.2020.08.027 69. Herzberg J, Vollmer T, Fischer B, et al. Prospective Sero-epidemiological Evaluation of SARS-CoV-2 among Health Care Workers in a German Secondary Care Hospital. International Journal of Infectious Diseases. 2021;102:136-143. doi:10.1016/j.ijid.2020.10.026 70. Jeremias A, Nguyen J, Levine J, et al. Prevalence of SARS-CoV-2 Infection Among Health Care Workers in a Tertiary Community Hospital. JAMA Internal *Medicine*. Published online August 2020. doi:10.1001/jamainternmed.2020.4214 71. Jespersen S, Mikkelsen S, Greve T, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence Survey Among 17 971 Healthcare and Administrative Personnel at Hospitals, Prehospital Services, and Specialist Practitioners in the Central Denmark Region. Clinical Infectious Diseases. Published online October 2020:ciaa1471. doi:10.1093/cid/ciaa1471 72. Kassem AM, Talaat H, Shawky S, et al. SARS-CoV-2 infection among healthcare workers of a gastroenterological service in a tertiary care facility. Arab Journal of Gastroenterology. 2020;21(3):151-155. doi:10.1016/j.ajg.2020.07.005 73. Kern PM, Müller H-H, Menzel T, Weisser H. Studie zur Immunität gegen SARS-CoV-2: Keine signifikante humorale Immunität gegen SARS-CoV-2 im medizinischen Personal eines Klinikums der Maximalversorgung und in der Stadtregion Fulda. Der Klinikarzt. 2020;49(06):268-273. doi:10.1055/a-1198-1243 74. Khalil A, Hill R, Wright A, Ladhani S, O'Brien P. SARS-CoV-2-Specific Antibody Detection in Healthcare Workers in a UK Maternity Hospital: Correlation With SARS-CoV-2 RT-PCR Results. Clinical Infectious Diseases. 2020;(ciaa893). doi:10.1093/cid/ciaa893 75. Kumar A, Sathyapalan D, Ramachandran A, Subhash K, Biswas L, Beena KV. SARS-CoV-2 antibodies in healthcare workers in a large university hospital, Kerala, India. Clinical Microbiology and Infection. 2021;27(3):481-483. doi:10.1016/j.cmi.2020.09.013 76. Lackermair K, William F, Grzanna N, et al. Infection with SARS-CoV-2 in primary care health care workers assessed by antibody testing. Family Practice. Published online August 2020:cmaa078. doi:10.1093/fampra/cmaa078 77. Lahner E, Dilaghi E, Prestigiacomo C, et al. Prevalence of Sars-Cov-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy. International Journal of Environmental Research and Public Health. 2020;17(12). doi:10.3390/ijerph17124417 78. Liu M, Cheng S-Z, Xu K-W, et al. Use of personal protective equipment against coronavirus disease 2019 by healthcare professionals in Wuhan, China: Cross sectional study. BMJ. 2020;369. doi:10.1136/bmj.m2195 79. Liu T, Wu S, Tao H, Zeng G, Zhou F, Wang X. Prevalence of IgG Antibodies to SARS-CoV-2 in Wuhan Implications for the Longevity of Antibodies Against SARS-CoV-2. Research Square. Published online November 2020. doi:10.21203/rs.3.rs-99748/v1 80. Lorenzo D, Carrisi C. COVID-19 exposure risk for family members of healthcare workers: An observational study. International Journal of Infectious Diseases. 2020;98:287-289. doi:10.1016/j.ijid.2020.06.106 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3 4	81. Mussagy Mahomed. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Tete (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
5	82. Arlete Mahumane. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Chimoio (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
6 7 8	83. Majdoubi A, Michalski C, O'Connell SE, et al. Antibody reactivity to SARS-CoV-2 is common in unexposed adults and infants under 6 months. <i>medRxiv</i> . Published online November 2020:2020.10.05.20206664. doi:10.1101/2020.10.05.20206664
9 10	84. Majiya H, Aliyu-Paiko M, Balogu VT, et al. Seroprevalence of COVID-19 in Niger State. medRxiv. Published online August 2020. doi:10.1101/2020.08.04.20168112
11 12 13	85. Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study. <i>Journal of Clinical Virology</i> . 2020;130:104575. doi:10.1016/j.jcv.2020.104575
14 15	86. Martin C, Montesinos I, Dauby N, et al. Dynamics of SARS-CoV-2 RT-PCR positivity and seroprevalence among high-risk healthcare workers and hospital staff. Journal of Hospital Infection. 2020;106(1):102-106. doi:10.1016/j.jhin.2020.06.028
16 17 18	87. de Melo MS, Borges LP, de Souza DRV, et al. Anti-SARS-CoV-2 IgM and IgG Antibodies in Health Workers in Sergipe, Brazil. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.09.24.20200873
19 20 21 22	88. Morcuende M, Guglielminotti J, Landau R. Anesthesiologists' and Intensive Care Providers' Exposure to COVID-19 Infection in a New York City Academic Center: A Prospective Cohort Study Assessing Symptoms and COVID-19 Antibody Testing. <i>Anesthesia and analgesia</i> . 2020;131(3):669-676. doi:10.1213/ANE.000000000005056
23 24 25	89. Moscola J, Sembajwe G, Jarrett M, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the New York City Area. JAMA. 2020;324(9):893-895. doi:10.1001/jama.2020.14765
26 27	90. Nishida T, Iwahashi H, Yamauchi K, et al. Seroprevalence of SARS-CoV-2 Antibodies Among 925 Staff Members in an Urban Hospital Accepting COVID-19 Patients in Osaka Prefecture, Japan. <i>medRxiv</i> . Published online January 2020:2020.09.10.20191866. doi:10.1101/2020.09.10.20191866
28 29 30	91. Olalla J, Correa AM, Martín-Escalante MD, et al. Search for asymptomatic carriers of SARS-CoV-2 in healthcare workers during the pandemic: A Spanish experience. <i>QJM: An International Journal of Medicine</i> . 2020;(hcaa238). doi:10.1093/qjmed/hcaa238
31 32 33	92. Pallett SJC, Rayment M, Patel A, et al. Point-of-care serological assays for delayed SARS-CoV-2 case identification among health-care workers in the UK: A prospective multicentre cohort study. <i>The Lancet Respiratory Medicine</i> . 2020;8(9):885-894. doi:10.1016/S2213-2600(20)30315-5
34 35 36	93. Péré H, Wack M, Védie B, et al. Sequential SARS-CoV-2 IgG assays as confirmatory strategy to confirm equivocal results: Hospital-wide antibody screening in 3,569 staff health care workers in Paris. <i>Journal of Clinical Virology</i> . 2020;132:104617. doi:10.1016/j.jcv.2020.104617
37 38	94. Poulikakos D, Sinha S, Kalra PA. SARS-CoV-2 antibody screening in healthcare workers in a tertiary centre in North West England. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2020;129:104545-104545. doi:10.1016/j.jcv.2020.104545
39 40 41 42	95. Psichogiou M, Karabinis A, Pavlopoulou I, et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. <i>medRxiv</i> . Published online June 2020. doi:10.1101/2020.06.23.20137620
43 44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

96. Kolthur-Seetharam U, Shah D, Shastri J, et al. SARS-CoV2 Serological Survey in Mumbai by NITI-BMC-TIFR: Preliminary Report of Round-2. NITI-BMC-TIFR; 2020. 97. Shields AM, Faustini SE, Perez-Toledo M, et al. SARS-CoV-2 seroconversion in health care workers. medRxiv. Published online May 2020:2020.05.18.20105197. doi:10.1101/2020.05.18.20105197 98. Ismael Amaral Silva PA, Ismael C, Marchon da Silva C, Domenge C. 1761P Universal screening of SARS-CoV-2 of oncology healthcare workers a Brazilian experience. Annals of Oncology. 2020;31:S1024. doi:10.1016/j.annonc.2020.08.1825 99. Solodky ML, Galvez C, Russias B, et al. Lower detection rates of SARS-COV2 antibodies in cancer patients versus health care workers after symptomatic COVID-19. Annals of Oncology. 2020;31(8):1087-1088. doi:10.1016/j.annonc.2020.04.475 100. Soriano V, Meiriño R, Corral O, Guallar MP. Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in Adults in Madrid, Spain. Clinical Infectious Diseases. 2020;(ciaa769). doi:10.1093/cid/ciaa769 101. Instituto Nazionale di Statistica. PRIMI RISULTATI DELL'INDAGINE DI SIEROPREVALENZA SUL SARS-CoV-2. Instituto Nazionale di Statistica; 2020. 102. Steensels D, Oris E, Coninx L, et al. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. JAMA. 2020;(7501160). doi:10.1001/jama.2020.11160 103. Stock AD, Bader ER, Cezayirli P, et al. COVID-19 Infection Among Healthcare Workers: Serological Findings Supporting Routine Testing. Frontiers in Medicine. 2020;7. doi:10.3389/fmed.2020.00471 104. Takita M, Matsumura T, Yamamoto K, et al. Geographical Profiles of COVID-19 Outbreak in Tokyo: An Analysis of the Primary Care ClinicBased Point-of-Care Antibody Testing. Journal of Primary Care & Community Health. 2020;11:215013272094269. doi:10.1177/2150132720942695 105. Tong X, Ning M, Huang R, et al. Surveillance of SARS-CoV-2 infection among frontline health care workers in Wuhan during COVID-19 outbreak. Immunity, Inflammation and Disease. 2020;8(4):840-843. doi:10.1002/iid3.340 106. Trieu M-C, Bansal A, Madsen A, et al. SARS-CoV-2Specific Neutralizing Antibody Responses in Norwegian Health Care Workers After the First Wave of COVID-19 Pandemic: A Prospective Cohort Study. The Journal of Infectious Diseases. 2020;2021-(jiaa737). doi:10.1093/infdis/jiaa737 107. Tu D, Shu J, Wu X, et al. Immunological detection of serum antibodies in pediatric medical workers exposed to varying levels of SARS-CoV-2. The Journal of Infection. 2021;82(1):159-198. doi:10.1016/j.jinf.2020.07.023 108. Valdivia A, Torres I, Huntley D, et al. Caveats in interpreting SARS-CoV-2 IgM+/IgG- antibody profile in asymptomatic health care workers. Journal of Medical Virology. 2020;n/a(n/a). doi:10.1002/jmv.26400 109. Chafloque-Vasquez RA, Pampa-Espinoza L, Salinas JCC. Seroprevalence of COVID-19 in workers in a hospital in the Peruvian Amazon. ACTA MEDICA PERUANA. 2020;37(3). doi:10.35663/amp.2020.373.1050 110. Edna Viegas. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Maputo (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

111. Vlachoyiannopoulos P, Alexopoulos H, Apostolidi I, et al. Anti-SARS-CoV-2 antibody detection in healthcare workers of two tertiary hospitals in Athens, Greece. <i>Clinical Immunology</i> . 2020;221:108619. doi:10.1016/j.clim.2020.108619
112. Dalla Volta A, Valcamonico F, Pedersini R, et al. The Spread of SARS-CoV-2 Infection Among the Medical Oncology Staff of ASST Spedali Civili of Brescia: Efficacy of Preventive Measures. <i>Frontiers in Oncology</i> . 2020;10:1574. doi:10.3389/fonc.2020.01574
113. Ward H, Cooke G, Atchison C, et al. Declining prevalence of antibody positivity to SARS-CoV-2: A community study of 365,000 adults. <i>medRxiv</i> . Published online October 2020:2020.10.26.20219725. doi:10.1101/2020.10.26.20219725
114. Xiong S, Guo C, Dittmer U, Zheng X, Wang B. The prevalence of antibodies to SARS-CoV-2 in asymptomatic healthcare workers with intensive exposure to COVID-19. <i>medRxiv</i> . Published online June 2020;2020.05.28.20110767. doi:10.1101/2020.05.28.20110767
115. Zhang J, Liu J, Li N, et al. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing. <i>medRxiv</i> . Published online March 2020:2020.03.04.20030916. doi:10.1101/2020.03.04.20030916
116. Zhao D, Wang M, Wang M, et al. Asymptomatic infection by SARS-CoV-2 in healthcare workers: A study in a large teaching hospital in Wuhan, China. <i>International Journal of Infectious Diseases</i> . 2020;99:219-225. doi:10.1016/j.ijid.2020.07.082
117. Ahmad K, Rezvanizadeh V, Dahal S, et al. COVID-19 IgG/IgM antibody testing in Los Angeles County, California. <i>European Journal of Clinical Microbiology & Infectious Diseases</i> . Published online November 2020. doi:10.1007/s10096-020-04111-3
118. Halbrook M, Gadoth A, Martin-Blais R, et al. Incidence of SARS-CoV-2 infection among asymptomatic frontline health workers in Los Angeles County, California. <i>medRxiv</i> . Published online November 2020:2020.11.18.20234211. doi:10.1101/2020.11.18.20234211
119. Iwuji K, Islam E, Berdine G, Nugent K, Test V, Tijerina A. Prevalence of Coronavirus Antibody Among First Responders in Lubbock, Texas. <i>Journal of Primary Care & Community Health</i> . 11:2150132720971390. doi:10.1177/2150132720971390
120. Parker-Magyar A. Few among Long Hill first responders test positive for COVID-19 antibodies. Echoes Sentinel. Published online June 2020.
121. Caban-Martinez AJ, Schaefer-Solle N, Santiago K, et al. Epidemiology of SARS-CoV-2 antibodies among firefighters/paramedics of a US fire department: A cross-sectional study. <i>Occupational and Environmental Medicine</i> . 2020;77(12):857-861. doi:10.1136/oemed-2020-106676
122. Staletovich J. South Florida Cities Begin Testing Employees For COVID-19 Antibodies. WLRN. Published online May 2020.
123. Hibino M, Iwabuchi S, Munakata H. SARS-CoV-2 IgG seroprevalence among medical staff in a general hospital that treated patients with COVID-19 in Japan: Retrospective evaluation of nosocomial infection control. <i>Journal of Hospital Infection</i> . 2020;107:103-104. doi:10.1016/j.jhin.2020.10.001
124. Calcagno A, Ghisetti V, Emanuele T, et al. Risk for SARS-CoV-2 Infection in Healthcare Workers, Turin, Italy. <i>Emerging Infectious Diseases</i> . 2021;27(1):303-305. doi:10.3201/eid2701.203027
125. Alharbi SA, Almutairi AZ, Jan AA, Alkhalify AM. Enzyme-Linked Immunosorbent Assay for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) IgM/IgA and IgG Antibodies Among Healthcare Workers. <i>Cureus</i> . Published online September 2020. doi:10.7759/cureus.10285
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

126. Chau NVV, Toan LM, Man DNH, et al. Absence of SARS-CoV-2 antibodies in health care workers of a tertiary referral hospital for COVID-19 in southern Vietnam. Journal of Infection. 2020;82(1):e36-e37. doi:10.1016/j.jinf.2020.11.018 127. Khan MS, Haq I, Qurieshi MA, et al. SARS-CoV-2 seroprevalence in healthcare workers of dedicated-COVID hospitals and nonCOVID hospitals of District Srinagar, Kashmir. medRxiv. Published online October 2020:2020.10.23.20218164. doi:10.1101/2020.10.23.20218164 128. Costa SF, Giavina-Bianchi P, Buss L, et al. SARS-CoV-2 seroprevalence and risk factors among oligo/asymptomatic healthcare workers(HCW): Estimating the impact of community transmission. Clinical Infectious Diseases. 2020;(ciaa1845). doi:10.1093/cid/ciaa1845 129. Mohr N, Harland K, Krishnadasan A, Santibanez S, Talan D. Diagnosed and Undiagnosed COVID-19 in US Emergency Department Health Care Personnel: A Cross-sectional Analysis. Annals of Emergency Medicine. Published online December 2020. doi:10.1016/j.annemergmed.2020.12.007 130. Noor M, Haq M, Ul Haq N, et al. Does Working in a COVID-19 Receiving Health Facility Influence Seroprevalence to SARS-CoV-2? Cureus. Published online November 2020. doi:10.7759/cureus.11389 131. Singhal T, Shah S, Naik R, Kazi A, Thakkar P. Prevalence of COVID-19 Antibodies in Healthcare Workers at the Peak of the Pandemic in Mumbai, India: A Preliminary Study. Indian Journal of Medical Microbiology. 2020;38(3):461-463. doi:10.4103/ijmm.IJMM 20 308 132. Dacosta-Urbieta A, Rivero-Calle I, Pardo-Seco J, et al. Seroprevalence of SARS-CoV-2 Among Pediatric Healthcare Workers in Spain. Frontiers in Pediatrics. 2020;8. doi:10.3389/fped.2020.00547 133. Sartore-Bianchi A, Patelli G, Tosi F, et al. INCIDENCE OF SARS-COV-2 INFECTION IN PATIENTS WITH ACTIVE CANCER: MONO-INSTITUTIONAL SERIES OF A COMPREHENSIVE CANCER INSTITUTION IN LOMBARDY DURING THE COVID-19 PANDEMIC (NIGUARDA CANCER CENTER, MILANO, ITALY). In: Tumori Journal. Vol 106. AIOM Abstracts.; 2020:1-215. doi:10.1177/0300891620953388 134. Brousseau N, Morin L, Ouakki M, et al. COVID-19: Étude de séroprévalence chez des travailleurs de la santé de centres hospitaliers au Québec. Institut National de Sante Publique du Quebec; 2020:20. 135. Chen Y, Tong X, Wang J, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. The Journal of Infection. 2020;81(3):420-426. doi:10.1016/j.jinf.2020.05.067 136. Favara DM, Cooke A, Doffinger R, McAdam K, Corrie P, Ainsworth NL. COVID-19 Serology in Oncology Staff Study: Understanding SARS-CoV-2 in the Oncology Workforce. Clinical Oncology (Royal College of Radiologists (Great Britain). 2021;33(1):e61-e63. doi:10.1016/j.clon.2020.07.015 137. Fujita K, Shinpei Kada, Osamu Kanai, et al. Quantitative SARS-CoV-2 antibody screening of healthcare workers in the southern part of Kyoto city during the COVID-19 peri-pandemic period. medRxiv. Published online May 2020. 138. Godbout EJ, Pryor R, Harmon M, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare workers in a low prevalence region. Infection Control & Hospital Epidemiology. Published online December 2020:1-3. doi:10.1017/ice.2020.1374 139. Houlihan CF, Vora N, Byrne T, et al. Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. The Lancet. 2020;396(10246):e6-e7. doi:10.1016/S0140-6736(20)31484-7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3 4 5	140. Insúa C, Stedile G, Figueroa V, et al. Seroprevalence of SARS-CoV-2 antibodies among physicians from a children's hospital. <i>Archivos Argentinos De Pediatria</i> . 2020;118(6):381-385. doi:10.5546/aap.2020.eng.381
6 7	141. Kohler PP, Kahlert CR, Sumer J, et al. Prevalence of SARS-CoV-2 antibodies among Swiss hospital workers: Results of a prospective cohort study. <i>Infection Control & Hospital Epidemiology</i> . Published online October 2020:1-5. doi:10.1017/ice.2020.1244
8 9	142. Kumar N, Bhartiya S, Singh T. Duration of anti-SARS-CoV-2 antibodies much shorter in India. Vaccine. 2021;39(6):886-888. doi:10.1016/j.vaccine.2020.10.094
10 11 12	143. Mesnil M, Joubel K, Yavchitz A, Miklaszewski N, Devys J-M. Seroprevalence of SARS-Cov-2 in 646 professionals at the Rothschild Foundation Hospital (ProSeCoV study). Anaesthesia Critical Care & Pain Medicine. 2020;39(5):595-596. doi:10.1016/j.accpm.2020.08.003
13 14 15	144. Missaglia R, Belingheri M, Antolini L, et al. SARS-CoV-2 pandemia in Lombardy: The impact on family Paediatricians. <i>Italian Journal of Pediatrics</i> . 2020;46(1):184. doi:10.1186/s13052-020-00950-0
16 17	145. Orth-Höller D, Eigentler A, Weseslindtner L, Möst J. Antibody kinetics in primary- and secondary-care physicians with mild to moderate SARS-CoV-2 infection. <i>Emerging Microbes & Infections</i> . 2020;9(1):1692-1694. doi:10.1080/22221751.2020.1793690
18 19 20	146. Plebani M, Padoan A, Fedeli U, et al. SARS-CoV-2 serosurvey in health care workers of the Veneto Region. <i>Clinical Chemistry and Laboratory Medicine (CCLM)</i> . 2020;58(12):2107-2111. doi:10.1515/cclm-2020-1236
21 22 23	147. Rudberg A-S, Havervall S, Månberg A, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. <i>Nature Communications</i> . 2020;11(1):5064. doi:10.1038/s41467-020-18848-0
24 25 26	148. Schmidt SB, Grüter L, Boltzmann M, Rollnik JD. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. Adrish M, ed. <i>PLOS ONE</i> . 2020;15(6):e0235417. doi:10.1371/journal.pone.0235417
27 28	149. Sotgiu G, Barassi A, Miozzo M, et al. SARS-CoV-2 specific serological pattern in healthcare workers of an Italian COVID-19 forefront hospital. <i>BMC Pulmonary Medicine</i> . 2020;20(1):203. doi:10.1186/s12890-020-01237-0
29 30 31	150. Venugopal U, Jilani N, Rabah S, et al. SARS-CoV-2 seroprevalence among health care workers in a New York City hospital: A cross-sectional analysis during the COVID-19 pandemic. <i>International Journal of Infectious Diseases</i> . 2020;102:63-69. doi:10.1016/j.ijid.2020.10.036
32 33 34	151. Racine-Brzostek SE, Yang HS, Chadburn A, et al. COVID-19 Viral and Serology Testing in New York City Health Care Workers. American Journal of Clinical Pathology. 2020;154(5):592-595. doi:10.1093/ajcp/aqaa142
35 36 37	152. Hoffmann S, Spallek J, Heinz-Detlef G, Schiebel J, Hufert F. Testing the backbone of the healthcare system: A prospective serological-epidemiological cohort study of healthcare workers in rural Germany. Published online September 2020. doi:10.21203/rs.3.rs-84703/v1
38 39 40	153. Patel MM, Thornburg NJ, Stubblefield WB, et al. Change in Antibodies to SARS-CoV-2 Over 60 Days Among Health Care Personnel in Nashville, Tennessee. <i>JAMA</i> . 2020;324(17):1781. doi:10.1001/jama.2020.18796
41 42 43	
44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

154. Self WH, Tenforde MW, Stubblefield WB, et al. Seroprevalence of SARS-CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network 13 Academic Medical Centers, AprilJune 2020. *MMWR Morbidity and Mortality Weekly Report*. 2020;69(35):1221-1226. doi:10.15585/mmwr.mm6935e2

 155. Shah VP, Hainy CM, Swift MD, Breeher LE, Theel ES, Sampathkumar P. Unrecognized severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare personnel in a low-prevalence area. *Infection Control & Hospital Epidemiology*. Published online November 2020:1-3. doi:10.1017/ice.2020.1341

156. Bampoe S, Lucas DN, Neall G, et al. A cross-sectional study of immune seroconversion to SARS-CoV-2 in front-line maternity health professionals. *medRxiv*. Published online June 2020. doi:10.1101/2020.06.24.20139352

157. Dimcheff DE, Schildhouse RJ, Hausman MS, et al. Seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection among Veterans Affairs healthcare system employees suggests higher risk of infection when exposed to SARS-CoV-2 outside the work environment. *Infection Control & Hospital Epidemiology*.:1-7. doi:10.1017/ice.2020.1220

158. Finkenzeller T, Faltlhauser A, Dietl K-H, et al. SARS-CoV-2-Antikörper bei Intensiv- und Klinikpersonal. *Medizinische Klinik - Intensivmedizin und Notfallmedizin*. 2020;115(3):139-145. doi:10.1007/s00063-020-00761-5

159. Grant JJ, Wilmore SMS, McCann NS, et al. Seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a London NHS Trust. *Infection Control & Hospital Epidemiology*. Published online August 2020:1-3. doi:10.1017/ice.2020.402

160. Mansour M, Leven E, Muellers K, Stone K, Mendu DR, Wajnberg A. Prevalence of SARS-CoV-2 Antibodies Among Healthcare Workers at a Tertiary Academic Hospital in New York City. *Journal of General Internal Medicine*. 2020;35(8):2485-2486. doi:10.1007/s11606-020-05926-8

161. Martín V, Fernández-Villa T, Lamuedra Gil de Gomez M, et al. Prevalence of SARS-CoV-2 infection in general practitioners and nurses in primary care and nursing homes in the Healthcare Area of León and associated factors. *COVID19 en Atención Primaria*. 2020;46:35-39. doi:10.1016/j.semerg.2020.05.014

162. Meissner EG, Litwin C, Crocker T, Mack E, Card L. 460. Point-of-Care, In-Home SARS-CoV-2 IgG Antibody Testing to Assess Seroprevalence in At-Risk Health Care Workers. *Open Forum Infectious Diseases*. 2020;7(Supplement_1):S297-S297. doi:10.1093/ofid/ofaa439.653

163. Mostafa A, Kandil S, El-Sayed MH, et al. Universal COVID-19 screening of 4040 health care workers in a resource-limited setting: An Egyptian pilot model in a university with 12 public hospitals and medical centers. *International Journal of Epidemiology*. 2020;(dyaa173). doi:10.1093/ije/dyaa173

164. Paradiso AV, Summa simona D, Silvestris N, et al. COVID-19 SCREENING AND MONITORING OF ASYMPTOMATIC HEALTH WORKERS WITH A RAPID SEROLOGICAL TEST. *medRxiv*. Published online May 2020:2020.05.05.20086017. doi:10.1101/2020.05.05.20086017

165. Sydney ER, Kishore P, Laniado I, Rucker LM, Bajaj K, Zinaman MJ. Antibody evidence of SARS-CoV-2 infection in healthcare workers in the Bronx. *Infection Control & Hospital Epidemiology*. 2020;41(11):1348-1349. doi:10.1017/ice.2020.437

166. Zhou F, Li J, Lu M, et al. Tracing asymptomatic SARS-CoV-2 carriers among 3674 hospital staff: A cross-sectional survey. *EClinicalMedicine*. 2020;26. doi:10.1016/j.eclinm.2020.100510

167. Buntinx F, Claes P, Gulikers M, et al. Added value of anti-SARS-CoV-2 antibody testing in a Flemish nursing home during an acute COVID-19 outbreak in April 2020. *Acta Clinica Belgica*. 2020;0(0):1-6. doi:10.1080/17843286.2020.1834285

BMJ Open

2	
3 4	168. Reuben J, Sherman A, Ellison JA, et al. SARS-CoV-2 Seroprevalence among First Responders in the District of Columbia, May July 2020. <i>medRxiv</i> . Published online November 2020:2020.11.25.20225490. doi:10.1101/2020.11.25.20225490
5	
6	169. Saberian P, Mireskandari SM, Baratloo A, et al. Antibody Rapid Test Results in Emergency Medical Services Personnel during COVID-19 Pandemic; a Cross
7	Sectional study. Archives of Academic Emergency Medicine. 2020;9(1).
8	
9	170. Tarabichi Y, Watts B, Collins T, et al. SARS-CoV-2 Infection among Serially Tested Emergency Medical Services Workers. Prehospital Emergency Care.
10	2020;0(0):1-7. doi:10.1080/10903127.2020.1831668
11	171. Vijh R, Ghafari C, Hayden A, et al. Serological survey following SARS-COV-2 outbreaks at long-term care facilities in metro Vancouver, British Columbia:
12	Implications for outbreak management and infection control policies. American Journal of Infection Control. Published online October 2020.
13	doi:10.1016/j.ajic.2020.10.009
14	
15	172. Bhattacharya D, Winnett A, Fulcher JA, et al. 70. Lack of SARS-CoV-2 Antibody Seroconversion After Prompt Identification and Cohorting of Sentinel sars-cov-2-
16	positive Residents in a Skilled Nursing Facility. Open Forum Infectious Diseases. 2020;7(Supplement_1):S165-S166. doi:10.1093/ofid/ofaa439.380
17	
18	173. Pérez-García F, Pérez-Zapata A, Arcos N, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among hospital workers in a severely affected
19	institution in Madrid, Spain: A surveillance cross-sectional study. Infection Control & Hospital Epidemiology. Published online October 2020:1-7.
20	doi:10.1017/ice.2020.1303
21	174. Pérez-García F, Pérez-Zapata A, Arcos N, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among hospital workers in a severely affected
22	institution in Madrid, Spain: A surveillance cross-sectional study. Infection Control & Hospital Epidemiology. 2021;42(7):803-809. doi:10.1017/ice.2020.1303
23	
24	175. Mughal MS, Kaur IP, Patton CD, Mikhail NH, Vareechon C, Granet KM. The prevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG
25	antibodies in intensive care unit (ICU) healthcare personnel (HCP) and its implications single-center, prospective, pilot study. <i>Infection Control & Hospital</i>
26	<i>Epidemiology</i> . Published online June 2020:1-2. doi:10.1017/ice.2020.298
27	<i>Epiaemology</i> : 1 abilistica offine 2020.1 2. doi:10.101//icc.2020.290
28	176. Rao S. Covid-19: Jayadeva says its survey hints at herd immunity. The Times of India. Published online June 2020.
29	
30	177. Shukla V, Lau CSM, Towns M, et al. COVID-19 Exposure Among First Responders in Arizona. Journal of Occupational and Environmental Medicine.
31	2020;62(12).
32	
33	178. Gray A. Prevalence Of COVID-19 Antibodies In Washoe Co. Expected To Be Low. KUNR. Published online June 2020.
34	179. Chughtai O, Batool H, Khan M, Chughtai A. Frequency of COVID-19 IgG Antibodies among Special Police Squad Lahore, Pakistan. Journal of the College of
35	Physicians and Surgeons Pakistan. 2020;30(7):735-739. doi:10.29271/jcpsp.2020.07.735
36	
37	180. Gujski M, Jankowski M, Pinkas J, et al. Prevalence of Current and Past SARS-CoV-2 Infections among Police Employees in Poland, JuneJuly 2020. Journal of
38	Clinical Medicine. 2020;9(10):3245. doi:10.3390/jcm9103245
39	
40	181. Jerónimo Langa. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Lichinga (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
41	
42	
43	
44	
44	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46	

182. Ivalda Macicame. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Província de Maputo (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 183. Al-Thani MH, Farag E, Bertollini R, et al. Seroprevalence of SARS-CoV-2 infection in the craft and manual worker population of Qatar. medRxiv. Published online November 2020:2020.11.24.20237719. doi:10.1101/2020.11.24.20237719 184. Epstude J, Harsch IA. Seroprevalence of COVID-19 antibodies in the cleaning and oncological staff of a municipal clinic. GMS Hygiene and Infection Control; 15:Doc18. Published online July 2020. doi:10.3205/DGKH000353 185. Hassan SS, Seigerud Å, Mühr LSA, et al. SARS-CoV-2 infections among personnel providing home care services for the elderly in Stockholm, Sweden. medRxiv. Published online December 2020. doi:10.1101/2020.12.18.20248511 186. Ladhani SN, Jeffery-Smith A, Patel M, et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: Prospective cohort study, England. EClinicalMedicine. 2020;28. doi:10.1016/j.eclinm.2020.100597 187. Lindahl JF, Hoffman T, Esmaeilzadeh M, et al. High seroprevalence of SARS-CoV-2 in elderly care employees in Sweden. Infection Ecology & Epidemiology. 2020;10(1):1789036. doi:10.1080/20008686.2020.1789036 188. Regan T. Fellowship Village Benefits from Covid-19 Antibody Tests. Senior Housing News. Published online June 2020. 189. Alali WQ, Bastaki H, Longenecker JC, et al. Seroprevalence of SARS-CoV-2 in migrant workers in Kuwait. Journal of Travel Medicine. 2020;(taaa223). doi:10.1093/itm/taaa223 190. Addetia A, Crawford KHD, Dingens A, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. McAdam AJ, ed. Journal of Clinical Microbiology. 2020;58(11):e02107-20, /jcm/58/11/JCM.02107-20.atom. doi:10.1128/JCM.02107-20 191. Picon RV, Carreno I, da Silva AA, et al. Coronavirus disease 2019 population-based prevalence, risk factors, hospitalization, and fatality rates in southern Brazil. International Journal of Infectious Diseases. 2020;100:402-410. doi:10.1016/j.ijid.2020.09.028 192. D B, L B, P T, Pa P, A B, U L. Effectiveness of the measures aimed at containing Sars-cov-2 virus spreading in work settings: A survey in companies based in the Veneto region of Italy. La Medicina del lavoro. Published online October 2020. doi:10.23749/mdl.v111i5.10037 193. Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nature Medicine. 2020;26(8):1193-1195. doi:10.1038/s41591-020-0949-6 194. Chamie G, Marquez C, Crawford E, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 Disproportionately Affects the Latinx Population During Shelter-in-Place in San Francisco. Clinical Infectious Diseases. Published online August 2020:ciaa1234. doi:10.1093/cid/ciaa1234 195. McLaughlin C, Doll MK, Morrison KT, et al. High Community SARS-CoV-2 Antibody Seroprevalence in a Ski Resort Community, Blaine County, Idaho, US. Preliminary Results. medRxiv. Published online July 2020. doi:10.1101/2020.07.19.20157198 196. Muñoz L, Pífano M, Bolzán A, et al. Surveillance and Seroprevalence: Evaluation of IgG Antibodies for SARS-Cov2 by ELISA in the Popular Neighborhood Villa Azul, Quilmes, Province of Buenos Aires, Argentina.; 2020. doi:10.1590/SciELOPreprints.1147 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Occupation and SARS-CoV-2 seroprevalence studies: a systematic review

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063771.R2
Article Type:	Original research
Date Submitted by the Author:	03-Feb-2023
Complete List of Authors:	Boucher, Emily; University of Calgary Cumming School of Medicine, Cao, Christian; University of Calgary, Cumming School of Medicine D'Mello, Sean; University of Waterloo Duarte, Nathan; McGill University, Faculty of Engineering Donnici, Claire; University of Calgary, Cumming School of Medicine Duarte, Natalie; University of Toronto, Faculty of Arts and Science Bennett, Graham; McGill University, Department of Economics Consortium, SeroTracker ; University of Calgary Adisesh, Anil; Unity Health Toronto, St. Michael's Hospital; University of Toronto, Division of Occupational Medicine Arora, Rahul; Oxford University, Institute of Biomedical Engineering Kodama, David; Unity Health Toronto, St. Michael's Hospital; University of Toronto Department of Medicine, Division of Emergency Medicine Bobrovitz, Niklas; University of Toronto Temerty Faculty of Medicine; University of Calgary, Department of Critical Care Medicine
Primary Subject Heading :	Occupational and environmental medicine
Secondary Subject Heading:	Infectious diseases, Public health
Keywords:	COVID-19, Public health < INFECTIOUS DISEASES, OCCUPATIONAL & INDUSTRIAL MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Occupation and SARS-CoV-2 seroprevalence studies: a systematic review

Emily Boucher,¹ Christian Cao¹, Sean D'Mello,² Nathan Duarte,³ Claire Donnici¹, Natalie Duarte,⁴ Graham Bennett,⁵ SeroTracker Consortium, Anil Adisesh,⁶⁻⁸ Rahul K. Arora,^{1,9} David Kodama,^{6,10} Niklas Bobrovitz^{11,12}

1. Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

- 2. Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
- 3. Faculty of Engineering, McGill University, Montreal, QC, Canada
- 4. Faculty of Arts and Science, University of Toronto, ON, Canada
- 5. Department of Economics, Faculty of Arts, McGill University, Montreal, QC, Canada
- 6. St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- 7. Division of Occupational Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
- 8. Canadian Health Solutions, Saint John, NB, Canada
- 9. Institute of Biomedical Engineering, University of Oxford, Oxford, UK
 - 10. Division of Emergency Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
 - 11. Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- 12. Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada

*Correspondence to Emily Boucher, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; <u>emily.boucher@ucalgary.ca</u>

Word Count 1411

Key Words Covid-19, Infectious diseases, Occupational & industrial medicine

totoeetterien ont

ABSTRACT

Objective. To describe and synthesize studies of SARS-CoV-2 seroprevalence by occupation prior to the widespread vaccine rollout.

Methods. We identified studies of occupational seroprevalence from a living systematic review (PROSPERO CRD42020183634). Electronic databases, gray literature, and news media were searched for studies published January-December 2020. Seroprevalence estimates and a free text description of the occupation were extracted and classified according to the Standard Occupational Classification (SOC) 2010 system using a machine-learning algorithm. Due to heterogeneity, results were synthesized narratively.

Results. We identified 196 studies including 591,940 participants from 38 countries. Most studies (n=162; 83%) were conducted locally vs regionally or nationally. Sample sizes were generally small (median=220 participants per occupation) and 135 studies (69%) were at a high risk of bias. One or more estimates were available for 21/23 major SOC occupation groups, but over half of the estimates identified (n=359/600) were for healthcare-related occupations. 'Personal Care and Service Occupations' (median 22% [IQR 9-28%]; n=14) had the highest median seroprevalence.

Conclusions. Many seroprevalence studies covering a broad range of occupations were published in the first year of the pandemic. Results suggest considerable differences in seroprevalence between occupations, although few large, high-quality studies were done. Well-designed studies are required to improve our understanding of the occupational risk of SARS-CoV-2 and should be considered as an element of pandemic preparedness for future respiratory pathogens.

Strengths and limitations

- We conducted a comprehensive search of the COVID-19 seroprevalence literature, including non-English articles, government reports, unpublished data.
- Occupations were classified using the Standard Occupational Classification (SOC) 2010 coding system to improve interpretability and facilitate comparison with other datasets.
- Seroprevalence may underestimate the true prevalence of infection because antibody titres decline over time, but where possible we prioritized prevalence estimates for IgG antibodies, which appear to be more robust than other immunoglobulin types.
- We did not adjust for differences in serologic test performance.

INTRODUCTION

Occupation is a social determinant of health and an important risk factor for SARS-CoV-2 infection. Essential workers in health and social care occupations have an increased risk of COVID-19 compared to non-essential workers, but the risks for other occupations are not well defined.¹⁻³ Studies examining confirmed COVID-19 cases to examine occupational COVID-19 risk are affected by variable testing rates. For example, testing rates may be higher in workplaces offering testing or paid sick leave, and are impacted by geographic (e.g., urban versus rural) and socio-economic factors (e.g., deprivation), potentially biasing results.⁴⁻⁶ Few high-quality, prospective studies using frequent, serial molecular or antigen testing covering a broad range of occupations having been conducted, in part due to the costs and administrative burden of such studies.^{7,8}

Serologic testing for SARS-CoV-2 antibodies provides evidence of previous infection and/or vaccination depending on vaccination status and the specific antigens targeted and can be used to obtain more accurate estimates of the cumulative incidence of infection.⁹ Accurate data on the occupational risks of COVID-19 and other respiratory infections are essential for informing the development of occupational safety guidelines and regulations, transmission control measures and resource allocation (testing, personal protective equipment (PPE), etc.). The objectives of this review were to describe and synthesize studies of SARS-CoV-2 seroprevalence across a broad range of occupations globally prior to the widespread rollout of vaccines.

METHODS

We identified seroprevalence studies with sample frames or subgrouping variables related to occupation or employment status from a database compiled via a living systematic review (PROSPERO CRD42020183634). The database has been described previously and includes >1000 cohort and cross-sectional studies reporting antibody testing for SARS-CoV-2 in humans identified from electronic databases, grey literature, and news media.¹⁰⁻¹² We restricted the current review to studies published January-December 2020 before vaccines were rolled-out, because differential vaccination rates by occupation may obscure results. We excluded studies that only reported seroprevalence for mixed occupation groups or workplaces (e.g., "hospital staff") rather than specific occupations, included children <18 years and that could not be machine-translated using Google Translate if unavailable in English or French (**Supplementary File 1**).

We extracted study information, sample characteristics, seroprevalence estimates and study-level risk of bias from the living review database. Risk of bias was assessed with a modified Joanna Briggs Institute Checklist for Prevalence Studies by one reviewer and verified independently as described previously. Overall risk of bias was assessed qualitatively based on whether seroprevalence estimates were very likely (corresponding to a low risk of bias), likely (moderate risk) or unlikely (low risk) to be correct for the author's stated target population (**Supplementary File 1**).^{12,13} If multiple estimates were reported, the most recent estimate using laboratory-based methods (e.g. ELISA), and anti-spike and/or IgG antibodies were prioritized,

because non-IgG and anti-nucleocapsid antibodies may decline more rapidly.14 Free-text

descriptions of occupations were extracted from the original studies by one researcher and reviewed by a second.

For each seroprevalence estimate, we identified the relevant Standard Occupational Classification (SOC) 2010 codes by applying the National Institute for Occupational Safety & Health (NIOSH) Industry and Occupation Computerized Coding System (NIOCCS) to occupation descriptions.¹⁵ NIOCCS was chosen, because many studies were conducted in the USA. Coding was manually verified if there was insufficient information for NIOCCS classification, or if the probability of correct classification to the six-digit level was <0.8 based on our review of a subset of the NIOCCS coded data (**Supplementary File 1**). Anticipating substantial heterogeneity and an insufficient number of estimates relative to covariates for metaregression, we planned to summarize data using the median/IQR.

Patient and Public Involvement: It was not possible or appropriate to involve patients or the public in this study.

RESULTS

We identified 196 studies of occupational seroprevalence conducted in 2020 during the first and second waves of the pandemic (Figure 1). There were 591,940 participants from 38 countries, including the USA (n=44 studies), UK (n=16) and Italy (n=15). Most studies (n=162; 83%) were conducted locally (e.g. city, county) as opposed to regionally (e.g. state; n=20; 10%) or nationally (n=14; 7%). Most were restricted to one occupational group (n=103), limiting direct comparisons (i.e. using the same reference group). Sample sizes were often small (median=220, IQR 64-568 participants). Overall, 135 studies (69%) were at a high risk of bias, 47 moderate

BMJ Open

(24%), 2 low (1%) and 12 unclear (6%). Common reasons for bias were inadequate statistical analysis (i.e. no adjustment for test or sample characteristics; 92%), non-probability sampling (74%), and small sample-size (46%).

At least one estimate was available for all 23 major SOC occupation groups, except for 'Legal' and 'Military-Specific' occupations (Figure 2; all studies). Over half of the 600 estimates identified (n=359) were for healthcare-related occupations. For SOC groups with three or more estimates, the highest median seroprevalence was reported for 'Personal Care and Service Occupations' (median 22% [IQR 9-28%]; n=14, e.g. 'Personal Care Aids'). The next highest was reported for 'Building and Grounds Cleaning and Maintenance' occupations (11% [3-22%]; n=17, e.g. 'Maids and Housekeeping Cleaners'), and 'Healthcare Support' (11% [2-20%]; n=39, e.g. 'Nursing Assistants') occupations. The lowest median seroprevalence was 1% (0-11%; n=6, e.g. 'Athletes') for 'Arts, Design, Entertainment, Sports, and Media Occupations.' Individual estimates are listed in **Supplementary File 2**.

DISCUSSION

This review is the first comprehensive synthesis of occupational COVID-19 seroprevalence studies world-wide. We identified 196 studies representing 21 out of 23 major SOC groups conducted during the first and second waves of the SARS-CoV-2 pandemic in 2020, prior to the widespread rollout of vaccines, and described occupational groups with high seroprevalence.

Seroprevalence studies may estimate the cumulative incidence of infection more accurately than diagnostic testing studies when access to testing and test performance are poor, and also can

identify asymptomatic infections.^{6,8} The data identified suggest considerable differences in seroprevalence by occupation, though we did not statistically test for differences due to considerable variation in geography, study dates and workplace determinants of infection (e.g. PPE, ventilation). 'Caring and Personal Service' occupations had the highest median seroprevalence (22%), which was four-times higher than the unemployed (5%) and median seroprevalence across all occupational groups (5%). The UK Office for National Statistics reported a slightly lower cumulative incidence for positive diagnostic or rapid tests for COVID-19 across 25 occupational groups of 4% (mean),⁴ but the discrepancy between the true cumulative incidence and confirmed infections is likely greater in regions with less access to testing: national, population-based serosurveys have estimated there are 10-20 serologically identifiable cases per one confirmed case.¹²

In future pandemics, large, well-reported, high-quality seroprevalence studies across a broad range of occupations are needed at an early stage to inform appropriate workplace policy. It has been suggested that 20% of the US workforce was exposed to disease or infection at work at least once a month prior to the pandemic.¹⁶ Accurate data on the occupational risks of respiratory infections, including SARS-CoV-2 are needed to inform understanding of transmission, occupational health and safety agency guidelines and allocation of resources (e.g., personal protective equipment and vaccines) during outbreaks and pandemics. For governments, there are also issues of occupational disease recognition and compensation to be considered.

As such, future population-based studies on respiratory infections should collect data on occupation. In the case of epidemic infection, collaboration between academic centres with the

BMJ Open

capacity to conduct large-scale studies and government agencies with expertise in disease surveillance and access to workplace data (e.g., public health, occupational health and safety) may be beneficial.¹² Other authors have suggested the utility of occupational surveillance systems.¹⁷ However, the routine completion of the occupation field in electronic health records would also serve this purpose as well as informing patient reported outcome measures.

Strengths and Limitations

Despite the large number of studies of occupational seroprevalence conducted, many studies had methodological limitations. Only two studies were at a low risk of bias and most occupational subgroups had small sample sizes (median 220 participants). Many were limited to one major SOC group (n=103 studies), which precluded comparisons. Detailed descriptions of occupations were often lacking, potentially contributing to coding errors and misclassification, and workplace determinants of infection (e.g. use of PPE) were poorly reported.

In conclusion, our review shows that a large number of seroprevalence studies covering a broad range of occupations were published in the first year of the pandemic. Results suggest considerable differences in seroprevalence between occupations, although few large, well-reported, high-quality studies were done. Carefully-designed, adequately powered seroprevalence studies with coverage of a broad range of occupations could improve our understanding of the occupational risk of SARS-CoV-2 and other respiratory infections and should be considered an element of pandemic preparedness and response.

Funding Statement

SeroTracker receives funding for SARS-CoV-2 seroprevalence study evidence synthesis from the Public Health Agency of Canada through Canada's COVID-19 Immunity Task Force (Grant Number 2021-HQ-000056), the World Health Organization Health Emergencies Programme, the Robert Koch Institute, and the Canadian Medical Association Joule Innovation Fund. No funding source had any role in the design of this study, its execution, analyses, interpretation of the data, or decision to submit results. This manuscript does not necessarily reflect the views of the World Health Organization or any other funder.

Statement of author's contributions

This secondary analysis of the SeroTracker database was conceived by NB, EB, DK and AA. Senior authors on this paper were NB, DK, RA and AA. The protocol was developed by EB, NB and DK. Data cleaning was performed by CC, CD, NatalieD, SD and EB and verification by EB, SD, NathanD and GB. Analysis was performed by EB and RA. The first draft of the manuscript was written by EB and revised by EB, RA, NB, NathanD, GB, SD, CC, AA, DK. The SeroTracker Consortium maintained the living systematic review database used in the study. All authors reviewed and agreed to the findings, and also provided critical revisions to the paper.

Disclosure of potential and actual conflicts of interest

RKA was previously a Technical Consultant for the Bill and Melinda Gates Foundation Strategic Investment Fund, is a minority shareholder of Alethea Medical, and was a former Senior Policy Advisor at Health Canada. Each of these relationships is unrelated to the present work.

BMJ Open

JP reports grants to his institution from MedImmune, Sanofi Pasteur, Merck and AbbVie, and personal fees for lectures from AbbVie and Astra-Zeneca, all outside of the submitted work.

MPC reports grants from McGill Interdisciplinary Initiative in Infection and Immunity, grants from Canadian Institutes of Health Research, during the conduct of the study; personal fees from GEn1E Lifesciences, personal fees from nplex biosciences, personal fees from Kanvas biosciences, personal fees from AstraZeneca, non-financial support from Cidara therapeutics, non-financial support from Scynexis, Inc., non-financial support from Amplyx Pharmaceutics, outside the submitted work. In addition, MPC has a patent for methods detecting tissue damage, graft versus host disease, and infections using cell-free DNA profiling pending, a patent for methods assessing the severity and progression of SARS-CoV-2 infections using cell-free DNA pending, a patent for rapid identification of antimicrobial resistance and other microbial phenotypes using highly-multiplexed fluorescence in situ hybridization pending, and a patent highly multiplexed detection of gene expression with hybridization chain reaction pending, all outside the submitted work.

Ethics approval: Not applicable. This study did not involve human participants or animals.

Dating sharing: Seroprevalence data can be downloaded (or requested) from https://serotracker.com.

REFERENCES

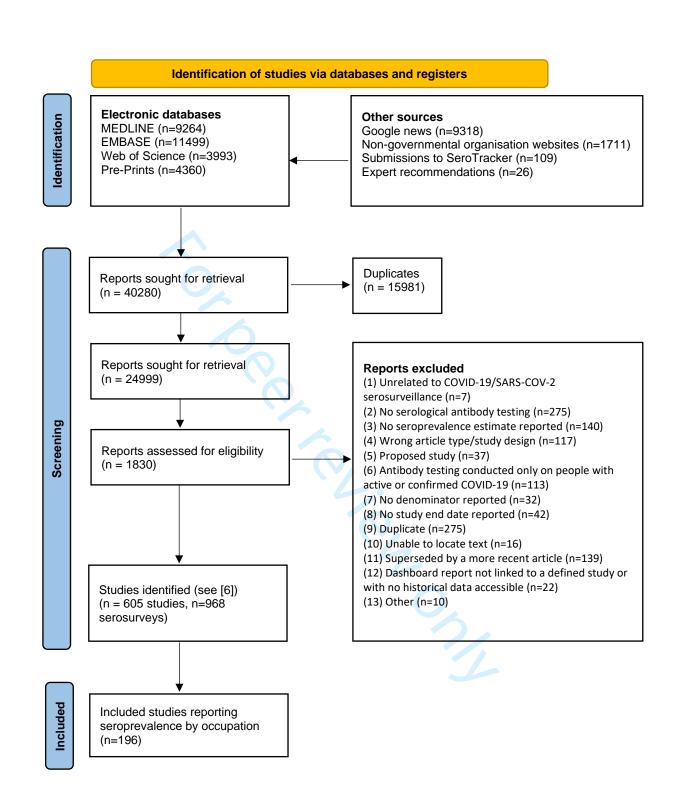
- 1. Magnusson K, Nygard KM, Methi F, Vold L, Telle K. Occupational risk of COVID-19 in the first versus second epidemic wave in Norway, 2020. *Euro Surveill* 2021;26:2001875.
- 2. Mutambudzi M, Niedwiedz C, Macdonald EB, et al. Occupation and risk of severe COVID-19: prospective cohort study of 120 075 UK Biobank participants. *Occup Environ Med* 2021;78:307-14.
- 3. Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-line healthcare workers and the general community: a prospective cohort study. *Lancet Public Health* 2020;5:e475-83.
- 4. Seo E, Mun E, Kim W, Lee C. Fighting the COVID-19 pandemic: onsite mass workplace testing for COVID-19 in the Republic of Korea. *Ann Occup Environ Med* 2020;32:e22.
- 5. Tan TQ, Kullar R, Swartz TH, Mathew TA, Piggott DA, Berthaud V. Location matters: geographic disparities and impact of coronavirus disease 2019. *J Infect Dis* 2020;222:1951-4.
- Duarte N, D'Mello S, Duarte NA, et al. Uptake of SARS-CoV-2 workplace testing programs, March 2020 to March 2021. *MedRxiv* 21259730 [Preprint]. July 31 2021 [cited December 28 2021] doi: https://doi.org/10.1101/2021.06.29.21259730
- 7. Office for National Statistics. Coronavirus (COVID-19) Infection Survey: characteristics of people testing positive for COVID-19 in England. 2021 Feb 22. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsa nddiseases/articles/coronaviruscovid19infectionsinthecommunityinengland/characteristic sofpeopletestingpositiveforcovid19inengland22february2021
- 8. Pearce N, Rhodes S, Stocking K, et al. Occupational differences in COVID-19 incidence, severity, and mortality in the United Kingdom: Available data and framework for analyses. *Wellcome Open Res* 2021;6:102.
- 9. Duarte N, Yanes-Lane M, Arora RK, et al. Adapting Serosurveys for the SARS-CoV-2 Vaccine Era. *Open Forum Infect Dis* 2021;9:ofab632.
- 10. Arora RK, Joseph A, Van Wyk J, et al. SeroTracker: a global SARS-CoV-2 seroprevalence dashboard. *Lancet Infec Dis* 2021;21:e75–6.

[dataset] 11. SeroTracker Consortium. Data from: Our Data. November 7, 2021. https://serotracker.com/data

1	
2	
3	
4	12 Debrevitz M. Arone DV. Cos C. et al. Clabel compressiones of SADS CoV 2 antibadios.
5	12. Bobrovitz N, Arora RK, Cao C, et al. Global seroprevalence of SARS-CoV-2 antibodies:
6	a systematic review and meta-analysis. <i>PloS ONE</i> 2021;16:e0252617.
7	
8	12 Munn 7 Maala S. Lizy K. Diitana D. Tufanam C. Mathadalagiaal avidance for
9	13. Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for
10	systematic reviews of observational epidemiological studies reporting prevalence and
11	incidence data. Int J Evid Based Healthc 2015;13:147-153.
12	· · · · · · · · · · · · · · · · · · ·
13	
14	14. Isho B, Abe KT, Zuo M, et al. Persistence of serum and saliva antibody responses to
15	SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 2020;5:eabe5511.
16	
17	
18	15. NIOSH. NIOSH Industry and Occupation Computerized Coding System (NIOCCS). U.S.
19	Department of Health and Human Services, Public Health Service, Centers for Disease
20	Control and Prevention, National Institute for Occupational Safety and Health, Division
21	
22	of Field Studies & Engineering, Health Informatics Branch.
23	https://csams.cdc.gov/nioccs/About.aspx. Date accessed Sept 1, 2021.
24	
25	
26	16. Baker MG, Peckham TK, Seixas NS. Estimating the burden of United States workers
27	exposed to infection or disease: a key factor in containing risk of COVID-19 infection.
28	<i>PloS ONE</i> 2020;15:e0232452.
29	
30	
31	17. Marinaccio A, Boccuni F, Rondinone BM, Brusco A, D'Amario S, Iavicoli S.
32	Occupational factors in the COVID-19 pandemic in Italy: compensation claims
33	applications support establishing an occupational surveillance system. Occup Environ
34	Med 2020;77:818-21.
35	1100 2020;77:010 21.
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
49 50	
50	
52	
53	
54	
55	
56	
57	
58	

Figure Legends

Figure 1. PRISMA flow diagram


Figure 2. Seroprevalence by SOC 2010 major occupation group. *Estimates are a mix of

'Healthcare Practitioners and Technical Occupations' and 'Healthcare Support Occupations' (see

next page)

Supplementary File 1. Supplementary methods

Supplementary File 2. Summary of included studies and references

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: <u>http://www.prisma-statement.org/</u>

	Total BMJ Open Median, IQR			R Seroprevalence %			Page №% of 119
SOC 2010 Major Occupation Group	Estimates		Study dates, midpoint	Sample size	(Median, IQR)	(Scale 0-75%)	Low-Moderate RoB
Architecture and Engineering Occupations (17-0000)	1	1	15/08 (15/08-15/08)	21 (21-21)	42.9 (42.9-42.9)	T	0 (0%)
I Bersonal Care and Service Occupations (39-0000)	14	7	03/05 (02/04-02/06)	127 (54-302)	21.5 (9.32-27.76)	⊢ <u> </u> ⊣ •	3 (21%)
– Bistallation, Maintenance, and Repair Occupations (49-0000)	1	1	19/06 (19/06-19/06)	134 (134-134)	16.4 (16.4-16.4)	1	0 (0%)
duilding and Grounds Cleaning and Maintenance Occupations (37-0000)	17	8	13/07 (09/06-16/08)	102 (42-226)	10.8 (3.3-21.7)	H I	6 (35%)
Healthcare Support Occupations (31-0000)	39	12	05/06 (19/05-21/06)	263 (122-562)	10.7 (2-20.05)	+	12 (31%)
6 Business and Financial Operations Occupations (13-0000)	2	2	05/07 (18/06-22/07)	462 (252-671)	8.27 (5.3-11.23)	(D	2 (100%)
glanagement Occupations (11-0000)	10	6	17/06 (01/05-02/08)	44 (23-145)	8.17 (6.7-19.93)	H	3 (30%)
P ood Preparation and Serving Related Occupations (35-0000)	6	4	17/06 (11/05-23/07)	58 (12-108)	6.35 (2.37-24.03)	+ <mark> -</mark>	2 (33%)
Healthcare Practitioners and Technical Occupations (29-0000) Healthcare Practitioners and Technical Occupations, 5-digit codes**	222	23	13/06 (13/05-13/07)	215 (64-482)	5.91 (1.83-11.71)	k ∥ → •	84 (38%)
12 Miscellaneous Health Technologists and Technicians	4	3	26/08 (09/08-12/09)	60 (20-121)	12.96 (9.09-27.54)	⊢│ ──→	1 (25%)
13 Registered Nurses 14	78	18	05/06 (05/05-05/07)	329 (71-1000)	8.44 (3.68-15.5)	+ 	22 (28%)
1 Clinical Laboratory Technologists and Technicians	18	12	15/06 (19/05-11/07)	204 (86-284)	6.22 (2.07-11.94)	H II I⊐I •	12 (67%)
1 ⊕ hysicians and Surgeons	65	21	09/06 (10/05-09/07)	214 (59-564)	5.88 (1.85-11.8)	+ II →• •	23 (35%)
1 ≩mergency Medical Technicians and Paramedics	9	6	13/06 (27/05-30/06)	157 (56-243)	5.41 (5.2-11)	н) •	4 (44%)
18 Therapists	15	4	08/06 (19/05-28/06)	121 (61-235)	3.75 (0-9.45)	d a	7 (47%)
19 20 ^{Physician Assistants}	9	2	27/06 (26/05-28/07)	230 (156-320)	3.48 (0.64-9.43)	(F	3 (33%)
2 Pharmacists	9	7	29/06 (14/06-14/07)	113 (29-213)	0.5 (0-3.45)	• •••	4 (44%)
althcare Occupations (mixed)*	94	25	05/06 (29/04-12/07)	375 (110-1012)	5.66 (2.35-11.6)	+ <mark>∥</mark> → •• •	23 (24%)
Sales and Related Occupations (41-0000)	23	8	21/08 (22/06-19/10)	643 (236-1184)	5.3 (1.2-8.8)	• 1 -1 • •	6 (26%)
24 Education, Training, and Library Occupations (25-0000)	6	5	05/07 (12/06-27/07)	238 (73-1305)	5.07 (2.71-17.22)	H H	3 (50%)
дорани и страна и страни и страниции и с Бактивники и страниции и стр	3	3	13/07 (25/06-30/07)	80 (66-100)	5 (2.5-5)	н	1 (33%)
∑or employed (mixed)*	37	14	23/06 (12/05-04/08)	382 (116-905)	4.9 (2.7-14.97)	⊦ •	28 (76%)
Shice and Administrative Support Occupations (43-0000)	39	18	14/06 (18/05-11/07)	120 (32-522)	4.88 (1.36-13.36)	₩ •	20 (51%)
29 First responders (mixed)*	6	1	18/05 (13/05-22/05)	219 (72-599)	4.67 (1.6-7.34)	ф.	1 (17%)
30 Community and Social Service Occupations (21-0000)	6	2	30/05 (18/05-11/06)	104 (49-188)	4.45 (2.13-6.1)	н <mark>)</mark> •	1 (17%)
Brotective Service Occupations (33-0000)	28	9	04/07 (21/05-16/08)	190 (46-555)	4.29 (2.17-7.47)	H ⊣ • •	6 (21%)
Bansportation and Material Moving Occupations (53-0000)	23	7	08/08 (08/06-08/10)	230 (80-364)	3.5 (1.8-11.8)	H H •	8 (35%)
Price, Physical, and Social Science Occupations (19-0000)	11	7	06/07 (11/06-30/07)	343 (174-570)	2.6 (1.66-6.46)	K H	4 (36%)
35 Production Occupations (51-0000) 36	4	3	23/05 (26/04-19/06)	764 (342-1132)	1.52 (1.45-4.93)		2 (50%)
Arts, Design, Entertainment, Sports, and Media Occupations (27-0000)	6	5	07/07 (04/06-09/08)	164 (47-823)	1.39 (0.18-11.02)	(+	3 (50%)
Gemputer and Mathematical Occupations (15-0000)	only - http 1	o://bmjope	en.bmj.com/site/abo 03/05 (03/05-03/05)	ut/guidelines.: 47 (47-47)	xhtml 0 (0-0)	1	1 (100%)
39 nstruction and Extraction Occupations (47-0000)	1	1	03/05 (03/05-03/05)	42 (42-42)	0 (0-0)	L	1 (100%)

1 2	
$ \begin{array}{c} 3 & 1 \\ 4 & 2 \\ 5 & \end{array} $	Supplementary File 1 Materials
6 7 3 8	Table of Contents
9 4	Supplementary files2
10 5	S1. PRISMA checklist
11 6	S2. Search strategy4
12 12 7	S3. Detailed eligibility criteria8
13 14 8	S4. Tool for assessing study risk of bias9
15 9	S5. Details of occupational coding12
16 10 17 10	References for supplementary files14
11 11 19 12 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 60	S5. Details of occupational coding 12 References for supplementary files 14

13 Supplementary Material

1415 S1. PRISMA checklist

Section/topic	#	Checklist item	Reported on page
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	0
ABSTRACT			
Structured	2	Provide a structured summary including, as applicable: background; objectives; data	1
summary		sources; study eligibility criteria, participants, and interventions; study appraisal and	
		synthesis methods; results; limitations; conclusions and implications of key findings;	
		systematic review registration number.	
INTRODUCTION	1		
Rationale	3	Describe the rationale for the review in the context of what is already known.	3, lines 14-30
Objectives	4	Provide an explicit statement of questions being addressed with reference to	3, line 30-32
		participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS			
Protocol and	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address),	3, line 39
registration		and, if available, provide registration information including registration number.	
Eligibility	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report	4, lines 39-45
criteria		characteristics (e.g., years considered, language, publication status) used as criteria for	
		eligibility, giving rationale.	
Information	7	Describe all information sources (e.g., databases with dates of coverage, contact with	4, lines 39-40
sources	0	study authors to identify additional studies) in the search and date last searched.	G 1 E'' 0
Search	8	Present full electronic search strategy for at least one database, including any limits	Suppl. File 2
C 4 - 1 1 +	0	used, such that it could be repeated.	4 1:
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	4, lines 41-43
Data collection	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in	4, lines 41-49, 57-2
process	10	duplicate) and any processes for obtaining and confirming data from investigators.	4, 111105 41-49, 57-
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources)	4, lines 44-45 (see
Data items	11	and any assumptions and simplifications made.	reference to
		and any assumptions and simplifications indee.	previous study)
Risk of bias in	12	Describe methods used for assessing risk of bias of individual studies (including	4, see reference an
individual studies		specification of whether this was done at the study or outcome level), and how this	Suppl. File 1
		information is to be used in any data synthesis.	
Summary	13	State the principal summary measures (e.g., risk ratio, difference in means).	4, lines 57-78
measures			
Synthesis of	14	Describe the methods of handling data and combining results of studies, if done,	4, lines 57-58
results		including measures of consistency (e.g., I ²) for each meta-analysis.	
Risk of bias	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g.,	4, lines 47-48
across studies		publication bias, selective reporting within studies).	
Additional	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-	NA
analyses		regression), if done, indicating which were pre-specified.	
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review,	Suppl File 1
Staty selection	1/	with reasons for exclusions at each stage, ideally with a flow diagram.	Suppriner
Study	18	For each study, present characteristics for which data were extracted (e.g., study size,	Suppl. File 2
characteristics	-	PICOS, follow-up period) and provide the citations.	11 .
Risk of bias	19	Present data on risk of bias of each study and, if available, any outcome level	Suppl. File 2
within studies		assessment (see item 12).	**
Results of	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple	Suppl. File 2
individual studies		summary data for each intervention group (b) effect estimates and confidence intervals,	
		ideally with a forest plot.	
Synthesis of	21	Present results of each meta-analysis done, including confidence intervals and	NA – see narrative
results		measures of consistency.	synthesis on page
Distroft:	22	Dependent applies of any approximation of the second sec	& Figure 1
Risk of bias	22	Present results of any assessment of risk of bias across studies (see Item 15).	5, lines 72-75
across studies	22	Cive results of additional analyzes, if done (a a constitutive or subgroup as-1	Figure 1
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	NA
DISCUSSION			
DISCUSSION			
Summary of	24	Summarize the main findings including the strength of evidence for each main	6, lines 110-118
evidence		outcome; consider their relevance to key groups (e.g., healthcare providers, users, and	1

		policy makers).	
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	6, lines 131-136
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	6, lines 119-120
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	9

for beer terien only

S2. Search strategy

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily Dates: January 1, 2020 to December 31, 2020

Notes: Covid-19 search terms were adapted from Ovid Expert Searches

1 exp Coronavirus/ 2 exp Coronavirus/ms Infections/ 3 (coronavirus* or corona virus* or OC43 or NL63 or 229E or HKUI or HCoV* or ncov* or covid* or surs-cov* or sarscov* or Sars-covnavirus* or Severe Acute Respiratory Syndrome Coronavirus*).tw.kf.[EB2] 4 or/1-3 5 4 not (IMERS or MERS-COV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covid or scanse or corona virus* or coronary or coronal or covid* or PEOV or FDV or FCV or V or SADS-CoV or covid or covide or covidence* or covidence* or covid or coronavirus* or coronavi	#	Search terms
3 Coronavirus ⁶ or corona virus ⁶ or OC43 or NL63 or 229E or HKU1 or HCoV [*] or neov ⁴ or covid ⁴ or sars-cov ⁶ or sarseov ⁶ or Sars-cov ⁶ or Coronavirus ⁴).tw.kf.[EB2] 4 ari.3 5 4 not ((MERS or MERS-CoV or Middle East respiratory syndrome or calves or TGEV or feline or portione or BCoV or PED or PEDV or PED or PEDV or P	1	exp Coronavirus/
Surs-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*).tw.kf.[EB2] 4 or/1.3 5 4 not (MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidence* or covidence aviews of TGEV or falle or percise or BCOV or PED or PEDV or FDV or or CoV or or consultations or covid* or coronavirus* or corona virus* or neov* 0 2019-neov or sars* or virus).tw.kf. or exp pneumonia/) and Wuhan.tw.kf. 6 ((Dpeutmonia or covid*) or coronavirus* or corona virus* or neov* 10 or 2019-neov or sars* or virus).tw.kf. or exp pneumonia/) and Wuhan.tw.kf. 7 (C019-neov* or 2019nCov* or neov+19 or cov19 or covid-19 or covid-19 or coronavirus* and pneumonia/).tw.kf. 8 COVID-19.rx.px.ox. or severe acute respiratory syndrome coronavirus 2.os. 9 or/6-8 10 5 or 9 11 immunoglobulin sotypes/ or immunoglobulin a/ or immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin a/ or immunoglobulin a/ or exp enzyme-linked immunosyot assay/ or neutralizization tests/ or senologic tests/ or complement fixation tests/ or heraugitatination inhibition tests/ or neutralisization tests/ or senologic tests/ or complement fixation tests/	2	exp Coronavirus Infections/
5 4 not ((MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidence* or covidence or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BEV or FBD or FGEV or SADS-CoV or canive or CoV or zononcic or avian influenza or HINI or HSNI or HSNI or HSN or BEV, or PDCOV or FBV or FCOV or COV or zononcirus* or neov* or 2019-neov or sars* or virus.).tw.kf. or exp pneumonia/) and Wuhan.tw.kf. 7 (2019-neov* or 2019/nCov* or neov-19 or neov-19 or 2019-neov Or ars*-cov-2* or sarse-cov-2* or sarse-cov-2* or sarse-coronarius.2* or corona virus as ars-corona virus as ars-corona virus as ars-coroariurs.2* or corona or corona or coronariurs* or corona virus or Pandemi*2) or ((covid or covid19* or covid-19) and pandemic*2) or (coronariurs* or corona virus or Pandemi*2) or ((covid or covid19* or covid-19) and pandemic*2) or (coronariurs* and pneumonia).htw.kf. 8 COVID-19.rx.px.ox. or severe acute respiratory syndrome coronavirus 2 os. 9 9 or/6-8 10 5 or 9 11 immunoglobulins / or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody or immunoglobulin m/ 12 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralizing/ or antibodies, viral/ or antigen-antibody or immunoglobulin m/ or experimely indicar munogroup says/ or immunosorhent taching/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or secology/di 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ o	3	
 covidence* or coviden or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or SED or PEDV for PEDV CoV or SFDV SCOV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or H8V).mp. or (animals/ not humans/) ((pneumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov or sars* or virus).tw.kf. or exp pneumonia/) and Wuhan.tw.kf. (2019-ncov* or 2019nCov* or ncov19 or ncov-19 or 2019-ncovel CoV or sars-cov2* or sars-cov2* or sarscov2* or sarscov2* or coronavirus2 or Sars-coronavirus2 or Sars-coronavirus2 or Sars-coronavirus2 or Sars-coronavirus2 or covid 2019 or (lowel or new or nonveau) adj2 (CoV or rCOV or or covid or coronavirus* or coronavirus2 or coronavirus2 or covid a 109 or (lowel or prev or nonveau) adj2 (CoV or rCOV or do or coronavirus* or coronavirus* or coronavirus2 or covid a 109 or (lowel or new or nonveau) adj2 (CoV or rCOV or did or covid ad 109 or (lowel or new or nonveau) adj2 (CoV or rCOV or antibodies, viral/ or exp inmunolobuling/ or immunoglobulin a/ or immunoglobulin viry or exp immunolobusorber or ELSNA or immunolitation tests/ or serologic tests/ or complement fixation tests/ or heuralization tests/ or serologic tests/ or complement fixation tests/ or heuralization tests/ or serologic tests/ or complement fixation tests/ or heuralization tests/ or serologic tests/ or complement fixation tests/ or heuralization tests/ or serologic tests/ or complement fixation tests/ o	4	or/1-3
Wuhan.tw.kf. 7 (2019-necv* or 2019nCov* or necv19 or necv-19 or 2019-novel CoV or sars-cov2* or sars-cov2* or sarsecov2* o	5	covidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or
or Sars-coronavirus2 or SARS-like coronavirus 2 or coronavirus 2 or coronavirus 2 or coronavirus or Sars-coronavirus3 or covid 19 or covid 19 or (covid or covid 19) and pandemic*2) or (coronavirus* 8 COVID-19.rx.px.ox. or severe acute respiratory syndrome coronavirus 2.os. 9 or/6-8 10 5 or 9 11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin s/ or antibodies, or antibodies, locking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin g/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunoassdy or fluoroimmunoassay/ or exp immunoblotting/ or immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or neutralizion tests/ or serologic tests/ or complement fixation tests/ or neutralizion tests/ or serologic/ or sellogidi 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation tests/ or neutralizion tests/ or serologic/ or sellogidi 15 (antibd* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sero resolog* or sellor sero-prevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or se	6	Wuhan.tw,kf.
9 or/6-8 10 5 or 9 11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin g/ or or exp immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin d/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunoassay/ or gp enzyme-linked immunosorbent techniques/ or exp enzyme-linked immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or serologic tests/ or complement fixation or immunoblot or western blot or neutrali*)tw.kf. 15 (antibod* or immunoglobulin* or immunoglobulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or sero-grevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-survey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 1	7	or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or coronavirus 2 or coronavirus2* or corona or coronavirus-19 or covid19 or covid-19 or covid 2019 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus* or corona virus or Pandemi*2)) or ((covid or covid19* or covid-19) and pandemic*2) or (coronavirus* and
10 5 or 9 11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antigen-antibody complex/ or immunoglobulin g/ or immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin d/ or immunoglobulin g/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunosorbent assay/ or exp enzyme-linked immunosorb assay/ or immunosorbent techniques/ or expencyme-linked immunosorbent or serologic tests/ or complement fixation tests/ or neutralization tests/ or neutralization tests/ or serology/di 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or immunoglobulin* or neutrali*).tw,kf. 15 (antibd* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero-epidemiolog* or sero-seroepidemiolog* or sero-epidemiolog* or inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 <	8	COVID-19.rx,px,ox. or severe acute respiratory syndrome coronavirus 2.os.
11 immunoglobulins/ or antibodies/ or antibodies, blocking/ or exp antibodies, neutralizing/ or antibodies, viral/ or antipodies, viral/ or anter, viral/ or antipodies, viral/ or antipodies, viral	9	or/6-8
complex/ or immune sera/ or exp immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin d/ or immunoglobulin e/ or immunoglobulin g/ or immunoglobulin g/ or immunoglobulin m/ 12 serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ 13 immunosorbent assay/ or exp enzyme-linked immunosorbent techniques/ or exp enzyme-linked immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or neutralization tests/ or neutralization tests/ or serology/di 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent techniques/ or serology/di 15 (antibod* or immunoglobulin* or mimunoglobulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. 16 or/11-14 17 seropidemiologic studies/ 18 incidence/ or prevalence or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-survey or sero-survey.tw,kf. 22 (seroconver* or seroprevalence or sero-prevalence or seroincidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and 15 25 10 and 15	10	5 or 9
 immunoassay/ or fluoroimmunoassay/ or exp immunoblotting/ or immunoenzyme techniques/ or exp enzyme-linked immunosorbent tassay/ or exp enzyme-linked immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or Serology/di (antibod* or immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or western blot or neutrali*).tw.kf. (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. or/11-14 seroepidemiologic studies/ incidence/ or prevalence/ (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-survey or sero-survey).tw,kf. (and (16 and 23) (and 15 	11	complex/ or immune sera/ or exp immunoglobulin isotypes/ or immunoglobulin a/ or immunoglobulin d/ or immunoglobulin e/
immunosorbent assay/ or exp enzyme-linked immunosopt assay/ or immunosorbent techniques/ or serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/ or Serology/di 14 (enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunofluorescence or complement fixation or hemagglutination inhibition or western blot or neutrali*).tw.kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw.kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalenc* or diagnostic).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or	12	serologic tests/ or complement fixation tests/ or hemagglutination inhibition tests/ or neutralization tests/
hemagglutination inhibition or immunoblot or western blot or neutrali*).tw,kf. 15 (antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or serosurvey or sero-survey.tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current" <td>13</td> <td>immunosorbent assay/ or exp enzyme-linked immunospot assay/ or immunosorbent techniques/ or serologic tests/ or</td>	13	immunosorbent assay/ or exp enzyme-linked immunospot assay/ or immunosorbent techniques/ or serologic tests/ or
serolog* or saliva).tw,kf. 16 or/11-14 17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	14	hemagglutination inhibition or immunoblot or western blot or neutrali*).tw,kf.
17 seroepidemiologic studies/ 18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or seroepidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	15	(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serum or serolog* or saliva).tw,kf.
18 incidence/ or prevalence/ 19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	16	or/11-14
19 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or sero-survey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	17	seroepidemiologic studies/
epidemiolog*).mp. 20 (inciden* or prevalen* or count* or rate*).mp. 21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	18	incidence/ or prevalence/
21 (serosurvey or sero-survey or screen* or diagnostic).mp. 22 (seroconver* or seroprevalence or sero-prevalence or sero-incidence or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	19	epidemiolog*).mp.
22 (seroconver* or seroprevalence or sero-prevalence or seroincidence or sero-pidemiolog* or sero-epidemiolog* or sero-epidemiolog* or sero-epidemiolog* 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	20	(inciden* or prevalen* or count* or rate*).mp.
or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kf. 23 or/17-21 24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	21	
24 10 and (16 and 23) 25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	22	
25 10 and 15 26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	23	or/17-21
26 10 and 22 27 or/24-26 28 limit 27 to yr="2020-Current"	24	10 and (16 and 23)
27 or/24-26 28 limit 27 to yr="2020-Current"	25	10 and 15
28 limit 27 to yr="2020-Current"	26	10 and 22
	27	or/24-26
29 remove duplicates from 28	28	limit 27 to yr="2020-Current"
	29	remove duplicates from 28

Database: Embase

Dates: January 1, 2020 to December 31, 2020

Notes: Covid-19 search terms were adapted from Ovid Expert Searches

#	Searches
1	exp Coronavirus/
2	exp Coronavirus Infections/
3	(coronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or ncov* or covid* or sars-cov* or sarscov* or Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*).tw,kw.
4	or/1-3
5	4 not ((MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or IBV).mp. or (animals/ not humans/))
6	((pneumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov or sars*).tw,kw. or exp pneumonia/) and Wuhan.tw,kw.
7	(2019-ncov or ncov19 or ncov-19 or 2019-novel CoV or sars-cov2 or sars-cov-2 or sarscov2 or sarscov-2 or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or coronavirus-19 or covid19 or covid-19 or covid 2019 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus* or corona virus or Pandemi*2)) or ((covid or covid19 or covid-19) and pandemic*2) or (coronavirus* and pneumonia)).tw,kw.
8	(coronavirus disease 2019 or severe acute respiratory syndrome coronavirus 2).sh,dj.
9	6 or 7 or 8
10	5 or 9
11	virus antibody/ec [Endogenous Compound]
12	neutralizing antibody/ec [Endogenous Compound]
13	exp immunoglobulin/ or exp immunoglobulin A antibody/ or exp immunoglobulin class/ or exp immunoglobulin M antibody/ or exp immunoglobulin G antibody/ or exp immunoglobulin antibody/
14	11 or 12 or 13
15	serology/
16	serodiagnosis/ or complement fixation test/ or hemagglutination inhibition test/ or hemolytic plaque assay/
17	fluorescent antibody technique/
18	immunofluorescence test/ or viral disease immunofluorescence assay/
19	enzyme linked immunosorbent assay/
20	western blotting/
21	(enzyme linked immunosorbent or enzyme-linked immunosorbent or ELISA or immunoassay or immunofluorescence or fluorescent antibody or complement fixation or hemagglutination inhibition or hemolytic plaque assay or immunoblot or western blot or neutrali*).tw,kw.
22	(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutrali* or sera or serolog* or serum or saliva).tw.kw.
23	15 or 16 or 17 or 18 or 19 or 20 or 21
24	14 or 23
25	exp seroepidemiology/
26	*prevalence/
27	*incidence/
28	(seroconver* or seroprevalence or sero-prevalence or seroincidence or sero-incidence or seroepidemiolog* or sero- epidemiolog* or inciden* or prevalen* or count* or rate* or serosurvey or sero-survey or screen* or diagnostic).mp.
29	(seroconver* or seroprevalence or sero-prevalence or seroincidence or sero-incidence or seroepidemiolog* or sero- epidemiolog* or inciden* or prevalen* or silent or asymptomatic or serosurvey or sero-survey).tw,kw.
30	25 or 26 or 27 or 28
31	10 and (24 and 30)
32	10 and 22
_	10 and 29
33	31 or 32 or 33
33 34 35	

Database: Web of Science Core Collection Date: January 1, 2020 to December 31, 2020

#	Searches
1	TS=(coronavirus* or corona virus* or OC43 or NL63 or 229E or HKU1 or HCoV* or ncov* or covid* or sars-cov* or sars-cov* or Sars-coronavirus* or Severe Acute Respiratory Syndrome Coronavirus*)
2	TS=(MERS or MERS-CoV or Middle East respiratory syndrome or camel* or dromedar* or equine or coronary or coronal or covidence* or covidien or influenza virus or HIV or bovine or calves or TGEV or feline or porcine or BCoV or PED or PEDV or PDCoV or FIPV or FCoV or SADS-CoV or canine or CCov or zoonotic or avian influenza or H1N1 or H5N1 or H5N6 or IBV)
3	#1 NOT #2
4	TS=((pneumonia or covid* or coronavirus* or corona virus* or ncov* or 2019-ncov or sars* or virus) AND Wuhan)
5	TS=(2019-ncov* or 2019nCov* or ncov19 or ncov-19 or 2019-novel CoV or sars-cov2* or sars-cov-2* or sarscov2* or sarscov2* or sarscov-2* or Sars-coronavirus2 or Sars-coronavirus-2 or SARS-like coronavirus* or corona or coronavirus-19 or covid19 or covid-19 or covid 2019 or ((novel or new or nouveau) adj2 (CoV or nCoV or covid or coronavirus*)) or (coronavirus* and pneumonia)).
6	TS=(COVID-19 or "severe acute respiratory syndrome coronavirus")
7	#6 OR #5 OR #4 OR #3
8	TS=(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutralization or sera or serolog* or saliva or serum).
9	TS=("enzyme linked immunosorbent assay" or "enzyme-linked immunosorbent assay" or "immunoenzyme" or ELISA or "lateral flow immunoassay" or LFIA or "immunofluorescence assay" or immunochromatography or "complement fixation test" or "hemagglutination inhibition" or immunoblot or "western blot" or "neutralization assay")
10	#9 OR #8
11	TI=(seroconversion or seroprevalence or seroincidence or seroepidemiolog* or incidence or prevalence or asymptomatic or sero-survey*) or AK=(seroconversion or seroprevalence or seroincidence or seroepidemiolog* or incidence or prevalence or asymptomatic or sero-survey*)
12	ALL=(prevalence or incidence or seroconversion or seroconvert or seroprevalence or seroincidence or seroepidemiolog* or serosurvey or sero-survey or survey or screen* or diagnostic test)
13	#12 AND #10 AND #7
14	#11 AND #7
15	TI=(antibod* or immunoglobulin* or immune globulin* or titer* or isotype* or IgG or IgM or IgA or neutralization or sera or serolog* or saliva or serum).
16	#15 AND #7
17	#16 OR #14 OR #13

1/ #	16 OR #14 OR #13
	ise: Europe PMC [Secondary search for pre-prints] January 1, 2020 to December 31, 2020
#	Searches
	("2019-nCoV" OR "2019nCoV" OR "COVID-19" OR "SARS-CoV-2" OR "COVID19" OR "COVID" OR "SARS-nCoV" OR ("wuhan" AND "coronavirus") OR "Coronavirus" OR "Corona virus" OR "corona-virus" OR "corona viruses" OR "coronaviruses" OR "SARS-CoV" OR "Severe Acute Respiratory Syndrome Coronavirus" OR ("SARS" AND "coronavirus")) AND ABSTRACT:(sera* OR sero* OR immun* OR Ig* OR "enzyme-linked immunosorbent assay" OR ELISA OR "neutralization assay" OR seroprevalence) AND (SRC:"PPR")

Sources: Health organizations

Dates: January 1, 2020 to December 31, 2020

Source		Search strategy
WHO Situation Reports	1	"antibod", "sero", "immun", "ELISA"
National Institutes of Health	1	("COVID" OR "SARS-CoV-2")
	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:nih.gov -site:ncbi.nlm.nih.gov
	3	2 AND 3
United States Centres for Disease Control and	1	("COVID" OR "SARS-CoV-2")
Prevention	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:cdc.gov
	5	2 AND 3
European Centres for Disease Control and Prevention	1	("COVID" OR "SARS-CoV-2")
Control and Prevention	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:ecdc.europa.eu
	5	2 AND 3

Sources: Google News

Dates: January	1, 2020 to December 31, 2020
----------------	------------------------------

	2	("sero*" OR "antibod*" OR "immun*" OR "RDT" OR "ELISA" OR "LFIA")
	3	allintext:(1 AND 2) site:ecdc.europa.eu
	5	2 AND 3
Sources: Google News Dates: January 1, 2020 to 1	Decen	nber 31, 2020
Source		Search strategy
Google news	1	(antibody OR antibodies OR surveillance OR screen OR serology OR serological OR serosurvey OR ELISA OR LFIA OR assay OR blood OR serum OR immune OR immunity OR herd immunity OR random test)
Google news	1	serosurvey OR ELISA OR LFIA OR assay OR blood OR serum OR immune OR
Google news	1	serosurvey OR ELISA OR LFIA OR assay OR blood OR serum OR immune OR

S3. Detailed eligibility criteria

This study included eligible studies from the SeroTracker database. Eligibility criteria for the database and also for this review specifically are outlined below:

Eligibility criteria for inclusion in this review
Studies included in the SeroTracker database (<u>https://serotracker.com</u>) with relevant subgrouping (i.e., "Occupation," or "Employment status") and/or sample frame variables (i.e., "Healthcare workers and caregivers, "Non-essential workers and unemployed persons," "Essential non-healthcare workers," or "Multiple populations") variables. We also manually searched for potentially relevant studies not falling into these categories.
Study published between January 01 and December 31, 2020.
Article written in English or French or machine-translatable using Goog Translate.
Reported seroprevalence data that could be fit into the 23 major SOC 2010 occupation categories or combined categories for healthcare workers, first-responders or unemployed persons.
Studies that only reported seroprevalence for mixed occupation groups of workplaces rather than specific occupations (e.g., "hospital staff") were excluded.
Seroprevalence estimates did not include people <18 years (i.e., possibly affected by COVID-19 exposure at school, which could impact occupational seroprevalence estimates).

2
2
5
4
5 4 5 6 7 8 9 10 11
6
7
, 0
8
9
10
11
10
12
13
14
15
16
17
17
14 15 16 17 18
19
20
21
20 21 22 23 24 25 26 27 28 29 30 31
22
23
24
25
26
20
27
28
29
30
21
31
32
33
34
35
22
34 35 36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

S4. Tool for assessing study risk of bias

Item 1: Was	s the sample frame appropriate to address the target population?
Yes	Sample frame described and it approximated the target population
No	Sample frame did not approximate the target population (e.g., blood donors do not represent general population, doctors do not represent all health care providers)
Exclude	Sample frame not described
*Notes	The term "target population" should not be taken to infer every individual from everywhere or with similar disease or exposure characteristics. Instead, give consideration to specific population characteristics in the study, including age range, gender, morbidities, medications, and other potentially influential factors. For example, a sample frame may not be appropriate to address the target population if a certain group has been used (such as those working for one organisation, or one profession) and the results then inferred to the target population (i.e. working adults). A sample frame may be appropriate when it includes almost all the members of the target population (i.e. a census, or a complete list of participants or complete registry data).
Item 2: Wer	re study participants recruited in an appropriate way?
Yes	Probability sampling method (simple or stratified random) or entire sample (e.g., an entire town) was used
No	Non-probability sampling
Exclude	Sampling method not reported
Item 3: Was	s the sample size adequate?
Yes	≥599
N-	

Yes	≥599
No	<599
Exclude	Sample size not reported
*Notes	To calculate the required sample size we used an assumed prevalence of 2.5%, which was the global average estimated by the WHO in April, 2020. ¹ Based on guidance by the Joanna Briggs Institute and published medical statistical recommendations we selected a precision value that was half the assumed prevalence (1.25%) [2,3]. We calculated a minimum sample size of 599 using these inputs: Sample size calculation: $n = \frac{Z^2 P(1-P)}{d^2}$ Where n = sample size; Z = Z statistic for level of confidence (95%); P = expected prevalence (2.5% WHO global estimate); d = precision (1.25%) In cases where the sample size calculation was provided and the required sample for 80% power was below our threshold (n<599), this item was marked as yes.

Item 4: Were	Item 4: Were the study subjects and setting described in detail?			
Yes	Average age and distribution of gender/sex provided			
No	Neither age or gender/sex is provided, or only one of age and gender/sex is provided			

Item 5: Was d	Item 5: Was data analysis conducted with sufficient coverage of the identified sample?				
Yes	The demographic characteristics (gender/sex, age, and ethnicity) of the sample is at least somewhat representative of the population				
No	The demographic characteristics (gender/sex, age, and ethnicity) of the sample is not representative of the population				

BMJ Open

Unclear	Information is not provided about demographic characteristics of the sample (gender/sex, age, and ethnicity)					
Item 6: We	re valid methods used for the identification of the condition?					
Yes	The test used met the FDA standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivity minimum 90%, specificity minimum 95%, as reported in the study [4].					
No	The test used did not meet the FDA standards for Emergency Use Authorizations for COVID-19 serological tests: sensitivi minimum 90%, specificity minimum 95%.					
Exclude	Test sensitivity and specificity not reported					
Item 7: Wa	s the condition measured in a standard, reliable way for all participants?					
Yes	The same serology test was used for all participants					
No	Different serology tests were used for participants					
Unclear	No details were provided about which participants received which serology tests					
Item 8: Wa	s there appropriate statistical analysis?					
Yes	Does all of the following: corrects for population characteristics or the sample is somewhat representative of the population (probability sampling), corrects for test characteristics), and provides the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.					
No	Does not correct for population characteristics and the sample is not likely representative of the population (non-probability sampling), does not correct for test or provide the information necessary to correct for test characteristics, or does not provid the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.					
	sampling), does not correct for test or provide the information necessary to correct for test characteristics, or does not provi the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.					
Item 9: Wa						
Item 9: Was	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.					
	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval.					
Yes	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval. s the response rate adequate, and if not, was the low response rate managed appropriately? Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population [5]					
Yes No	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval. s the response rate adequate, and if not, was the low response rate managed appropriately? Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population [5] Response rate < 60% and the demographics of the sample were not a reasonable match to those of the target population					
Yes No Unclear	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval. a the response rate adequate, and if not, was the low response rate managed appropriately? Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population [5] Response rate < 60% and the demographics of the sample were not a reasonable match to those of the target population					
Yes No Unclear	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval. sthe response rate adequate, and if not, was the low response rate managed appropriately? Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population [5] Response rate < 60% and the demographics of the sample were not a reasonable match to those of the target population					
Yes No Unclear Item 10: Ov	the information necessary to determine the numerator, denominator, prevalence estimate, and confidence interval. sthe response rate adequate, and if not, was the low response rate managed appropriately? Response rate > 60% or the demographics of the sample were a reasonable match to those of the target population [5] Response rate < 60% and the demographics of the sample were not a reasonable match to those of the target population Response rate not provided and it was unclear if the demographics of the sample differed from the target population rerall risk of bias The estimates are very likely correct for the target population. To obtain a low risk of bias classification, all criteria must be met or departures from the criteria must be minimal and unlikely to impact on the validity and reliability of the prevalence estimate. These include sample sizes that are just below the threshold when all other criteria are met, reporting only some of characteristics of the sample, test characteristics below the threshold but corrections for the termine of the target population in the context of probability based sampling of an					

S5. Details of occupational coding

For each seroprevalence estimate, we identified the relevant Standard Occupational Classification (SOC) 2010 codes. This was done by applying the National Institute for Occupational Safety & Health

(NIOSH) Industry and Occupation Computerized Coding System (NIOCCS) to text occupation

descriptions extracted by members of the research team. There is no standard cut-off for manually

verifying results from the National Institute for Occupational Safety & Health (NIOSH) Industry and Occupation Computerized Coding System (NIOCCS). However, NIOCCS reports the probability of

correct classification to the six-digit level. After manually verifying a subset of records from the first

round of classification, we decided to manual perform a second round of classification for any observations for which the probability of correct classification was <0.8. This cut-off was chosen based

on the observation that that most codes with a probability of correct classification to of ≥ 0.8 to the

six-digit level were correctly coded at the two- and three-digit level, which we used in our main analyses and are more likely to be coded correctly than the more granular, 6-digit codes and

consideration of the number of records that could feasibly be verified manually

References for supplementary files

- 1. Boseley S. WHO warns that few have developed antibodies to Covid-19. The Guardian [Internet]. 2020 Apr 20; Available from: https://www.theguardian.com/society/2020/apr/20/studies-suggest-very-few-have-had-covid-19-without-symptoms
- Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational 2. epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc. 2015 Sep;13(3):147-53.
- 3. Naing L, Winn T, Ruslil B. Practical issues in calculating the sample size for prevalence studies. Arch Orofac Sci. 2006:1:9-14.
- 4. U.S. Food & Drug Administration. Emergency Use Authorization for SARS-CoV-2 Antibody Tests [Internet]. 2020 [cited 2020 May 5]. Available from: https://www.fda.gov/media/137470/download.
 - 5. Morton MBS, Bandara DK, Robinson EM, Carr PEA. In the 21st century, what is an acceptable response rate? Aust N Z J Public Health. 2012 April; 36 (2): 106-8.
- Bobrovitz N, Arora RK, Cao C, Boucher E, Liu M, Donnici C, Yanes-Lane M, Whelan M, Perlman-Arrow S, Chen J, Rahim H. Global seroprevalence of SARS-CoV-2 antibodies: A systematic review and meta-analysis. PloS one. 2021 Jun 23;16(6):e0252617.

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\2\\3\\14\\15\\16\\17\\18\\9\\20\\21\\22\\32\\4\\25\\26\\7\\28\\9\\30\\31\\2\\33\\4\\35\\36\\37\\38\\9\\0\\41\\42\\43\end{array}$			
40 41			
42 43			
44 45			
46			
47 48			
49 50			
51			
52			

Supplementary File I. List of all estimates, included studies and references

SOC 2010 Major Group	Study	Ν	SOC 2010 Occupation Title	Study Type	Study Dates	Country	Serum positive prevalence (95% CIs)	Overall Risk of Bias (JBI)
Not employed (mixed)*	Merkely et al., 2020 ¹	n=209	Homemaker (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	0.73% (0- 1.74%)	Moderate
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=37	Homemaker (Unpaid)	Prospective cohort	04/15 - 08/15	India	18.9%	High
Not employed (mixed)*	Biggs et al., 2020 ³	n=157	Retired (Unpaid)	Cross-sectional survey	04/28 - 05/03	United States of America	1.91%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=5381	Retired (Unpaid)	Prospective cohort	05/04 - 06/23	France	4.3% (3.5- 5%)	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=2767	Retired (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	1.09% (0.66- 1.52%)	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=1635	Retired (Unpaid)	Cross-sectional survey	04/06 - 06/30	Switzerland	4.3%	Low
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=10	Retired (Unpaid)	Prospective cohort	04/15 - 08/15	India	20%	High
Not employed (mixed)*	Alemu et al., 2020 ⁶	n=32	Student (Unpaid)	Cross-sectional survey	04/23 - 04/28	Ethiopia	15.6%	Moderate
Not employed (mixed)*	Biggs et al., 2020 ³	n=16	Student (Unpaid)	Cross-sectional survey	04/28 - 05/03	United States of America	12.5%	Moderate
Not employed (mixed)*	Brehm et al., 2020 ⁷	n=73	Student (Unpaid)	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	2.7%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=81	Student (Unpaid)	Prospective cohort	05/04 - 06/23	France	7.2% (0.1- 12.6%)	Moderate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Not employed (mixed)*	Iversen et al., 2020 ⁸	n=688	Student (Unpaid)	Cross-sectional survey	04/15 - 04/22	Denmark	14.97%	Low
Not employed (mixed)*	Lumley et al., 2020 ⁹	n=620	Student (Unpaid)	Prospective cohort	04/23 - 11/30	The United Kingdom	6.77%	Moderate
Not employed (mixed)*	Merkely et al., 2020 ¹	n=774	Student (Unpaid)	Cross-sectional survey	05/01 - 05/16	Hungary	0.69% (0- 1.49%)	Moderate
Not employed (mixed)*	Richard et al., 2020 ⁵	n=666	Student (Unpaid)	Cross-sectional survey	04/06 - 06/30	Switzerland	10.5%	Low
Not employed (mixed)*	Shakiba et al., 2020 ¹⁰	n=114	Student (Unpaid)	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	17.5% (11.3- 23.7%)	Moderate
Not employed (mixed)*	Siddiqui et al., 2020 ²	n=14	Student (Unpaid)	Prospective cohort	04/15 - 08/15	India	21.4%	High
Not employed (mixed)*	Tilley et al., 2020 ¹¹	n=790	Student (Unpaid)	Cross-sectional survey	04/29 - 05/08	United States of America	4% (3-5.1%)	Moderate
Not employed (mixed)*	Tsitsilonis et al., 2020 ¹²	n=1395	Student (Unpaid)	Cross-sectional survey	06/15 - 07/15	Greece	0.42% (0.03- 1.5%)	Moderate
Not employed (mixed)*	Arnaldo et al., 2020 ¹³	n=513	Military, Rank Not Specified	Cross-sectional survey	07/06 - 07/13	Mozambique	3.7%	High
Not employed (mixed)*	Arnaldo et al., 2020 ¹⁴	n=116	Military, Rank Not Specified	Cross-sectional survey	11/02 - 11/12	Mozambique	1.7%	High
Not employed (mixed)*	Mabunda et al., 2020 ¹⁵	n=324	Military, Rank Not Specified	Cross-sectional survey	09/21 - 10/02	Mozambique	2.8%	High
Not employed (mixed)*	Mahomed et al., 2020 ¹⁶	n=116	Military, Rank Not Specified	Cross-sectional survey	11/26 - 12/03	Mozambique	18.1%	High
Not employed (mixed)*	Payne et al., 2020 ¹⁷	n=382	Military, Rank Not Specified	Cross-sectional survey	04/20 - 04/24	United States of America	59.7%	High
Not employed (mixed)*	World et al., 2020 ¹⁸	n=6900	Military, Rank Not Specified	Cross-sectional survey	08/15 - 10/15	Republic of Korea	0.36%	Unclear
Management Occupations (11- 0000)	Shakiba et al., 2020 ¹⁰	n=16	Farmers, Ranchers, and Other Agricultural Managers	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	19.7% (9.1- 31%)	Moderate
Management Occupations (11-	Favara et al., 2020 ¹⁹	n=43	Medical and Health Services Managers	Cross-sectional survey	07/13 - 07/13	The United Kingdom	9.3%	High

1 2	
3 4	
5 6	
7 8	
9	
10 11	
12 13	
14	
15 16	
17 18	
19	
20 21	
22 23	
24 25	
26	
27 28	
29 30	
31 32	
33	
34 35	
36 37	
38	
39 40	
41 42	
43 44	
45	
46 47	

0000)								
Management Occupations (11- 0000)	Galan et al., 2020 ²⁰	n=170	Medical and Health Services Managers	Cross-sectional survey	04/14 - 04/27	Spain	27.6%	High
Management Occupations (11- 0000)	Hunter et al., 2020 ²¹	n=44	Medical and Health Services Managers	Cross-sectional survey	04/29 - 05/08	United States of America	4.55%	High
Management Occupations (11- 0000)	Leidner et al., 2020 ²²	n=257	Medical and Health Services Managers	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.11%	High
Management Occupations (11- 0000)	Martin et al., 2020 ²³	n=2078	Medical and Health Services Managers	Cross-sectional survey	05/29 - 07/13	The United Kingdom	6.79%	Moderate
Management Occupations (11- 0000)	Siddiqui et al., 2020 ²	n=15	Medical and Health Services Managers	Prospective cohort	04/15 - 08/15	India	20%	High
Management Occupations (11- 0000)	Baracco et al., 2020 ²⁴	n=45	Managers, All Other	Cross-sectional survey	04/23 - 05/05	Italy	6.67%	High
Management Occupations (11- 0000)	Goenka et al., 2020 ²⁵	n=71	Managers, All Other	Cross-sectional survey	07/12 - 08/23	India	7.04%	Moderate
Management Occupations (11- 0000)	Goenka et al., 2020 ²⁶	n=13	Managers, All Other	Cross-sectional survey	08/01 - 08/31	India	38.46%	High
Business and Financial Operations Occupations (13- 0000)	Satpati et al., 2020 ²⁷	n=43	Management Analysts	Cross-sectional survey	07/26 - 08/08	India	2.33%	Moderat
Business and Financial	Poustchi et al., 2020 ²⁸	n=880	Financial Specialists	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	14.2% (12.1- 16.5%)	Moderat

Page 35 of 119)
1	
2	

Operations Occupations (13- 0000)								
Computer and Mathematical Occupations (15- 0000)	Biggs et al., 2020 ³	n=47	Computer User Support Specialists	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Architecture and Engineering Occupations (17- 0000)	Siddiqui et al., 2020 ²	n=21	Engineers	Prospective cohort	04/15 - 08/15	India	42.9%	High
Life, Physical, and Social Science Occupations (19- 0000)	Jones et al., 2020 ²⁹	n=245	Medical Scientists	Cross-sectional survey	01/15 - 06/15	The United Kingdom	1.9%	High
Life, Physical, and Social Science Occupations (19- 0000)	Anna et al., 2020 ³⁰	n=505	Medical Scientists, Except Epidemiologists	Prospective cohort	04/28 - 07/31	France	8.71%	Moderate
Life, Physical, and Social Science Occupations (19- 0000)	Erber et al., 2020 ³¹	n=635	Medical Scientists, Except Epidemiologists	Cross-sectional survey	04/14 - 05/29	Germany	1.24%	High
Life, Physical, and Social Science Occupations (19- 0000)	Favara et al., 2020 ¹⁹	n=38	Medical Scientists, Except Epidemiologists	Cross-sectional survey	07/13 - 07/13	The United Kingdom	2.6%	High
Life, Physical, and Social Science Occupations (19- 0000)	Hanrath et al., 2020 ³²	n=468	Medical Scientists, Except Epidemiologists	Cross-sectional survey	05/29 - 07/06	The United Kingdom	6.2%	High
Life, Physical, and Social Science Occupations (19- 0000)	Leidner et al., 2020 ²²	n=2654	Medical Scientists, Except Epidemiologists	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.22%	High

BMJ Open

Life, Physical, and Social Science Occupations (19- 0000)	Martin et al., 2020 ²³	n=1154	Medical Scientists, Except Epidemiologists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	9.71%	Moderate
Life, Physical, and Social Science Occupations (19- 0000)	Rosser et al., 2020 ³³	n=102	Medical Scientists, Except Epidemiologists	Cross-sectional survey	04/20 - 05/20	United States of America	0.98%	High
Life, Physical, and Social Science Occupations (19- 0000)	Silva et al., 2020 ³⁴	n=69	Chemists	Cross-sectional survey	06/05 - 07/31	Brazil	4%	High
Life, Physical, and Social Science Occupations (19- 0000)	Tsitsilonis et al., 2020 ¹²	n=250	Physical Scientists, All Other	Cross-sectional survey	06/15 - 07/15	Greece	1.42% (0- 7.24%)	Moderate
Community and Social Service Occupations (21- 0000)	Jones et al., 2020 ²⁹	n=211	Healthcare Social Workers	Cross-sectional survey	01/15 - 06/15	The United Kingdom	6.3%	High
Community and Social Service Occupations (21- 0000)	Leidner et al., 2020 ²²	n=235	Social Workers, All Other	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.4%	High
Community and Social Service Occupations (21- 0000)	Rosser et al., 2020 ³³	n=117	Social Workers, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.71%	High
Community and Social Service Occupations (21- 0000)	Sabourin et al., 2020 ³⁵	n=91	Social Workers, All Other	Cross-sectional survey	07/15 - 08/15	United States of America	5.49%	High
Community and Social Service	Yogo et al., 2020 ³⁶	n=35	Social Workers, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High

Page 37	of 119
---------	--------

 BMJ Open

Occupations (21- 0000)								
Community and Social Service Occupations (21- 0000)	Biggs et al., 2020 ³	n=6	Religious Workers	Cross-sectional survey	04/28 - 05/03	United States of America	16.67%	Moderate
Education, Training, and Library Occupations (25- 0000)	Campos et al., 2020 ³⁷	n=2715	Postsecondary Teachers	Cross-sectional survey	05/13 - 07/10	Portugal	2.6%	High
Education, Training, and Library Occupations (25- 0000)	Goncalves et al., 2020 ³⁸	n=1636	Postsecondary Teachers	Cross-sectional survey	06/15 - 06/30	Portugal	3.05%	Moderate
Education, Training, and Library Occupations (25- 0000)	Tsitsilonis et al., 2020 ¹²	n=312	Postsecondary Teachers	Cross-sectional survey	06/15 - 07/15	Greece	1.2% (0.14- 3.7%)	Moderate
Education, Training, and Library Occupations (25- 0000)	Fontanet et al., 2020 ³⁹	n=42	Elementary and Middle School Teachers	Retrospective cohort	04/28 - 04/30	France	7.1%	Moderate
Education, Training, and Library Occupations (25- 0000)	Siddiqui et al., 2020 ²	n=8	Elementary and Middle School Teachers	Prospective cohort	04/15 - 08/15	India	25%	High
Education, Training, and Library Occupations (25- 0000)	Torres et al., 2020 ⁴⁰	n=165	Elementary and Middle School Teachers	Cross-sectional survey	05/04 - 05/19	Chile	20.6% (14.7- 27.6%)	High

1 2 3 4 5 6 7 8 9	
10 11 12 13 14 15 16 17 18 19	
20 21 22 23 24 25 26 27 28	
29 30 31 32 33 34 35 36 37	
38 39 40 41 42 43 44 45 46 47	

Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Halatoko et al., 2020 ⁴¹	n=55	Fine Artists, Including Painters, Sculptors, and Illustrators	Cross-sectional survey	04/23 - 05/08	Togo	0%	High
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Slusser et al., 2020 ⁴²	n=5603	Athletes, Coaches, Umpires, and Related Workers	Cross-sectional survey	04/08 - 04/21	United States of America	0.7% (0.28- 1.15%)	Unclear
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Vince et al., 2020 ⁴³	n=272	Athletes, Coaches, Umpires, and Related Workers	Prospective cohort	05/29 - 07/31	Croatia	14%	Moderate
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Vince et al., 2020 ⁴³	n=43	Coaches and Scouts	Prospective cohort	05/29 - 07/31	Croatia	16.3%	Moderate
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Mack et al., 2020 ⁴⁴	n=1007	Umpires, Referees, and Other Sports Officials	Prospective cohort	06/16 - 06/30	Germany	2.09% (1.37- 3.17%)	High
Arts, Design, Entertainment, Sports, and Media Occupations (27- 0000)	Khan et al., 2020 ⁴⁵	n=44	Media and Communication Workers	Cross-sectional survey	07/01 - 07/15	India	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=566	Healthcare Practitioners and Technical Occupations	Cross-sectional survey	05/18 - 06/13	United States of America	4.6% (3- 6.7%)	Moderate

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ⁴⁵	n=355	Healthcare Practitioners and Technical Occupations	Cross-sectional survey	07/01 - 07/15	India	4.8% (3- 7.6%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=402	Healthcare Practitioners and Technical Occupations	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	1.49%	High
Healthcare Occupations (mixed)*	Hanrath et al., 2020 ³²	n=102	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/06	The United Kingdom	6.62%	High
Healthcare Occupations (mixed)*	Jones et al., 2020 ²⁹	n=413	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/15 - 06/15	The United Kingdom	7.8%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ²³	n=550	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/13	The United Kingdom	10.36%	Moderate
Healthcare Occupations (mixed)*	Amendola et al., 2020 ⁴⁷	n=117	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 04/15	Italy	4.27%	High
Healthcare Occupations (mixed)*	Arnaldo et al., 2020 ⁴⁸	n=543	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/10 - 08/21	Mozambique	3.7%	High

Healthcare Occupations (mixed)*	Bal et al., 2020 ⁴⁹	n=190	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/10 - 05/28	France	3.68%	High
Healthcare Occupations (mixed)*	Barallat et al., 2020 ⁵⁰	n=429	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/22	Spain	7.69%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=35	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	11%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=20	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	15%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=44	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	11%	High
Healthcare Occupations (mixed)*	Bardai et al., 2020 ⁵¹	n=99	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/27	Canada	12%	High
Healthcare Occupations (mixed)*	Biggs et al., 2020 ³	n=59	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/28 - 05/03	United States of America	10.17%	Moderate

Healthcare Occupations (mixed)*	Blairon et al., 2020 ⁵²	n=588	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/25 - 06/19	Belgium	19.2%	High
Healthcare Occupations (mixed)*	Borraz et al., 2020 ⁵³	n=289	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/20 - 04/21	Spain	5.88%	High
Healthcare Occupations (mixed)*	Brunner et al., 2020 ⁵⁴	n=762	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/29	United States of America	4.5%	High
Healthcare Occupations (mixed)*	Brunner et al., 2020 ⁵⁴	n=764	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/29	United States of America	2%	High
Healthcare Occupations (mixed)*	Carozzi et al., 2020 ⁵⁵	n=17098	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/01 - 04/30	Italy	3.1%	High
Healthcare Occupations (mixed)*	Carrat et al., 2020 ⁴	n=568	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	05/04 - 06/23	France	11.6% (8.3- 14.4%)	Moderat
Healthcare Occupations (mixed)*	Cavlek et al., 2020 ⁵⁶	n=558	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/25 - 05/24	Croatia	1.25%	High

High

Unclear

Moderate

Moderate

Moderate

Moderate

Moderate

Healthcare Occupations (mixed)*	Chibwana et al., 2020 ⁵⁷	n=500	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	05/22 - 06/19	Malawi	12.3% (8. 16.5%)
Healthcare Occupations (mixed)*	Coffman et al., 2020 ⁵⁸	n=1100	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	07/01 - 07/31	United States of America	2.2%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=118	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	8.47%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=27	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	14.81%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=24	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	12.5%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=1068	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	5.43%
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=174	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	5.75%

44

Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=319	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	11.29%	Moder
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=5698	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	7.2%	Moder
Healthcare Occupations (mixed)*	Cooper et al., 2020 ⁵⁹	n=412	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 08/07	The United Kingdom	4.61%	Modera
Healthcare Occupations (mixed)*	Denyer et al., 2020 ⁶⁰	n=5850	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/12 - 05/18	Japan	1.79%	Unclea
Healthcare Occupations (mixed)*	Dimeglio et al., 2020 ⁶¹	n=8758	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/10 - 07/10	France	3.2% (2.8- 3.5%)	High
Healthcare Occupations (mixed)*	Erber et al., 2020 ³¹	n=603	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/14 - 05/29	Germany	2.8%	High
Healthcare Occupations (mixed)*	Fuereder et al., 2020 ⁶²	n=62	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Retrospective cohort	04/01 - 06/04	Austria	3.2% (0.4- 11.2%)	High

Healthcare Occupations (mixed)*	Fusco et al., 2020 ⁶³	n=115	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/23 - 04/02	Italy	1.74%	High
Healthcare Occupations (mixed)*	Geraci et al., 2020 ⁶⁴	n=230	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/16 - 05/20	United States of America	2.17%	High
Healthcare Occupations (mixed)*	Gudo et al., 2020 ⁶⁵	n=1427	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/17 - 06/30	Mozambique	7% (6-9%)	High
Healthcare Occupations (mixed)*	Hackner et al., 2020 ⁶⁶	n=130	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/01 - 04/30	Austria	2.3%	High
Healthcare Occupations (mixed)*	Halatoko et al., 2020 ⁴¹	n=370	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/23 - 05/08	Togo	1.4%	High
Healthcare Occupations (mixed)*	Haq et al., 2020 ⁶⁷	n=76	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/15 - 06/29	Pakistan	35.5% (24.8- 47.3%)	Moderate
Healthcare Occupations (mixed)*	He et al., 2020 ⁶⁸	n=1059	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Repeated cross sectional study	05/13 - 06/10	China	9.3%	High

Healthcare Occupations (mixed)*	Herzberg et al., 2020 ⁶⁹	n=871	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	04/14 - 06/16	Germany	2.64%	High
Healthcare Occupations (mixed)*	Jeremias et al., 2020 ⁷⁰	n=100	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/30	United States of America	12%	High
Healthcare Occupations (mixed)*	Jespersen et al., 2020 ⁷¹	n=17948	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/18 - 06/19	Denmark	3.36% (2.38- 3.82%)	Modera
Healthcare Occupations (mixed)*	Kassem et al., 2020 ⁷²	n=74	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/01 - 06/14	Egypt	12.2%	High
Healthcare Occupations (mixed)*	Kern et al., 2020 ⁷³	n=1316	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/09 - 04/16	Germany	1.06% (0.58- 1.78%)	High
Healthcare Occupations (mixed)*	Khalil et al., 2020 ⁷⁴	n=190	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/15 - 05/28	The United Kingdom	22%	High
Healthcare Occupations (mixed)*	Kumar et al., 2020 ⁷⁵	n=635	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Repeated cross sectional study	07/11 - 07/24	India	0%	High

Healthcare Occupations (mixed)*	Lackermair et al., 2020 ⁷⁶	n=151	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/02 - 04/06	Germany	2.6% (0.8- 7.1%)	High
Healthcare Occupations (mixed)*	Lahner et al., 2020 ⁷⁷	n=1084	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/07 - 04/27	Italy	0.7%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁸	n=116	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/07 - 04/21	China	0%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁸	n=304	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/07 - 04/21	China	0%	High
Healthcare Occupations (mixed)*	Liu et al., 2020 ⁷⁹	n=3832	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/29 - 04/29	China	4% (3.4- 4.7%)	Moderat
Healthcare Occupations (mixed)*	Lorenzo et al., 2020 ⁸⁰	n=38	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/02 - 05/31	Italy	5.3%	High
Healthcare Occupations (mixed)*	Mahomed et al., 2020 ⁸¹	n=569	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/31 - 10/12	Mozambique	0.7%	High

Healthcare Occupations (mixed)*	Mahumane et al., 2020 ⁸²	n=380	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	11/02 - 11/17	Mozambique	1.3%	High
Healthcare Occupations (mixed)*	Majdoubi et al., 2020 ⁸³	n=276	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/17 - 06/19	Canada	0.6% (0- 2.71%)	High
Healthcare Occupations (mixed)*	Majiya et al., 2020 ⁸⁴	n=185	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/26 - 06/30	Nigeria	25.41%	Modera
Healthcare Occupations (mixed)*	Majiya et al., 2020 ⁸⁴	n=43	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/26 - 06/30	Nigeria	37.21%	Modera
Healthcare Occupations (mixed)*	Malfertheiner et al., 2020 ⁸⁵	n=139	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/15 - 06/07	Germany	0%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ⁸⁶	n=326	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 05/18	Belgium	11%	High
Healthcare Occupations (mixed)*	Martin et al., 2020 ²³	n=4631	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/29 - 07/13	The United Kingdom	13.65%	Modera

Healthcare Occupations (mixed)*	Melo et al., 2020 ⁸⁷	n=471	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/01 - 06/30	Brazil	13.59%	High
Healthcare Occupations (mixed)*	Morcuende et al., 2020 ⁸⁸	n=6	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/21	United States of America	0%	High
Healthcare Occupations (mixed)*	Moscola et al., 2020 ⁸⁹	n=8156	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/20 - 06/23	United States of America	11.6%	High
Healthcare Occupations (mixed)*	Nishida et al., 2020 ⁹⁰	n=49	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderate
Healthcare Occupations (mixed)*	Olalla et al., 2020 ⁹¹	n=498	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/15 - 04/25	Spain	2.2%	High
Healthcare Occupations (mixed)*	Pallett et al., 2020 ⁹²	n=504	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	04/08 - 06/12	The United Kingdom	10.6% (7.6- 13.6%)	High
Healthcare Occupations (mixed)*	Pere et al., 2020 ⁹³	n=3569	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/02 - 06/26	France	11.9%	High

Healthcare Occupations (mixed)*	Poulikakos et al., 202094	n=281	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/04 - 05/06	The United Kingdom	6%	High
Healthcare Occupations (mixed)*	Psichogiou et al., 2020 ⁹⁵	n=1495	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/13 - 05/15	Greece	1.26% (0.43- 3.26%)	Moder
Healthcare Occupations (mixed)*	Satpati et al., 2020 ²⁷	n=18	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	07/26 - 08/08	India	5.56%	Modera
Healthcare Occupations (mixed)*	Seetharam et al., 2020 ⁹⁶	n=728	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/16 - 08/29	India	27.3% (24.1- 30.6%)	Unclea
Healthcare Occupations (mixed)*	Shakiba et al., 2020 ¹⁰	n=43	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	14.5% (4.5- 25%)	Modera
Healthcare Occupations (mixed)*	Shields et al., 2020 ⁹⁷	n=516	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/24 - 04/25	The United Kingdom	24.4%	High
Healthcare Occupations (mixed)*	Silva et al., 2020 ⁹⁸	n=61	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/09 - 04/29	Brazil	4.91%	High

Healthcare Occupations (mixed)*	Solodky et al., 2020 ⁹⁹	n=85	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	03/01 - 04/16	France	5.88%	High
Healthcare Occupations (mixed)*	Soriano et al., 2020 ¹⁰⁰	n=108	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Retrospective cohort	04/26 - 05/16	Spain	13%	High
Healthcare Occupations (mixed)*	Statistica et al., 2020 ¹⁰¹	n=64660	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/25 - 07/15	Italy	2.5%	Unclear
Healthcare Occupations (mixed)*	Steensels et al., 2020 ¹⁰²	n=3056	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/22 - 04/30	Belgium	6.4% (5.5- 7.3%)	High
Healthcare Occupations (mixed)*	Stock et al., 2020 ¹⁰³	n=98	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/04 - 04/20	United States of America	15.3%	High
Healthcare Occupations (mixed)*	Takita et al., 2020 ¹⁰⁴	n=175	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/20 - 05/20	Japan	4% (1.62- 8.07%)	High
Healthcare Occupations (mixed)*	Tong et al., 2020 ¹⁰⁵	n=191	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/12 - 05/15	China	0%	High

Healthcare Occupations (mixed)*	Trieu et al., 2020 ¹⁰⁶	n=607	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Prospective cohort	03/06 - 04/09	Norway	5.27%	High
Healthcare Occupations (mixed)*	Tu et al., 2020 ¹⁰⁷	n=325	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross sectional study with prospective cohort follow up of a subset of the sample	03/19 - 03/20	China	43.08%	High
Healthcare Occupations (mixed)*	Valdivia et al., 2020 ¹⁰⁸	n=1153	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/13 - 04/30	Spain	3.5%	High
Healthcare Occupations (mixed)*	Vasquez et al., 2020 ¹⁰⁹	n=1147	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	05/19 - 06/06	Peru	58.3%	High
Healthcare Occupations (mixed)*	Viegas et al., 2020 ¹¹⁰	n=1443	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	08/03 - 08/21	Mozambique	2.63%	High
Healthcare Occupations (mixed)*	Vlachoyiannopoulosa et al., 2020 ¹¹¹	n=321	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/25 - 05/10	Greece	2.18%	High
Healthcare Occupations (mixed)*	Volta et al., 2020 ¹¹²	n=76	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	04/27 - 04/27	Italy	11.8%	High

Healthcare Occupations (mixed)*	Ward et al., 2020 ¹¹³	n=5416	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	09/15 - 09/28	The United Kingdom	10.67%	Moderate
Healthcare Occupations (mixed)*	Ward et al., 2020 ¹¹³	n=1692	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	09/15 - 09/28	The United Kingdom	6.68%	Moderate
Healthcare Occupations (mixed)*	Xiong et al., 2020 ¹¹⁴	n=797	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	02/12 - 03/17	China	4.39%	Unclear
Healthcare Occupations (mixed)*	Zhang et al., 2020 ¹¹⁵	n=63	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/21 - 02/16	China	0%	High
Healthcare Occupations (mixed)*	Zhao et al., 2020 ¹¹⁶	n=1060	Healthcare Practitioners and Technical Occupations and Healthcare Support Occupations*	Cross-sectional survey	01/14 - 02/21	China	8.3%	High
First responders (mixed)*	Ahmad et al., 2020 ¹¹⁷	n=40	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	04/21 - 05/22	United States of America	20%	High
First responders (mixed)*	Halbrook et al., 2020 ¹¹⁸	n=679	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/19 - 08/31	United States of America	8.1%	Moderate

First responders (mixed)*	Iwuji et al., 2020 ¹¹⁹	n=683	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/12 - 05/13	United States of America	0.7%	High
First responders (mixed)*	Magyar et al., 2020 ¹²⁰	n=70	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/01 - 05/14	United States of America	4.29%	High
First responders (mixed)*	Martinez et al., 2020 ¹²¹	n=79	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	04/16 - 04/17	United States of America	5.06%	High
First responders (mixed)*	Staletovich et al., 2020 ¹²²	n=359	Healthcare Practitioners and Technical Occupations and Protective Service Occupations (i.e. first responders)*	Cross-sectional survey	05/17 - 05/22	United States of America	0%	Unclea
Healthcare Practitioners and Technical Occupations (29- 0000)	Hibino et al., 2020 ¹²³	n=806	Health Diagnosing and Treating Practitioners	Cross-sectional survey	06/01 - 07/30	Japan	0.74% (0.27- 1.61%)	Unclea
Healthcare Practitioners and Technical Occupations (29- 0000)	Jones et al., 2020 ²⁹	n=856	Dentists, General	Cross-sectional survey	01/15 - 06/15	The United Kingdom	7.9%	High
Life, Physical, and Social Science	Calcagno et al., 2020 ¹²⁴	n=343	Life, Physical, and Social Science Occupations	Cross-sectional survey	04/17 - 05/20	Italy	6.71%	Modera

Occupations (19- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=49	Dietitians and Nutritionists	Cross-sectional survey	07/12 - 08/23	India	18.37%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=6	Dietitians and Nutritionists	Cross-sectional survey	08/01 - 08/31	India	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=321	Pharmacists	Cross-sectional survey	05/18 - 06/13	United States of America	4.4% (2.4- 7.2%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=5	Pharmacists	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=29	Pharmacists	Cross-sectional survey	04/17 - 05/20	Italy	3.45%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=17	Pharmacists	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=189	Pharmacists	Cross-sectional survey	05/29 - 07/06	The United Kingdom	4.76%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=109	Pharmacists	Cross-sectional survey	06/15 - 06/29	India	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mahomed et al., 2020 ⁸¹	n=404	Pharmacists	Cross-sectional survey	08/31 - 10/12	Mozambique	0.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ²³	n=113	Pharmacists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=213	Pharmacists	Cross-sectional survey	04/20 - 05/20	United States of America	1.88%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=652	Physicians and Surgeons	Cross-sectional survey	05/14 - 05/28	Brazil	5.8%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=372	Physicians and Surgeons	Cross-sectional survey	05/13 - 07/08	United States of America	1.61%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=63	Physicians and Surgeons	Cross-sectional survey	06/12 - 06/19	Japan	3.2% (0.88- 11%)	Moderate
Healthcare Practitioners and	Noor et al., 2020 ¹³⁰	n=157	Physicians and Surgeons	Cross-sectional survey	07/13 - 07/15	Pakistan	17.83%	Moderate

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Singhal et al., 2020 ¹³¹	n=208	Physicians and Surgeons	Cross-sectional survey	06/01 - 06/30	India	12.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=23	Anesthesiologists	Cross-sectional survey	03/01 - 04/21	United States of America	13.04%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=3	Obstetricians and Gynecologists	Cross-sectional survey	03/01 - 04/21	United States of America	100%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=23	Pediatricians, General	Cross-sectional survey	04/14 - 04/16	Spain	4.3%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1944	Psychiatrists	Cross-sectional survey	04/15 - 04/22	Denmark	1.85%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=301	Surgeons	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.66%	High
Healthcare Practitioners and Technical	Akinbami et al., 2020 ⁴⁶	n=2297	Physicians and Surgeons, All Other	Cross-sectional survey	05/18 - 06/13	United States of America	6.1% (5.1- 7.1%)	Moderat

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=18	Physicians and Surgeons, All Other	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	27.78%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Amendola et al., 202047	n=214	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/15	Italy	4.67%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=417	Physicians and Surgeons, All Other	Cross-sectional survey	04/23 - 05/05	Italy	17%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Barallat et al., 2020 ⁵⁰	n=1821	Physicians and Surgeons, All Other	Cross-sectional survey	05/04 - 05/22	Spain	11.81%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Bianchi et al., 2020 ¹³³	n=34	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 05/15	Italy	5.88%	Unclear
Healthcare Practitioners and Technical Occupations (29- 0000)	Blairon et al., 2020 ⁵²	n=323	Physicians and Surgeons, All Other	Cross-sectional survey	05/25 - 06/19	Belgium	11.8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=275	Physicians and Surgeons, All Other	Cross sectional study with prospective cohort follow up of a	03/20 - 07/17	Germany	3.3%	Moderate

				subset of the sample				
Healthcare Practitioners and Technical Occupations (29- 0000)	Brousseau et al., 2020 ¹³⁴	n=432	Physicians and Surgeons, All Other	Cross-sectional survey	07/06 - 09/24	Canada	7.2%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=700	Physicians and Surgeons, All Other	Cross-sectional survey	04/17 - 05/20	Italy	7.86%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=64	Physicians and Surgeons, All Other	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Chen et al., 2020 ¹³⁵	n=17	Physicians and Surgeons, All Other	Cross-sectional survey	02/19 - 02/19	China	41.18%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Erber et al., 2020 ³¹	n=860	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 05/29	Germany	1.63%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹³⁶	n=15	Physicians and Surgeons, All Other	Prospective cohort	06/01 - 06/07	The United Kingdom	13.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹⁹	n=82	Physicians and Surgeons, All Other	Cross-sectional survey	07/13 - 07/13	The United Kingdom	10.9%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Fujita et al., 2020 ¹³⁷	n=42	Physicians and Surgeons, All Other	Cross-sectional survey	04/10 - 04/20	Japan	4.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=564	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 04/27	Spain	39.36%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=490	Physicians and Surgeons, All Other	Cross-sectional survey	07/27 - 10/02	United States of America	1.43%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=255	Physicians and Surgeons, All Other	Cross-sectional survey	07/12 - 08/23	India	3.92%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=29	Physicians and Surgeons, All Other	Cross-sectional survey	08/01 - 08/31	India	20.69%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=899	Physicians and Surgeons, All Other	Cross-sectional survey	05/29 - 07/06	The United Kingdom	7.01%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=72	Physicians and Surgeons, All Other	Cross-sectional survey	03/26 - 04/08	The United Kingdom	22%	High
Healthcare Practitioners and	Hunter et al., 2020 ²¹	n=279	Physicians and Surgeons, All Other	Cross-sectional survey	04/29 - 05/08	United States of America	1.08%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Insua et al., 2020 ¹⁴⁰	n=116	Physicians and Surgeons, All Other	Cross-sectional survey	06/08 - 06/09	Argentina	0.9% (0.1- 5.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=4698	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/22	Denmark	4.07%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=113	Physicians and Surgeons, All Other	Cross-sectional survey	04/15 - 04/22	Denmark	7.08%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Jeremias et al., 2020 ⁷⁰	n=79	Physicians and Surgeons, All Other	Cross-sectional survey	03/01 - 04/30	United States of America	11.4%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	6.66%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	3.33%	High
Healthcare Practitioners and Technical	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=30	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	3.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=980	Physicians and Surgeons, All Other	Cross-sectional survey	06/15 - 06/29	India	2.8% (1.9- 4%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Kohler et al., 2020 ¹⁴¹	n=268	Physicians and Surgeons, All Other	Cross-sectional survey	03/19 - 04/03	Switzerland	1.49%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kumar et al., 2020 ¹⁴²	n=201	Physicians and Surgeons, All Other	Cross-sectional survey	06/01 - 06/30	India	7% (4.2- 11.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=1081	Physicians and Surgeons, All Other	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	3.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=1859	Physicians and Surgeons, All Other	Prospective cohort	04/23 - 11/30	The United Kingdom	10.11%	Moderate
Healthcare Practitioners and Technical	Martin et al., 2020 ²³	n=1243	Physicians and Surgeons, All Other	Cross-sectional survey	05/29 - 07/13	The United Kingdom	10.3%	Moderat

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Mesnil et al., 2020 ¹⁴³	n=111	Physicians and Surgeons, All Other	Cross-sectional survey	06/08 - 06/22	France	11%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Missaglia et al., 2020 ¹⁴⁴	n=377	Physicians and Surgeons, All Other	Cross-sectional survey	04/01 - 04/30	Italy	14.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=272	Physicians and Surgeons, All Other	Cross-sectional survey	05/13 - 07/08	United States of America	2.94%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Moscola et al., 2020 ⁸⁹	n=3746	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 06/23	United States of America	8.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=149	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	1.3% (0.37- 4.8%)	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=46	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=40	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderat

Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=59	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	1.7% (0.3- 9%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=925	Physicians and Surgeons, All Other	Cross-sectional survey	06/12 - 06/19	Japan	0.43% (0.17-1.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Noor et al., 2020 ¹³⁰	n=303	Physicians and Surgeons, All Other	Cross-sectional survey	07/13 - 07/15	Pakistan	19.8%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Orth-Holler et al., 2020 ¹⁴⁵	n=377	Physicians and Surgeons, All Other	Cross-sectional survey	03/20 - 03/27	Austria	0.3% (0.01-1.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Plebani et al., 2020 ¹⁴⁶	n=2337	Physicians and Surgeons, All Other	Cross-sectional survey	02/22 - 05/29	Italy	3.6% (2.8- 4.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=2533	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.07%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rudberg et al., 2020 ¹⁴⁷	n=439	Physicians and Surgeons, All Other	Cross-sectional survey	04/14 - 05/08	Sweden	19.1%	Moderate
Healthcare Practitioners and	Schmidt et al., 2020 ¹⁴⁸	n=34	Physicians and Surgeons, All Other	Cross-sectional survey	04/20 - 04/30	Germany	8.82%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=115	Physicians and Surgeons, All Other	Cross-sectional survey	04/02 - 04/16	Italy	6.09%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=157	Physicians and Surgeons, All Other	Cross-sectional survey	03/01 - 05/01	United States of America	25%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=110	Physicians and Surgeons, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	1.82%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brzostek et al., 2020 ¹⁵¹	n=998	Physician Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	28.3%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Hoffmann et al., 2020 ¹⁵²	n=156	Physician Assistants	Prospective cohort	07/01 - 07/31	Germany	1.3%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=156	Physician Assistants	Cross-sectional survey	05/13 - 07/08	United States of America	0.64%	Moderat
Healthcare Practitioners and Technical	Morcuende et al., 2020 ⁸⁸	n=6	Physician Assistants	Cross-sectional survey	03/01 - 04/21	United States of America	9.43%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Morcuende et al., 2020 ⁸⁸	n=53	Physician Assistants	Cross-sectional survey	03/01 - 04/21	United States of America	9.43%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Patel et al., 2020 ¹⁵³	n=230	Physician Assistants	Prospective cohort	06/02 - 06/27	United States of America	3.48%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=919	Physician Assistants	Cross-sectional survey	04/03 - 06/19	United States of America	5.66%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Shah et al., 2020 ¹⁵⁵	n=248	Physician Assistants	Cross-sectional survey	05/25 - 07/09	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Shah et al., 2020 ¹⁵⁵	n=320	Physician Assistants	Cross-sectional survey	05/25 - 07/09	United States of America	0.63%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=386	Occupational Therapists	Prospective cohort	04/23 - 11/30	The United Kingdom	11.4%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=235	Physical Therapists	Cross-sectional survey	05/18 - 06/13	United States of America	10.6% (7- 15.3%)	Moderate

Page 66 of 119

1
2
3 4
5
6
7
8
9 10
11
12
13
14 15
16
17
18
19 20
21
22
23
24 25
26
27
28
29 30
30 31
32
33
34 35
35 36
37
38
39 40
40 41
42
43
44 45
45 46
40 47

Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=15	Physical Therapists	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Cooper et al., 2020 ⁵⁹	n=84	Physical Therapists	Cross-sectional survey	06/10 - 08/07	The United Kingdom	10.71%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=159	Physical Therapists	Cross-sectional survey	05/14 - 05/28	Brazil	10.7%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=409	Respiratory Therapists	Cross-sectional survey	05/18 - 06/13	United States of America	8.3% (5.8- 11.4%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Brunner et al., 2020 ⁵⁴	n=42	Respiratory Therapists	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=25	Respiratory Therapists	Cross-sectional survey	07/27 - 10/02	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hunter et al., 2020 ²¹	n=94	Respiratory Therapists	Cross-sectional survey	04/29 - 05/08	United States of America	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=135	Respiratory Therapists	Cross-sectional survey	04/20 - 05/20	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=235	Respiratory Therapists	Cross-sectional survey	04/03 - 06/19	United States of America	4.26%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=121	Respiratory Therapists	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=253	Therapists, All Other	Cross-sectional survey	04/20 - 05/20	United States of America	1.58%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Schmidt et al., 2020 ¹⁴⁸	n=80	Therapists, All Other	Cross-sectional survey	04/20 - 04/30	Germany	3.75%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=22	Therapists, All Other	Cross-sectional survey	05/20 - 06/08	United States of America	4.55%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=13	Veterinarians	Cross-sectional survey	04/17 - 05/20	Italy	0%	Moderate
Healthcare Practitioners and	Akinbami et al., 2020 ⁴⁶	n=6426	Registered Nurses	Cross-sectional survey	05/18 - 06/13	United States of America	7.7% (7.1- 8.4%)	Moderate

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=70	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=9	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	33.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=76	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	26.32%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=21	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	14.29%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Alharbi et al., 2020 ¹²⁵	n=43	Registered Nurses	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	27.91%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Amendola et al., 2020 ⁴⁷	n=216	Registered Nurses	Cross-sectional survey	04/15 - 04/15	Italy	6.02%	High
Healthcare Practitioners and Technical	Bampoe et al., 2020 ¹⁵⁶	n=52	Registered Nurses	Cross-sectional survey	05/11 - 06/05	The United Kingdom	13.5% (5.6- 25.8%)	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Bampoe et al., 2020 ¹⁵⁶	n=40	Registered Nurses	Cross-sectional survey	05/11 - 06/05	The United Kingdom	12.5% (4.2- 26.8%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=1014	Registered Nurses	Cross-sectional survey	04/23 - 05/05	Italy	17.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Barallat et al., 2020 ⁵⁰	n=2243	Registered Nurses	Cross-sectional survey	05/04 - 05/22	Spain	10.64%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=444	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	2.3%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Brousseau et al., 2020 ¹³⁴	n=1189	Registered Nurses	Cross-sectional survey	07/06 - 09/24	Canada	11.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=1833	Registered Nurses	Cross-sectional survey	04/17 - 05/20	Italy	8.18%	Moderate
Healthcare Practitioners and Technical	Chau et al., 2020 ¹²⁶	n=144	Registered Nurses	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Chen et al., 2020 ¹³⁵	n=25	Registered Nurses	Cross-sectional survey	02/19 - 02/19	China	8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Cooper et al., 2020 ⁵⁹	n=3471	Registered Nurses	Cross-sectional survey	06/10 - 08/07	The United Kingdom	7.52%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Costa et al., 2020 ¹²⁸	n=370	Registered Nurses	Cross-sectional survey	05/14 - 05/28	Brazil	11.4%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=412	Registered Nurses	Cross-sectional survey	06/08 - 07/08	United States of America	7%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Erber et al., 2020 ³¹	n=958	Registered Nurses	Cross-sectional survey	04/14 - 05/29	Germany	2.5%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹³⁶	n=45	Registered Nurses	Prospective cohort	06/01 - 06/07	The United Kingdom	28.89%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Favara et al., 2020 ¹⁹	n=237	Registered Nurses	Cross-sectional survey	07/13 - 07/13	The United Kingdom	16.5%	High

Page 71 of 119

Healthcare Practitioners and Technical Occupations (29- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=251	Registered Nurses	Prospective cohort	06/29 - 07/29	Germany	12%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=887	Registered Nurses	Prospective cohort	06/29 - 07/29	Germany	20%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Fujita et al., 2020 ¹³⁷	n=50	Registered Nurses	Cross-sectional survey	04/10 - 04/20	Japan	6%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=687	Registered Nurses	Cross-sectional survey	04/14 - 04/27	Spain	30.71%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=937	Registered Nurses	Cross-sectional survey	07/27 - 10/02	United States of America	1.39%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=224	Registered Nurses	Cross-sectional survey	07/12 - 08/23	India	9.38%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=43	Registered Nurses	Cross-sectional survey	08/01 - 08/31	India	34.88%	High
Healthcare Practitioners and	Grant et al., 2020 ¹⁵⁹	n=1345	Registered Nurses	Cross-sectional survey	05/15 - 06/05	The United Kingdom	34.7%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Grant et al., 2020 ¹⁵⁹	n=108	Registered Nurses	Cross-sectional survey	05/15 - 06/05	The United Kingdom	25%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hanrath et al., 2020 ³²	n=749	Registered Nurses	Cross-sectional survey	05/29 - 07/06	The United Kingdom	8.99%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=209	Registered Nurses	Cross-sectional survey	06/15 - 06/29	Pakistan	38.8% (32.1- 45.7%)	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=106	Registered Nurses	Cross-sectional survey	03/26 - 04/08	The United Kingdom	24%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Houlihan et al., 2020 ¹³⁹	n=22	Registered Nurses	Cross-sectional survey	03/26 - 04/08	The United Kingdom	23%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Hunter et al., 2020 ²¹	n=317	Registered Nurses	Cross-sectional survey	04/29 - 05/08	United States of America	2.2%	High
Healthcare Practitioners and Technical	Iversen et al., 2020 ⁸	n=9963	Registered Nurses	Cross-sectional survey	04/15 - 04/22	Denmark	4.03%	Low

Page 7	3 of	119
--------	------	-----

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1786	Registered Nurses	Cross-sectional survey	04/15 - 04/22	Denmark	4.65%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Jeremias et al., 2020 ⁷⁰	n=1043	Registered Nurses	Cross-sectional survey	03/01 - 04/30	United States of America	9.5%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Jones et al., 2020 ²⁹	n=1962	Registered Nurses	Cross-sectional survey	01/15 - 06/15	The United Kingdom	10.5%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	10.71%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	7.14%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	3.57%	Hig
Healthcare Practitioners and Technical Occupations (29- 0000)	Kassem et al., 2020 ⁷²	n=28	Registered Nurses	Cross-sectional survey	06/01 - 06/14	Egypt	0%	Hig

Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=321	Registered Nurses	Cross-sectional survey	06/15 - 06/29	India	2.8% (1.5- 5.3%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Kohler et al., 2020 ¹⁴¹	n=398	Registered Nurses	Cross-sectional survey	03/19 - 04/03	Switzerland	0.75%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Kumar et al., 2020 ¹⁴²	n=308	Registered Nurses	Cross-sectional survey	06/01 - 06/30	India	6.8% (4.5- 10.2%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=110	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Leidner et al., 2020 ²²	n=3504	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	2.34%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=4528	Registered Nurses	Prospective cohort	04/23 - 11/30	The United Kingdom	13.21%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Mansour et al., 2020 ¹⁶⁰	n=285	Registered Nurses	Cross-sectional survey	03/24 - 04/04	United States of America	32.63%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=580	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.52%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=74	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	9.46%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=676	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.92%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=337	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.93%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ¹⁶¹	n=339	Registered Nurses	Cross-sectional survey	04/01 - 04/15	Spain	5.9%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Meissner et al., 2020 ¹⁶²	n=439	Registered Nurses	Cross-sectional survey	04/14 - 05/06	United States of America	1.37%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Mohr et al., 2020 ¹²⁹	n=410	Registered Nurses	Cross-sectional survey	05/13 - 07/08	United States of America	1.46%	Moderat
Healthcare Practitioners and	Moscola et al., 2020 ⁸⁹	n=11468	Registered Nurses	Cross-sectional survey	04/20 - 06/23	United States of America	13.1%	High

Technical Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Mostafa et al., 2020 ¹⁶³	n=4040	Registered Nurses	Cross-sectional survey	04/22 - 05/14	Egypt	1.31%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=489	Registered Nurses	Cross-sectional survey	06/12 - 06/19	Japan	0.2% (0.04-1.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Noor et al., 2020 ¹³⁰	n=460	Registered Nurses	Cross-sectional survey	07/13 - 07/15	Pakistan	39.78%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Paradiso et al., 2020 ¹⁶⁴	n=606	Registered Nurses	Cross sectional study with prospective cohort follow up of a subset of the sample	03/26 - 04/17	Italy	0.33%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Plebani et al., 2020 ¹⁴⁶	n=3230	Registered Nurses	Cross-sectional survey	02/22 - 05/29	Italy	4.7% (4- 5.5%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Poustchi et al., 2020 ²⁸	n=1245	Registered Nurses	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	15.9% (13.9- 18%)	Moderate
Healthcare Practitioners and Technical	Rudberg et al., 2020 ¹⁴⁷	n=636	Registered Nurses	Cross-sectional survey	04/14 - 05/08	Sweden	21.9%	Moderate

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Schmidt et al., 2020 ¹⁴⁸	n=154	Registered Nurses	Cross-sectional survey	04/20 - 04/30	Germany	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=1445	Registered Nurses	Cross-sectional survey	04/03 - 06/19	United States of America	5.05%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Siddiqui et al., 2020 ²	n=59	Registered Nurses	Prospective cohort	04/15 - 08/15	India	10.2%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Siddiqui et al., 2020 ²	n=70	Registered Nurses	Prospective cohort	04/15 - 08/15	India	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Sotgiu et al., 2020 ¹⁴⁹	n=64	Registered Nurses	Cross-sectional survey	04/02 - 04/16	Italy	7.8% (1.2- 14.4%)	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Sydney et al., 2020 ¹⁶⁵	n=81	Registered Nurses	Cross-sectional survey	04/28 - 05/04	United States of America	18.52%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=83	Registered Nurses	Cross-sectional survey	04/14 - 04/16	Spain	4.8%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Urbieta et al., 2020 ¹³²	n=23	Registered Nurses	Cross-sectional survey	04/14 - 04/16	Spain	8.7%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=142	Registered Nurses	Cross-sectional survey	03/01 - 05/01	United States of America	28%	Modera
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=1129	Registered Nurses	Cross-sectional survey	05/20 - 06/08	United States of America	2.48%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Yogo et al., 2020 ³⁶	n=12	Registered Nurses	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Zhou et al., 2020 ¹⁶⁶	n=2406	Registered Nurses	Cross-sectional survey	03/16 - 03/25	China	1.37%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Godbout et al., 2020 ¹³⁸	n=141	Nurse Practitioners	Cross-sectional survey	07/27 - 10/02	United States of America	1.42%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=214	Nurse Practitioners	Cross-sectional survey	06/08 - 07/08	United States of America	3.7%	Modera
Healthcare Practitioners and	Akinbami et al., 2020 ⁴⁶	n=719	Health Technologists and Technicians	Cross-sectional survey	05/18 - 06/13	United States of America	4.2% (2.8- 5.9%)	Modera

Page 79 of 119	
----------------	--

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

45 46 47

Technical Occupations (29-0000) Blairon et al., 2020⁵² Healthcare Health Technologists Cross-sectional Belgium 6.6% n=61 05/25 -High Practitioners and 06/19 and Technicians survey Technical Occupations (29-0000) Yogo et al., 2020³⁶ Healthcare n=65 Health Technologists Cross-sectional 05/20 -United States 4.62% High Practitioners and and Technicians 06/08 of America survey Technical Occupations (29-0000) Silva et al., 202034 Healthcare n=224 Clinical Laboratory 06/05 -7.59% Cross-sectional Brazil High Technologists and 07/31 Practitioners and survey Technicians Technical Occupations (29-0000) Healthcare Costa et al., 2020128 Medical and Clinical Cross-sectional 05/14 -Brazil 3% Moderate n=66 Laboratory 05/28 Practitioners and survey Technical Technologists Occupations (29-0000) Healthcare Akinbami et al., 2020⁴⁶ n=293 Medical and Clinical Cross-sectional 05/18 -United States 3.4% (1.7-Moderate of America Practitioners and Laboratory Technicians survey 06/13 6.2%) Technical Occupations (29-0000) 5.5% (3.4-Healthcare Akinbami et al., 2020⁴⁶ n=365 Medical and Clinical Cross-sectional 05/18 -United States Moderate Practitioners and 06/13 Laboratory Technicians of America 8.3%) survey Technical Occupations (29-0000) Alharbi et al., 2020125 Medical and Clinical High Healthcare n=80 Cross-sectional 04/18 -Saudi Arabia 20% Practitioners and Laboratory Technicians 06/17 survey Technical

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=256	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/23 - 05/05	Italy	12.1%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Brehm et al., 2020 ⁷	n=105	Medical and Clinical Laboratory Technicians	Cross sectional study with prospective cohort follow up of a subset of the sample	03/20 - 07/17	Germany	0%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=216	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/17 - 05/20	Italy	6.94%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Calcagno et al., 2020 ¹²⁴	n=157	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/17 - 05/20	Italy	11.46%	Moderat
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=33	Medical and Clinical Laboratory Technicians	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Galan et al., 2020 ²⁰	n=192	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/14 - 04/27	Spain	21.35%	High
Healthcare Practitioners and Technical	Goenka et al., 2020 ²⁵	n=72	Medical and Clinical Laboratory Technicians	Cross-sectional survey	07/12 - 08/23	India	15.28%	Moderat

Page 81 of 119

Occupations (29- 0000)								
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=32	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/15 - 06/29	Pakistan	50% (31.8- 68.1%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=1292	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/15 - 04/22	Denmark	1.93%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Khan et al., 2020 ¹²⁷	n=397	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/15 - 06/29	India	2.5% (1.4- 4.6%)	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Lumley et al., 2020 ⁹	n=452	Medical and Clinical Laboratory Technicians	Prospective cohort	04/23 - 11/30	The United Kingdom	8.63%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Nishida et al., 2020 ⁹⁰	n=140	Medical and Clinical Laboratory Technicians	Cross-sectional survey	06/12 - 06/19	Japan	0%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Rosser et al., 2020 ³³	n=225	Medical and Clinical Laboratory Technicians	Cross-sectional survey	04/20 - 05/20	United States of America	0.44%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=342	Radiologic Technologists	Cross-sectional survey	04/15 - 04/22	Denmark	3.51%	Low

Healthcare Practitioners and Technical Occupations (29- 0000)	Martin et al., 2020 ²³	n=241	Radiologic Technologists	Cross-sectional survey	05/29 - 07/13	The United Kingdom	9.96%	Mode
Healthcare Practitioners and Technical Occupations (29- 0000)	Akinbami et al., 2020 ⁴⁶	n=1158	Emergency Medical Technicians and Paramedics	Cross-sectional survey	05/18 - 06/13	United States of America	5.2% (4- 6.6%)	Mode
Healthcare Practitioners and Technical Occupations (29- 0000)	Buntinx et al., 2020 ¹⁶⁷	n=10	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/14 - 04/16	Belgium	10%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Haq et al., 2020 ⁶⁷	n=157	Emergency Medical Technicians and Paramedics	Cross-sectional survey	06/15 - 06/29	Pakistan	42% (34.2- 50.1%)	Mod
Healthcare Practitioners and Technical Occupations (29- 0000)	Iversen et al., 2020 ⁸	n=323	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/15 - 04/22	Denmark	4.95%	Low
Healthcare Practitioners and Technical Occupations (29- 0000)	Mesnil et al., 2020 ¹⁴³	n=212	Emergency Medical Technicians and Paramedics	Cross-sectional survey	06/08 - 06/22	France	11%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Reuben et al., 2020 ¹⁶⁸	n=10	Emergency Medical Technicians and Paramedics	Cross-sectional survey	05/28 - 07/15	United States of America	0%	High

Healthcare Practitioners and Technical Occupations (29- 0000)	Saberian et al., 2020 ¹⁶⁹	n=243	Emergency Medical Technicians and Paramedics	Cross-sectional survey	03/20 - 05/20	Iran (Islamic Republic of)	41.56%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Self et al., 2020 ¹⁵⁴	n=56	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/03 - 06/19	United States of America	5.36%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Tarabichi et al., 2020 ¹⁷⁰	n=111	Emergency Medical Technicians and Paramedics	Cross-sectional survey	04/20 - 05/19	United States of America	5.41%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Baracco et al., 2020 ²⁴	n=188	Health Technologists and Technicians, All Other	Cross-sectional survey	04/23 - 05/05	Italy	13.8%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Chau et al., 2020 ¹²⁶	n=22	Health Technologists and Technicians, All Other	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁵	n=99	Health Technologists and Technicians, All Other	Cross-sectional survey	07/12 - 08/23	India	12.12%	Moderate
Healthcare Practitioners and Technical Occupations (29- 0000)	Goenka et al., 2020 ²⁶	n=16	Health Technologists and Technicians, All Other	Cross-sectional survey	08/01 - 08/31	India	68.75%	High
Healthcare Support	Jeremias et al., 2020 ⁷⁰	n=155	Healthcare Support Occupations	Cross-sectional survey	03/01 - 04/30	United States of America	5.8%	High

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Ward et al., 2020 ¹¹³	n=979	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	09/15 - 09/28	The United Kingdom	11.09% (8.96- 13.59%)	Modera
Healthcare Support Occupations (31- 0000)	Ward et al., 2020 ¹¹³	n=257	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	09/15 - 09/28	The United Kingdom	8.95%	Modera
Healthcare Support Occupations (31- 0000)	Vijh et al., 2020 ¹⁷¹	n=169	Nursing, Psychiatric, and Home Health Aides	Cross-sectional survey	05/04 - 05/14	Canada	26.63%	High
Healthcare Support Occupations (31- 0000)	Akinbami et al., 2020 ⁴⁶	n=641	Nursing Assistants	Cross-sectional survey	05/18 - 06/13	United States of America	12.8% (10.3- 15.6%)	Modera
Healthcare Support Occupations (31- 0000)	Bampoe et al., 2020 ¹⁵⁶	n=108	Nursing Assistants	Cross-sectional survey	05/11 - 06/05	The United Kingdom	15.7% (9.5- 24%)	High
Healthcare Support Occupations (31- 0000)	Baracco et al., 2020 ²⁴	n=257	Nursing Assistants	Cross-sectional survey	04/23 - 05/05	Italy	22.2%	High
Healthcare Support Occupations (31- 0000)	Barallat et al., 2020 ⁵⁰	n=832	Nursing Assistants	Cross-sectional survey	05/04 - 05/22	Spain	13.94%	High
Healthcare Support Occupations (31- 0000)	Bhattacharya et al., 2020 ¹⁷²	n=121	Nursing Assistants	Cross-sectional survey	06/01 - 06/15	United States of America	1.65%	High
Healthcare Support	Brousseau et al., 2020 ¹³⁴	n=132	Nursing Assistants	Cross-sectional survey	07/06 - 09/24	Canada	16.7%	High

Page 85 of 119)
----------------	---

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Brunner et al., 2020 ⁵⁴	n=95	Nursing Assistants	Cross-sectional survey	05/04 - 05/29	United States of America	1.05%	High
Healthcare Support Occupations (31- 0000)	Brzostek et al., 2020 ¹⁵¹	n=570	Nursing Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	39.5%	Moderat
Healthcare Support Occupations (31- 0000)	Brzostek et al., 2020 ¹⁵¹	n=263	Nursing Assistants	Cross-sectional survey	04/17 - 05/07	United States of America	45.6%	Moderat
Healthcare Support Occupations (31- 0000)	Calcagno et al., 2020 ¹²⁴	n=476	Nursing Assistants	Cross-sectional survey	04/17 - 05/20	Italy	9.24%	Moderat
Healthcare Support Occupations (31- 0000)	Costa et al., 2020 ¹²⁸	n=553	Nursing Assistants	Cross-sectional survey	05/14 - 05/28	Brazil	10.5%	Moderat
Healthcare Support Occupations (31- 0000)	Galan et al., 2020 ²⁰	n=472	Nursing Assistants	Cross-sectional survey	04/14 - 04/27	Spain	33.26%	High
Healthcare Support Occupations (31- 0000)	Garcia et al., 2020 ¹⁷³	n=2424	Nursing Assistants	Cross-sectional survey	05/01 - 05/30	Spain	22.4%	High
Healthcare Support Occupations (31- 0000)	Garcia et al., 2020 ¹⁷⁴	n=2424	Nursing Assistants	Cross-sectional survey	05/01 - 05/30	Spain	22.4%	High
Healthcare Support	Hanrath et al., 2020 ³²	n=1434	Nursing Assistants	Cross-sectional survey	05/29 - 07/06	The United Kingdom	11.44%	High

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Iversen et al., 2020 ⁸	n=501	Nursing Assistants	Cross-sectional survey	04/15 - 04/22	Denmark	1.2%	Low
Healthcare Support Occupations (31- 0000)	Khan et al., 2020 ¹²⁷	n=624	Nursing Assistants	Cross-sectional survey	06/15 - 06/29	India	2.4% (1.5- 4%)	Mode
Healthcare Support Occupations (31- 0000)	Mughal et al., 2020 ¹⁷⁵	n=121	Nursing Assistants	Cross-sectional survey	05/14 - 05/19	United States of America	0.83%	High
Healthcare Support Occupations (31- 0000)	Rao et al., 2020 ¹⁷⁶	n=1000	Nursing Assistants	Cross-sectional survey	05/23 - 06/06	India	1%	Uncle
Healthcare Support Occupations (31- 0000)	Rudberg et al., 2020 ¹⁴⁷	n=428	Nursing Assistants	Cross-sectional survey	04/14 - 05/08	Sweden	25.5%	Mode
Healthcare Support Occupations (31- 0000)	Siddiqui et al., 2020 ²	n=28	Nursing Assistants	Prospective cohort	04/15 - 08/15	India	10.7%	High
Healthcare Support Occupations (31- 0000)	Yogo et al., 2020 ³⁶	n=154	Nursing Assistants	Cross-sectional survey	05/20 - 06/08	United States of America	3.24%	High
Healthcare Support Occupations (31- 0000)	Brousseau et al., 2020 ¹³⁴	n=201	Orderlies	Cross-sectional survey	07/06 - 09/24	Canada	17.9%	High
Healthcare Support	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Page 87	of 119
---------	--------

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	33.33%	High
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	11.11%	High
Healthcare Support Occupations (31- 0000)	Kassem et al., 2020 ⁷²	n=9	Orderlies	Cross-sectional survey	06/01 - 06/14	Egypt	22.22%	High
Healthcare Support Occupations (31- 0000)	Hanrath et al., 2020 ³²	n=122	Orderlies	Cross-sectional survey	05/29 - 07/06	The United Kingdom	9.02%	High
Healthcare Support Occupations (31- 0000)	Lumley et al., 2020 ⁹	n=377	Orderlies	Prospective cohort	04/23 - 11/30	The United Kingdom	15.38%	Moder
Healthcare Support Occupations (31- 0000)	Rosser et al., 2020 ³³	n=3959	Medical Assistants	Cross-sectional survey	04/20 - 05/20	United States of America	1.39%	High
Healthcare Support Occupations (31- 0000)	Yogo et al., 2020 ³⁶	n=106	Phlebotomists	Cross-sectional survey	05/20 - 06/08	United States of America	0%	High
Healthcare Support Occupations (31- 0000)	Cavlek et al., 2020 ⁵⁶	n=300	Healthcare Support Workers, All Other	Cross-sectional survey	04/25 - 05/24	Croatia	0.67%	High
Healthcare Support	Erber et al., 2020^{31}	n=383	Healthcare Support Workers, All Other	Cross-sectional survey	04/14 - 05/29	Germany	2.34%	High

Page 88 d	of 119
-----------	--------

Occupations (31- 0000)								
Healthcare Support Occupations (31- 0000)	Khan et al., 2020 ¹²⁷	n=141	Healthcare Support Workers, All Other	Cross-sectional survey	06/15 - 06/29	India	0%	Moderat
Protective Service Occupations (33- 0000)	Shukla et al., 2020 ¹⁷⁷	n=1713	Protective Service Occupations	Cross-sectional survey	04/24 - 05/21	United States of America	1.46%	Moderat
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=18	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	0%	High
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=47	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	14.89%	High
Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=13	First-Line Supervisors of Fire Fighting and Prevention Workers	Cross-sectional survey	04/16 - 04/17	United States of America	7.69%	High
Protective Service Occupations (33- 0000)	Akinbami et al., 2020 ⁴⁶	n=330	Firefighters	Cross-sectional survey	05/18 - 06/13	United States of America	6.7% (4.2- 9.9%)	Moderat
Protective Service Occupations (33- 0000)	Gray et al., 2020 ¹⁷⁸	n=132	Firefighters	Cross-sectional survey	05/01 - 05/31	United States of America	14%	High
Protective Service Occupations (33- 0000)	Reuben et al., 2020 ¹⁶⁸	n=62	Firefighters	Cross-sectional survey	05/28 - 07/15	United States of America	4.84%	High
Protective Service Occupations (33- 0000)	Sabourin et al., 2020 ³⁵	n=42	Firefighters	Cross-sectional survey	07/15 - 08/15	United States of America	2.38%	High
Protective Service Occupations (33- 0000)	Tarabichi et al., 2020 ¹⁷⁰	n=185	Firefighters	Cross-sectional survey	04/20 - 05/19	United States of America	5.41%	High

Protective Service Occupations (33- 0000)	Martinez et al., 2020 ¹²¹	n=7	Fire Inspectors and Investigators	Cross-sectional survey	04/16 - 04/17	United States of America	14.29%	High
Protective Service Occupations (33- 0000)	Akinbami et al., 2020 ⁴⁶	n=785	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/18 - 06/13	United States of America	4% (2.7- 5.6%)	Moderate
Protective Service Occupations (33- 0000)	Chughtai et al., 2020 ¹⁷⁹	n=154	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/20 - 05/30	Pakistan	15.6%	High
Protective Service Occupations (33- 0000)	Gudo et al., 2020 ⁶⁵	n=564	Police and Sheriff's Patrol Officers	Cross-sectional survey	06/17 - 06/30	Mozambique	6% (4-8%)	High
Protective Service Occupations (33- 0000)	Gujski et al., 2020 ¹⁸⁰	n=4026	Police and Sheriff's Patrol Officers	Cross-sectional survey	06/22 - 07/08	Poland	4.2%	Moderate
Protective Service Occupations (33- 0000)	Halatoko et al., 2020 ⁴¹	n=196	Police and Sheriff's Patrol Officers	Cross-sectional survey	04/23 - 05/08	Togo	0%	High
Protective Service Occupations (33- 0000)	Langa et al., 2020 ¹⁸¹	n=471	Police and Sheriff's Patrol Officers	Cross-sectional survey	09/28 - 10/09	Mozambique	1.5%	High
Protective Service Occupations (33- 0000)	Macicame et al., 2020 ¹⁸²	n=456	Police and Sheriff's Patrol Officers	Cross-sectional survey	09/14 - 09/30	Mozambique	4.39%	High
Protective Service Occupations (33- 0000)	Mahomed et al., 2020 ⁸¹	n=554	Police and Sheriff's Patrol Officers	Cross-sectional survey	08/31 - 10/12	Mozambique	2.9%	High
Protective Service Occupations (33- 0000)	Reuben et al., 2020 ¹⁶⁸	n=220	Police and Sheriff's Patrol Officers	Cross-sectional survey	05/28 - 07/15	United States of America	3.64%	High
Protective Service Occupations (33- 0000)	Sabourin et al., 2020 ³⁵	n=125	Police and Sheriff's Patrol Officers	Cross-sectional survey	07/15 - 08/15	United States of America	4%	High

Protective Service Occupations (33- 0000)	Shukla et al., 2020 ¹⁷⁷	n=1643	Police and Sheriff's Patrol Officers	Cross-sectional survey	04/24 - 05/21	United States of America	1.52%	Moderat
Protective Service Occupations (33- 0000)	Siddiqui et al., 2020 ²	n=27	Police and Sheriff's Patrol Officers	Prospective cohort	04/15 - 08/15	India	7.4%	High
Protective Service Occupations (33- 0000)	Viegas et al., 2020 ¹¹⁰	n=559	Police and Sheriff's Patrol Officers	Cross-sectional survey	08/03 - 08/21	Mozambique	3.94%	High
Protective Service Occupations (33- 0000)	Denyer et al., 2020 ⁶⁰	n=38216	Security Guards	Cross-sectional survey	05/12 - 05/18	Japan	0.23%	Unclear
Protective Service Occupations (33- 0000)	Mahumane et al., 2020 ⁸²	n=407	Security Guards	Cross-sectional survey	11/02 - 11/17	Mozambique	4.9%	High
Protective Service Occupations (33- 0000)	Siddiqui et al., 2020 ²	n=9	Security Guards	Prospective cohort	04/15 - 08/15	India	0%	High
Protective Service Occupations (33- 0000)	Silva et al., 2020 ³⁴	n=32	Security Guards	Cross-sectional survey	06/05 - 07/31	Brazil	34%	High
Protective Service Occupations (33- 0000)	Thani et al., 2020 ¹⁸³	n=61	Security Guards	Cross-sectional survey	07/26 - 09/09	Qatar	60.1%	Moderat
Food Preparation and Serving Related Occupations (35- 0000)	Thani et al., 2020 ¹⁸³	n=93	Food Preparation and Serving Related Occupations	Cross-sectional survey	07/26 - 09/09	Qatar	29.2%	Moderat
Food Preparation and Serving Related Occupations (35- 0000)	Siddiqui et al., 2020 ²	n=8	Cooks, All Other	Prospective cohort	04/15 - 08/15	India	37.5%	High
Food Preparation and Serving	Brunner et al., 2020 ⁵⁴	n=8	Food Preparation Workers	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High

Page 91	of 119
---------	--------

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26 27

28

29

30

31

32

33

34

35

0000)

Building and

Grounds Cleaning

and Maintenance

Chau et al., 2020¹²⁶

Related Occupations (35-0000) Rosser et al., 2020³³ Healthcare n=335 Healthcare Support Cross-sectional 04/20 -United States 3.58% High Support Occupations survey 05/20 of America Occupations (31-0000) Food Preparation Biggs et al., 2020^3 n=24 Food Servers. Cross-sectional 04/28 -United States 4.17% Moderate and Serving 05/03 Nonrestaurant survey of America Related Occupations (35-0000) Food Preparation Leidner et al., 2020²² n=113 Food Servers. Cross sectional 04/08 -United States 1.77% High 05/22and Serving Nonrestaurant study with of America prospective cohort Related follow up of a Occupations (35-0000) subset of the sample Food Preparation Hanrath et al., 2020^{32} n=340 Other Food Preparation Cross-sectional 05/29 -The United 8.53% High and Serving 07/06 and Serving Related survey Kingdom Workers Related Occupations (35-0000) Building and Martin et al., 2020²³ n=528 Building and Grounds Cross-sectional 05/29 -The United 8.14% Moderate Grounds Cleaning Cleaning and survey 07/13 Kingdom and Maintenance Maintenance Occupations (37-Occupations 0000) Brousseau et al., 2020¹³⁴ Building and n=102 Building Cleaning and Cross-sectional 07/06 -Canada 10.8% High Grounds Cleaning Pest Control Workers 09/24 survey and Maintenance Occupations (37-

BMJ Open

Cross-sectional

survey

08/23 -

08/30

Viet Nam

0%

High

Building Cleaning and

Pest Control Workers

n=42

Occupations (37- 0000)								
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=57	Building Cleaning and Pest Control Workers	Prospective cohort	06/29 - 07/29	Germany	19.3%	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Chau et al., 2020 ¹²⁶	n=6	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Epstude et al., 2020 ¹⁸⁴	n=45	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	06/15 - 06/30	Germany	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Thani et al., 2020 ¹⁸³	n=105	Janitors and Cleaners, Except Maids and Housekeeping Cleaners	Cross-sectional survey	07/26 - 09/09	Qatar	54.5%	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Brunner et al., 2020 ⁵⁴	n=23	Maids and Housekeeping Cleaners	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Goenka et al., 2020 ²⁵	n=226	Maids and Housekeeping Cleaners	Cross-sectional survey	07/12 - 08/23	India	26.11%	Moderat
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Goenka et al., 2020 ²⁶	n=10	Maids and Housekeeping Cleaners	Cross-sectional survey	08/01 - 08/31	India	10%	High

Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Hanrath et al., 2020 ³²	n=515	Maids and Housekeeping Cleaners	Cross-sectional survey	05/29 - 07/06	The United Kingdom	13.2%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Khan et al., 2020 ¹²⁷	n=276	Maids and Housekeeping Cleaners	Cross-sectional survey	06/15 - 06/29	India	3.3% (1.7- 6.2%)	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Leidner et al., 2020 ²²	n=137	Maids and Housekeeping Cleaners	Cross sectional study with prospective cohort follow up of a subset of the sample	04/08 - 05/22	United States of America	8.03%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Moscola et al., 2020 ⁸⁹	n=7314	Maids and Housekeeping Cleaners	Cross-sectional survey	04/20 - 06/23	United States of America	20.9%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Shakiba et al., 2020 ¹⁰	n=159	Maids and Housekeeping Cleaners	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	25% (13.6- 37.5%)	Moderate
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Shields et al., 2020 ⁹⁷	n=29	Maids and Housekeeping Cleaners	Cross-sectional survey	04/24 - 04/25	The United Kingdom	34.5%	High
Building and Grounds Cleaning and Maintenance Occupations (37- 0000)	Siddiqui et al., 2020 ²	n=46	Maids and Housekeeping Cleaners	Prospective cohort	04/15 - 08/15	India	21.7%	High

Personal Care and Service Occupations (39- 0000)	Biggs et al., 2020 ³	n=10	Hairdressers, Hairstylists, and Cosmetologists	Cross-sectional survey	04/28 - 05/03	United States of America	10%	Moderate
Personal Care and Service Occupations (39- 0000)	Biggs et al., 2020 ³	n=48	Childcare Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Personal Care and Service Occupations (39- 0000)	Chen et al., 2020 ¹³⁵	n=11	Personal Care Aides	Cross-sectional survey	02/19 - 02/19	China	9.09%	High
Personal Care and Service Occupations (39- 0000)	Galan et al., 2020 ²⁰	n=337	Personal Care Aides	Cross-sectional survey	04/14 - 04/27	Spain	27.89%	High
Personal Care and Service Occupations (39- 0000)	Galan et al., 2020 ²⁰	n=168	Personal Care Aides	Cross-sectional survey	04/14 - 04/27	Spain	27.38%	High
Personal Care and Service Occupations (39- 0000)	Godbout et al., 2020 ¹³⁸	n=86	Personal Care Aides	Cross-sectional survey	07/27 - 10/02	United States of America	2.32%	High
Personal Care and Service Occupations (39- 0000)	Hassan et al., 2020 ¹⁸⁵	n=403	Personal Care Aides	Cross-sectional survey	05/11 - 06/17	Sweden	20.1%	High
Personal Care and Service Occupations (39- 0000)	Kumar et al., 2020 ¹⁴²	n=292	Personal Care Aides	Cross-sectional survey	06/01 - 06/30	India	18.5% (14.5- 23.3%)	High
Personal Care and Service Occupations (39- 0000)	Ladhani et al., 2020 ¹⁸⁶	n=208	Personal Care Aides	Prospective cohort	04/10 - 04/13	The United Kingdom	75% (68.7- 80.4%)	High

Personal Care and Service Occupations (39- 0000)	Lindahl et al., 2020 ¹⁸⁷	n=1005	Personal Care Aides	Cross-sectional survey	04/01 - 04/20	Sweden	22.9% (20.4- 25.7%)	High
Personal Care and Service Occupations (39- 0000)	Regan et al., 2020 ¹⁸⁸	n=305	Personal Care Aides	Cross-sectional survey	04/15 - 05/06	United States of America	23.6%	Unclear
Personal Care and Service Occupations (39- 0000)	Siddiqui et al., 2020 ²	n=5	Personal Care Aides	Prospective cohort	04/15 - 08/15	India	40%	High
Personal Care and Service Occupations (39- 0000)	Venugopal et al., 2020 ¹⁵⁰	n=72	Personal Care Aides	Cross-sectional survey	03/01 - 05/01	United States of America	28%	Moderat
Personal Care and Service Occupations (39- 0000)	Viegas et al., 2020 ¹¹⁰	n=85	Personal Care Aides	Cross-sectional survey	08/03 - 08/21	Mozambique	1.18%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹³	n=928	Sales and Related Occupations	Cross-sectional survey	07/06 - 07/13	Mozambique	6.5%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ⁴⁸	n=1123	Sales and Related Occupations	Cross-sectional survey	08/10 - 08/21	Mozambique	1.6%	High
Sales and Related Occupations (41- 0000)	Langa et al., 2020 ¹⁸¹	n=871	Sales and Related Occupations	Cross-sectional survey	09/28 - 10/09	Mozambique	0.2%	High
Sales and Related Occupations (41- 0000)	Mabunda et al., 2020 ¹⁵	n=1585	Sales and Related Occupations	Cross-sectional survey	09/21 - 10/02	Mozambique	8.3%	High
Sales and Related Occupations (41- 0000)	Macicame et al., 2020 ¹⁸²	n=1288	Sales and Related Occupations	Cross-sectional survey	09/14 - 09/30	Mozambique	4.97%	High

Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ⁸¹	n=1556	Sales and Related Occupations	Cross-sectional survey	08/31 - 10/12	Mozambique	0.8%	High
Sales and Related Occupations (41- 0000)	Mahumane et al., 2020 ⁸²	n=643	Sales and Related Occupations	Cross-sectional survey	11/02 - 11/17	Mozambique	1.9%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹⁴	n=472	Sales and Related Occupations	Cross-sectional survey	11/16 - 11/21	Mozambique	6.8%	High
Sales and Related Occupations (41- 0000)	Arnaldo et al., 2020 ¹⁴	n=460	Sales and Related Occupations	Cross-sectional survey	11/02 - 11/12	Mozambique	5.9%	High
Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ¹⁶	n=517	Sales and Related Occupations	Cross-sectional survey	11/26 - 12/03	Mozambique	8.9%	High
Sales and Related Occupations (41- 0000)	Mahomed et al., 2020 ¹⁶	n=1001	Sales and Related Occupations	Cross-sectional survey	11/07 - 11/21	Mozambique	4.5%	High
Sales and Related Occupations (41- 0000)	Biggs et al., 2020 ³	n=19	Retail Sales Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderat
Sales and Related Occupations (41- 0000)	Poustchi et al., 2020 ²⁸	n=753	Cashiers	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	16.1% (12.9- 19.2%)	Moderat
Sales and Related Occupations (41- 0000)	Alali et al., 2020 ¹⁸⁹	n=525	Cashiers	Cross-sectional survey	05/23 - 06/26	Kuwait	38.1% (34- 42.3%)	High
Sales and Related Occupations (41- 0000)	Denyer et al., 2020 ⁶⁰	n=19075	Retail Salespersons	Cross-sectional survey	05/12 - 05/18	Japan	0.04%	Unclear
Sales and Related Occupations (41- 0000)	Kern et al., 2020 ⁷³	n=300	Retail Salespersons	Cross-sectional survey	04/09 - 04/16	Germany	0.33% (0.01- 1.84%)	High

Sales and Related Occupations (41- 0000)	Khan et al., 2020 ⁴⁵	n=132	Retail Salespersons	Cross-sectional survey	07/01 - 07/15	India	5.3% (2.5- 10.7%)	Moderate
Sales and Related Occupations (41- 0000)	Thani et al., 2020 ¹⁸³	n=171	Retail Salespersons	Cross-sectional survey	07/26 - 09/09	Qatar	40.3%	Moderat
Sales and Related Occupations (41- 0000)	Siddiqui et al., 2020 ²	n=4	Sales Representatives, Wholesale and Manufacturing, Except Technical and Scientific Products	Prospective cohort	04/15 - 08/15	India	25%	High
Sales and Related Occupations (41- 0000)	Biggs et al., 2020 ³	n=34	Real Estate Sales Agents	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderat
Sales and Related Occupations (41- 0000)	Gudo et al., 2020 ⁶⁵	n=1493	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	Cross-sectional survey	06/17 - 06/30	Mozambique	10% (8-11%)	High
Sales and Related Occupations (41- 0000)	Viegas et al., 2020 ¹¹⁰	n=1246	Door-to-Door Sales Workers, News and Street Vendors, and Related Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	5.22%	High
Sales and Related Occupations (41- 0000)	Shakiba et al., 2020 ¹⁰	n=46	Sales and Related Workers, All Other	Cross-sectional survey	04/11 - 04/19	Iran (Islamic Republic of)	8.7% (0.8- 20%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Calcagno et al., 2020 ¹²⁴	n=539	Office and Administrative Support Occupations	Cross-sectional survey	04/17 - 05/20	Italy	3.34%	Moderat
Office and Administrative Support Occupations (43- 0000)	Costa et al., 2020 ¹²⁸	n=120	Office and Administrative Support Occupations	Cross-sectional survey	05/14 - 05/28	Brazil	14.2%	Moderat

Office and Administrative Support Occupations (43- 0000)	Rosser et al., 2020 ³³	n=972	Office and Administrative Support Occupations	Cross-sectional survey	04/20 - 05/20	United States of America	1.34%	High
Office and Administrative Support Occupations (43- 0000)	Tsitsilonis et al., 2020 ¹²	n=504	Office and Administrative Support Occupations	Cross-sectional survey	06/15 - 07/15	Greece	0.48% (0- 2.37%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Khan et al., 2020 ⁴⁵	n=37	Hotel, Motel, and Resort Desk Clerks	Cross-sectional survey	07/01 - 07/15	India	10.8% (4.1- 25.5%)	Moderat
Office and Administrative Support Occupations (43- 0000)	Brunner et al., 2020 ⁵⁴	n=26	Receptionists and Information Clerks	Cross-sectional survey	05/04 - 05/29	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Favara et al., 2020 ¹³⁶	n=10	Receptionists and Information Clerks	Prospective cohort	06/01 - 06/07	The United Kingdom	0%	High
Office and Administrative Support Occupations (43- 0000)	Moscola et al., 2020 ⁸⁹	n=9645	Receptionists and Information Clerks	Cross-sectional survey	04/20 - 06/23	United States of America	12.6%	High
Office and Administrative Support Occupations (43- 0000)	Biggs et al., 2020 ³	n=11	Shipping, Receiving, and Traffic Clerks	Cross-sectional survey	04/28 - 05/03	United States of America	18.18%	Modera
Office and Administrative	Silva et al., 2020 ³⁴	n=82	Stock Clerks and Order Fillers	Cross-sectional survey	06/05 - 07/31	Brazil	4.88%	High

Page 99	of 119
---------	--------

Support Occupations (43- 0000)								
Office and Administrative Support Occupations (43- 0000)	Khan et al., 2020 ⁴⁵	n=186	Secretaries and Administrative Assistants	Cross-sectional survey	07/01 - 07/15	India	3.8% (1.8- 7.7%)	Moderate
Office and Administrative Support Occupations (43- 0000)	Alemu et al., 2020 ⁶	n=48	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	04/23 - 04/28	Ethiopia	2.1%	Moderate
Office and Administrative Support Occupations (43- 0000)	Barallat et al., 2020 ⁵⁰	n=1181	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	05/04 - 05/22	Spain	6.52%	High
Office and Administrative Support Occupations (43- 0000)	Lumley et al., 2020 ⁹	n=1557	Executive Secretaries and Executive Administrative Assistants	Prospective cohort	04/23 - 11/30	The United Kingdom	6.74%	Moderate
Office and Administrative Support Occupations (43- 0000)	Reuben et al., 2020 ¹⁶⁸	n=18	Executive Secretaries and Executive Administrative Assistants	Cross-sectional survey	05/28 - 07/15	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Akinbami et al., 2020 ⁴⁶	n=964	Medical Secretaries	Cross-sectional survey	05/18 - 06/13	United States of America	8% (6.4- 9.9%)	Moderate
Office and Administrative Support	Alharbi et al., 2020 ¹²⁵	n=8	Medical Secretaries	Cross-sectional survey	04/18 - 06/17	Saudi Arabia	25%	High

Occupations (43- 0000)								
Office and Administrative Support Occupations (43- 0000)	Dimcheff et al., 2020 ¹⁵⁷	n=357	Medical Secretaries	Cross-sectional survey	06/08 - 07/08	United States of America	4.2%	Modera
Office and Administrative Support Occupations (43- 0000)	Erber et al., 2020 ³¹	n=557	Medical Secretaries	Cross-sectional survey	04/14 - 05/29	Germany	3.78%	High
Office and Administrative Support Occupations (43- 0000)	Finkenzeller et al., 2020 ¹⁵⁸	n=240	Medical Secretaries	Prospective cohort	06/29 - 07/29	Germany	7.1%	Modera
Office and Administrative Support Occupations (43- 0000)	Goenka et al., 2020 ²⁵	n=75	Medical Secretaries	Cross-sectional survey	07/12 - 08/23	India	8%	Modera
Office and Administrative Support Occupations (43- 0000)	Goenka et al., 2020 ²⁵	n=75	Medical Secretaries	Cross-sectional survey	07/12 - 08/23	India	8%	Modera
Office and Administrative Support Occupations (43- 0000)	Iversen et al., 2020 ⁸	n=2631	Medical Secretaries	Cross-sectional survey	04/15 - 04/22	Denmark	2.7%	Low
Office and Administrative Support Occupations (43- 0000)	Leidner et al., 2020 ²²	n=793	Medical Secretaries	Cross sectional study with prospective cohort follow up of a	04/08 - 05/22	United States of America	3.15%	High

				subset of the sample				
Office and Administrative Support Occupations (43- 0000)	Mesnil et al., 2020 ¹⁴³	n=184	Medical Secretaries	Cross-sectional survey	06/08 - 06/22	France	14.13%	High
Office and Administrative Support Occupations (43- 0000)	Nishida et al., 2020 ⁹⁰	n=98	Medical Secretaries	Cross-sectional survey	06/12 - 06/19	Japan	1% (0.18- 5.6%)	Modera
Office and Administrative Support Occupations (43- 0000)	Noor et al., 2020 ¹³⁰	n=91	Medical Secretaries	Cross-sectional survey	07/13 - 07/15	Pakistan	43.96%	Modera
Office and Administrative Support Occupations (43- 0000)	Thani et al., 2020 ¹⁸³	n=82	Medical Secretaries	Cross-sectional survey	07/26 - 09/09	Qatar	31.6%	Modera
Office and Administrative Support Occupations (43- 0000)	Zhou et al., 2020 ¹⁶⁶	n=505	Medical Secretaries	Cross-sectional survey	03/16 - 03/25	China	1.39%	Modera
Office and Administrative Support Occupations (43- 0000)	Chau et al., 2020 ¹²⁶	n=20	Data Entry Keyers	Cross-sectional survey	08/23 - 08/30	Viet Nam	0%	High
Office and Administrative Support Occupations (43- 0000)	Jones et al., 2020 ²⁹	n=1233	Office Clerks, General	Cross-sectional survey	01/15 - 06/15	The United Kingdom	6.1%	High

Office and Administrative Support Occupations (43- 0000)	Rosser et al., 2020 ³³	n=218	Office Clerks, General	Cross-sectional survey	04/20 - 05/20	United States of America	0%	High
Office and Administrative Support Occupations (43- 0000)	Satpati et al., 2020 ²⁷	n=47	Office Clerks, General	Cross-sectional survey	07/26 - 08/08	India	4.26%	Moderat
Office and Administrative Support Occupations (43- 0000)	Baracco et al., 2020 ²⁴	n=194	Office and Administrative Support Workers, All Other	Cross-sectional survey	04/23 - 05/05	Italy	14.4%	High
Office and Administrative Support Occupations (43- 0000)	Brzostek et al., 2020 ¹⁵¹	n=286	Office and Administrative Support Workers, All Other	Cross-sectional survey	04/17 - 05/07	United States of America	45.5%	Moderat
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	14.28%	High
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High
Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	0%	High

Office and Administrative Support Occupations (43- 0000)	Kassem et al., 2020 ⁷²	n=7	Office and Administrative Support Workers, All Other	Cross-sectional survey	06/01 - 06/14	Egypt	14.28%	High
Farming, Fishing, and Forestry Occupations (45- 0000)	Satpati et al., 2020 ²⁷	n=53	Agricultural Workers	Cross-sectional survey	07/26 - 08/08	India	0%	Modera
Farming, Fishing, and Forestry Occupations (45- 0000)	Addetia et al., 2020 ¹⁹⁰	n=120	Fishers and Related Fishing Workers	Retrospective cohort	05/01 - 05/31	United States of America	5%	High
Farming, Fishing, and Forestry Occupations (45- 0000)	Arnaldo et al., 2020 ¹³	n=80	Fishers and Related Fishing Workers	Cross-sectional survey	07/06 - 07/13	Mozambique	5%	High
Construction and Extraction Occupations (47- 0000)	Biggs et al., 2020 ³	n=42	Construction Trades Workers	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Modera
Installation, Maintenance, and Repair Occupations (49- 0000)	Blairon et al., 2020 ⁵²	n=134	Other Installation, Maintenance, and Repair Occupations	Cross-sectional survey	05/25 - 06/19	Belgium	16.4%	High
Production Occupations (51- 0000)	Picon et al., 2020 ¹⁹¹	n=40	Butchers and Other Meat, Poultry, and Fish Processing Workers	Cross-sectional survey	06/13 - 06/17	Brazil	15%	Modera
Production Occupations (51- 0000)	Picon et al., 2020 ¹⁹¹	n=1087	Miscellaneous Food Processing Workers	Cross-sectional survey	06/13 - 06/17	Brazil	1.47%	Modera
Production Occupations (51- 0000)	Bontadi et al., 2020 ¹⁹²	n=1267	Production Workers, All Other	Cross-sectional survey	04/11 - 04/29	Italy	1.58%	High

Production Occupations (51- 0000)	Xu et al., 2020 ¹⁹³	n=442	Production Workers, All Other	Cross-sectional survey	03/09 - 04/10	China	1.4% (0.6- 2.9%)	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ¹³	n=248	Transportation and Material Moving Occupations	Cross-sectional survey	07/06 - 07/13	Mozambique	4.8%	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ⁴⁸	n=367	Transportation and Material Moving Occupations	Cross-sectional survey	08/10 - 08/21	Mozambique	7.4%	High
Transportation and Material Moving Occupations (53- 0000)	Arnaldo et al., 2020 ¹⁴	n=112	Transportation and Material Moving Occupations	Cross-sectional survey	11/16 - 11/21	Mozambique	16.1%	High
Transportation and Material Moving Occupations (53- 0000)	Biggs et al., 2020 ³	n=14	Transportation and Material Moving Occupations	Cross-sectional survey	04/28 - 05/03	United States of America	0%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Gudo et al., 2020 ⁶⁵	n=554	Transportation and Material Moving Occupations	Cross-sectional survey	06/17 - 06/30	Mozambique	3% (1-4%)	High
Transportation and Material Moving Occupations (53- 0000)	Langa et al., 2020 ¹⁸¹	n=230	Transportation and Material Moving Occupations	Cross-sectional C	09/28 - 10/09	Mozambique	0.4%	High
Transportation and Material Moving Occupations (53- 0000)	Mabunda et al., 2020 ¹⁵	n=473	Transportation and Material Moving Occupations	Cross-sectional survey	09/21 - 10/02	Mozambique	8.7%	High
Transportation and Material Moving Occupations (53- 0000)	Macicame et al., 2020 ¹⁸²	n=282	Transportation and Material Moving Occupations	Cross-sectional survey	09/14 - 09/30	Mozambique	3.19%	High

Transportation and Material Moving Occupations (53- 0000)	Mahomed et al., 2020 ⁸¹	n=334	Transportation and Material Moving Occupations	Cross-sectional survey	08/31 - 10/12	Mozambique	1.5%	High
Transportation and Material Moving Occupations (53- 0000)	Mahumane et al., 2020 ⁸²	n=287	Transportation and Material Moving Occupations	Cross-sectional survey	11/02 - 11/17	Mozambique	1%	High
Transportation and Material Moving Occupations (53- 0000)	Thani et al., 2020 ¹⁸³	n=435	Transportation and Material Moving Occupations	Cross-sectional survey	07/26 - 09/09	Qatar	53.4%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Halatoko et al., 2020 ⁴¹	n=212	Air Transportation Workers	Cross-sectional survey	04/23 - 05/08	Togo	0.9%	High
Transportation and Material Moving Occupations (53- 0000)	Viegas et al., 2020 ¹¹⁰	n=623	Air Transportation Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	2.25%	High
Transportation and Material Moving Occupations (53- 0000)	Viegas et al., 2020 ¹¹⁰	n=362	Air Transportation Workers	Cross-sectional survey	08/03 - 08/21	Mozambique	3.31%	High
Transportation and Material Moving Occupations (53- 0000)	Khan et al., 2020 ¹²⁷	n=57	Ambulance Drivers and Attendants, Except Emergency Medical Technicians	Cross-sectional survey	06/15 - 06/29	India	3.5% (0.9- 13.3%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Martinez et al., 2020 ¹²¹	n=30	Heavy and Tractor- Trailer Truck Drivers	Cross-sectional survey	04/16 - 04/17	United States of America	16.67%	High
Transportation and Material Moving Occupations (53- 0000)	Siddiqui et al., 2020 ²	n=9	Heavy and Tractor- Trailer Truck Drivers	Prospective cohort	04/15 - 08/15	India	11.1%	High

Transportation and Material Moving Occupations (53- 0000)	Halatoko et al., 2020 ⁴¹	n=122	Taxi Drivers and Chauffeurs	Cross-sectional survey	04/23 - 05/08	Togo	0.8%	High
Transportation and Material Moving Occupations (53- 0000)	Poustchi et al., 2020 ²⁸	n=718	Taxi Drivers and Chauffeurs	Cross-sectional survey	04/17 - 06/02	Iran (Islamic Republic of)	14.1% (11.4- 16.9%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Alemu et al., 2020 ⁶	n=8	Parking Lot Attendants	Cross-sectional survey	04/23 - 04/28	Ethiopia	12.5%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Alemu et al., 2020 ⁶	n=110	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	04/23 - 04/28	Ethiopia	10%	Moderate
Transportation and Material Moving Occupations (53- 0000)	Khan et al., 2020 ⁴⁵	n=97	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	07/01 - 07/15	India	2.1% (0.5- 7.9%)	Moderate
Transportation and Material Moving Occupations (53- 0000)	Satpati et al., 2020 ²⁷	n=63	Laborers and Freight, Stock, and Material Movers, Hand	Cross-sectional survey	07/26 - 08/08	India	12.7%	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=6295	Unemployed	Prospective cohort	05/04 - 06/23	France	4.9% (4.1- 5.6%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=1457	Unemployed	Prospective cohort	05/04 - 06/23	France	8.3% (6.4- 10%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=306	Unemployed	Prospective cohort	05/04 - 06/23	France	7.2% (2.3- 11.1%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=125	Unemployed	Prospective cohort	05/04 - 06/23	France	3.8% (0.5- 6.3%)	Moderate
Not employed (mixed)*	Carrat et al., 2020 ⁴	n=402	Unemployed	Prospective cohort	05/04 - 06/23	France	7.8% (4.7-10.4%)	Moderate

Not employed	Chamie et al., 2020 ¹⁹⁴	n=230	Unemployed	Cross-sectional	04/25 -	United States	4.3%	Moderat
(mixed)*			1 0	survey	04/28	of America		
Not employed (mixed)*	McLaughlin et al., 2020 ¹⁹⁵	n=241	Unemployed	Cross-sectional survey	05/04 - 05/19	United States of America	19.3% (14.6- 24.5%)	Modera
Not employed (mixed)*	Merkely et al., 2020 ¹	n=1095	Unemployed	Cross-sectional survey	05/01 - 05/16	Hungary	0.43% (0.16- 0.84%)	Modera
Not employed (mixed)*	Munoz et al., 2020 ¹⁹⁶	n=905	Unemployed	Cross-sectional survey	07/15 - 07/16	Argentina	20%	Modera
Not employed (mixed)*	Richard et al., 2020 ⁵	n=549	Unemployed	Cross-sectional survey	04/06 - 06/30	Switzerland	6%	Low
Not employed (mixed)*	Satpati et al., 2020 ²⁷	n=47	Unemployed	Cross-sectional survey	07/26 - 08/08	India	2.13%	Moder
Not employed (mixed)*	Ward et al., 2020 ¹¹³	n=59369	Unemployed	Cross-sectional survey	09/15 - 09/28	The United Kingdom	3.35%	Moder
<i>Morbidity and Mor</i> 4. Carrat F, Lamba	is JB, Breakwell L, et al. Estim <i>rtality Weekly Report</i> . 2020;69(Illerie X de, Rahib D, et al. Sero	29):965-970. oprevalence o	doi:10.15585/mmwr.m f SARS-CoV-2 among	adults in three regions of	f France fo	llowing the lockd	-	
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wisi	<i>rtality Weekly Report</i> . 2020;69(Illerie X de, Rahib D, et al. Sero ly. <i>medRxiv</i> . Published online S niak A, Perez-Saez J, et al. Sero	29):965-970. oprevalence of eptember 202 oprevalence of	doi:10.15585/mmwr.m f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig0	adults in three regions of 3. doi:10.1101/2020.09.	f France fo 16.2019569 for infectio	llowing the lockd	lown and associat	ed risk fa
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wisi Switzerland: A pop 6. Alemu BN, Add	rtality Weekly Report. 2020;69(Illerie X de, Rahib D, et al. Serce ly. medRxiv. Published online S niak A, Perez-Saez J, et al. Serce pulation-based study. medRxiv. lissie A, Mamo G, et al. Sero-P	29):965-970. oprevalence of eptember 202 oprevalence of Published on	doi:10.15585/mmwr.m f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig line December 2020. do	adults in three regions of 3. doi:10.1101/2020.09. 3 antibodies, risk factors oi:10.1101/2020.12.16.2	f France fo 16.2019569 for infectio 0248180	llowing the lockd 3 on and associated	lown and associat symptoms in Get	ed risk fa
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wist Switzerland: A pop 6. Alemu BN, Add doi:10.1101/2020. 7. Brehm T, Schwi	rtality Weekly Report. 2020;69(Illerie X de, Rahib D, et al. Serce ly. medRxiv. Published online S niak A, Perez-Saez J, et al. Serce pulation-based study. medRxiv. lissie A, Mamo G, et al. Sero-P	29):965-970. oprevalence of oprevalence of Published on <i>revalence of A</i>	doi:10.15585/mmwr.m f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig0 line December 2020. d Anti-SARS-CoV-2 Antib f SARS-CoV-2 antibod	adults in three regions of 3. doi:10.1101/2020.09. G antibodies, risk factors oi:10.1101/2020.12.16.2 <i>podies in Addis Ababa, E</i> lies among hospital work	f France for 16.2019569 for infection 0248180 <i>thiopia</i> . Mineters in a Generation	llowing the lockd 3 on and associated crobiology; 2020	lown and associat symptoms in Ge).	ed risk fa neva,
Morbidity and Mor 4. Carrat F, Lamba A multicohort stud 5. Richard A, Wist Switzerland: A pop 6. Alemu BN, Add doi:10.1101/2020. 7. Brehm T, Schwi study. Internationa 8. Iversen K, Bund	rtality Weekly Report. 2020;69(illerie X de, Rahib D, et al. Serce ly. medRxiv. Published online S niak A, Perez-Saez J, et al. Serce pulation-based study. medRxiv. lissie A, Mamo G, et al. Serce-P 10.13.337287 inge D, Lampalzer S, et al. Serce	29):965-970. oprevalence of eptember 202 oprevalence of Published on <i>revalence of A</i> oprevalence of <i>conmental Het</i> . Risk of COV	doi:10.15585/mmwr.n f SARS-CoV-2 among 20:2020.09.16.2019569 f anti-SARS-CoV-2 Ig0 line December 2020. d Anti-SARS-CoV-2 Antil f SARS-CoV-2 antibod alth. 2021;232:113671 /ID-19 in health-care v	adults in three regions of 3. doi:10.1101/2020.09. G antibodies, risk factors oi:10.1101/2020.12.16.2 <i>bodies in Addis Ababa, E</i> lies among hospital work . doi:10.1016/j.ijheh.202	f France for 16.2019569 for infection 0248180 <i>thiopia</i> . Min ters in a Ge 0.113671	llowing the lockd 3 on and associated crobiology; 2020 rman tertiary care	lown and associat symptoms in Ger). e center: A sequer	ed risk fa neva, ntial follo

9. Lumley SF, O'Donnell D, Stoesser NE, et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. New England Journal of Medicine. Published online December 2020:NEJMoa2034545. doi:10.1056/NEJMoa2034545 10. Shakiba M, Nazemipour M, Salari A, et al. Seroprevalence of SARS-CoV-2 in Guilan Province, Iran, April 2020. Emerging Infectious Disease journal. 2021;27(2). doi:10.3201/eid2702.201960 11. Tilley K, Ayvazyan V, Martinez L, et al. A Cross-Sectional Study Examining the Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in a University Student Population. Journal of Adolescent Health. 2020;67(6):763-768. doi:10.1016/j.jadohealth.2020.09.001 12. Tsitsilonis OE, Paraskevis D, Lianidou E, et al. Seroprevalence of Antibodies against SARS-CoV-2 among the Personnel and Students of the National and Kapodistrian University of Athens, Greece: A Preliminary Report. Life. 2020;10(9):214. doi:10.3390/life10090214 13. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Pemba (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 14. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Nas Cidades de Xai-Xai E Chókwè (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 15. Nedio Mabunda. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Beira (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 16. Mussagy Mahomed. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Maxixe E Vila de Massinga (InCOVID 2020). República de Moçambique Ministério da Saúde: 2020. 17. Payne DC, Smith-Jeffcoat SE, Nowak G, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members - USS Theodore Roosevelt, April 2020. MMWR Morbidity and mortality weekly report. 2020;69(23):714-721. doi:10.15585/mmwr.mm6923e4 18. COVID-19 Serology Tests Still Show Low Antibody Rate of 0.07%. KBS World Radio. 19. Favara DM, McAdam K, Cooke A, et al. SARS-CoV-2 antigen and antibody prevalence among UK staff working with cancer patients during the COVID-19 pandemic. medRxiv. Published online September 2020:2020.09.18.20197590. doi:10.1101/2020.09.18.20197590 20. Galán MI, Velasco M, Casas ML, et al. Hospital-Wide SARS-CoV-2 seroprevalence in health care workers in a Spanish teaching hospital. Enfermedades Infecciosas y Microbiología Clínica. Published online December 2020:S0213005X20304183. doi:10.1016/j.eimc.2020.11.015 21. Hunter BR, Dbeibo L, Weaver CS, et al. Seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies among healthcare workers with differing levels of coronavirus disease 2019 (COVID-19) patient exposure. Infection Control & Hospital Epidemiology. Published online August 2020:1-2. doi:10.1017/ice.2020.390 22. Leidner R, Frary A, Cramer J, et al. Longitudinal SARS-CoV-2 serosurveillance of over ten thousand health care workers in the Providence Oregon cohort. medRxiv. Published online August 2020:2020.08.16.20176107. doi:10.1101/2020.08.16.20176107 23. Martin CA, Patel P, Goss C, et al. Demographic and occupational determinants of anti-SARS-CoV-2 IgG seropositivity in hospital staff. Journal of Public Health. 2020;(fdaa199). doi:10.1093/pubmed/fdaa199 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	24. Baracco A, Perotti G, Filippin A, et al. SARS-CoV-2 Antibody Prevalence in Health Care Workers of Lodi Hospital, the COVID-19 Italian Epicentre. Social Science Research Network; 2020.
5 6 7	25. Goenka M, Afzalpurkar S, Goenka U, et al. Seroprevalence of COVID-19 Amongst Health Care Workers in a Tertiary Care Hospital of a Metropolitan City from India. <i>The Journal of the Association of Physicians of India</i> . 2020;68(11):14-19.
8 9 10	26. Goenka MK, Shah BB, Goenka U, et al. COVID-19 prevalence among health-care workers of Gastroenterology department: An audit from a tertiary-care hospital in India. <i>JGH Open</i> . 2021;5(1):56-63. doi:10.1002/jgh3.12447
11 12 13	27. Satpati P, Sarangi S, Gantait K, et al. Sero-Surveillance (IgG) of SARS-CoV-2 Among Asymptomatic General Population of Paschim Medinipur, West Bengal, India. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.09.12.20193219
14 15	28. Poustchi H, Darvishian M, Mohammadi Z, et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: A population-based cross-sectional study. <i>The Lancet Infectious Diseases</i> . 2020;0(0). doi:10.1016/S1473-3099(20)30858-6
16 17 18	29. Jones CR, Hamilton FW, Thompson A, Morris TT, Moran E. SARS-CoV-2 IgG seroprevalence in healthcare workers and other staff at North Bristol NHS Trust: A sociodemographic analysis. <i>Journal of Infection</i> . 2020;0(0). doi:10.1016/j.jinf.2020.11.036
19 20 21	30. Anna F, Goyard S, Lalanne AI, et al. High seroprevalence but short-lived immune response to SARS-CoV-2 infection in Paris. <i>medRxiv</i> . Published online November 2020:2020.10.25.20219030. doi:10.1101/2020.10.25.20219030
22 23 24	31. Erber J, Kappler V, Haller B, et al. Strategies for infection control and prevalence of anti-SARS-CoV-2 IgG in 4,554 employees of a university hospital in Munich, Germany. Published online October 2020. doi:10.1101/2020.10.04.20206136
25 26	32. Hanrath AT, Loeff IS van der, Lendrem DW, et al. SARS-CoV-2 testing of 11,884 healthcare workers at an acute NHS hospital trust in England: A retrospective analysis. <i>medRxiv</i> . Published online December 2020:2020.12.22.20242362. doi:10.1101/2020.12.22.20242362
27 28 29 30	33. Rosser JI, Röltgen K, Dymock M, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence in healthcare personnel in northern California early in the coronavirus disease 2019 (COVID-19) pandemic. <i>Infection Control & Hospital Epidemiology</i> . Published online December 2020:1-7. doi:10.1017/ice.2020.1358
31 32 33	34. Silva VO, de Oliveira EL, Castejon MJ, et al. Prevalence of antibodies against sars-cov-2 in professionals of a public health laboratory at são paulo, sp, brazil. <i>medRxiv</i> . Published online October 2020. doi:10.1101/2020.10.19.20213421
34 35 36	35. Sabourin KR, Schultz J, Romero J, et al. Risk Factors of SARS-CoV-2 Antibodies in Arapahoe County First Responders - the COVID-19 Arapahoe SErosurveillance Study (CASES) Project. <i>Journal of Occupational and Environmental Medicine</i> . Published online December 2020. doi:10.1097/JOM.00000000002099
37 38	36. Yogo N, Greenwood KL, Thompson L, et al. Point prevalence survey to evaluate the seropositivity for coronavirus disease 2019 (COVID-19) among high-risk healthcare workers. <i>Infection Control and Hospital Epidemiology</i> . Published online December 2020:1-6. doi:10.1017/ice.2020.1370
39 40 41	37. Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. <i>European Journal of Immunology</i> . 2020;50(12):2025-2040. doi:10.1002/eji.202048970
42 43 44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
47	

38. Gonçalves J, Sousa RL, Jacinto MJ, et al. Evaluating SARS-CoV-2 Seroconversion Following Relieve of Confinement Measures. Frontiers in Medicine. 2020;7. doi:10.3389/fmed.2020.603996 39. Fontanet A, Grant R, Tondeur L, et al. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission. medRxiv, Published online June 2020:2020.06.25.20140178. doi:10.1101/2020.06.25.20140178 40. Torres JP, Piñera C, De La Maza V, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Prevalence in Blood in a Large School Community Subject to a Coronavirus Disease 2019 Outbreak: A Cross-sectional Study. Clinical Infectious Diseases. Published online July 2020:ciaa955. doi:10.1093/cid/ciaa955 41. Halatoko WA, KONU YR, Gbeasor-Komlanvi FA, et al. Prevalence of SARS-CoV-2 among high-risk populations in LomÉ (Togo) in 2020. medRxiv. Published online August 2020:2020.08.07.20163840. doi:10.1101/2020.08.07.20163840 42. Slusser S. MLB antibody study: 0.7% of those tested had been exposed to coronavirus. San Francisco Chronicle. Published online May 2020. 43. Vince A, Zadro R, Šostar Z, et al. SARS-CoV-2 Seroprevalence in a Cohort of Asymptomatic, RT-PCR Negative Croatian First League Football Players. medRxiv. Published online November 2020:2020.10.30.20223230. doi:10.1101/2020.10.30.20223230 44. Mack D, Gärtner BC, Rössler A, et al. Prevalence of SARS-CoV-2 IgG antibodies in a large prospective cohort study of elite football players in Germany (MayJune 2020): Implications for a testing protocol in asymptomatic individuals and estimation of the rate of undetected cases. *Clinical Microbiology and Infection*. 2020;27(3):473.e1-473.e4. doi:10.1016/j.cmi.2020.11.033 45. Khan SMS, Qurieshi MA, Haq I, et al. Seroprevalence of SARS-CoV-2 specific IgG antibodies in District Srinagar, northern India A cross-sectional study. PLOS ONE. 2020;15(11):e0239303. doi:10.1371/journal.pone.0239303 46. Akinbami LJ, Vuong N, Petersen LR, et al. SARS-CoV-2 Seroprevalence among Healthcare, First Response, and Public Safety Personnel, Detroit Metropolitan Area, Michigan, USA, MayJune 2020 - Volume 26, Number 12December 2020 - Emerging Infectious Diseases journal - CDC. Published online December 2020. doi:10.3201/eid2612.203764 47. Amendola A, Tanzi E, Folgori L, et al. Low seroprevalence of SARS-CoV-2 infection among healthcare workers of the largest children hospital in Milan during the pandemic wave. Infection Control & Hospital Epidemiology. Published online August 2020:1-2. doi:10.1017/ice.2020.401 48. Paulo Arnaldo. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Quelimane (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 49. Bal A, Brengel-Pesce K, Gaymard A, et al. Clinical and microbiological assessments of COVID-19 in healthcare workers: A prospective longitudinal study. medRxiv. Published online November 2020:2020.11.04.20225862. doi:10.1101/2020.11.04.20225862 50. Fernández-Rivas G, Quirant-Sánchez B, González V, et al. Seroprevalence of SARS-CoV-2 IgG Specific Antibodies among Healthcare Workers in the Northern Metropolitan Area of Barcelona, Spain, after the first pandemic wave. medRxiv. Published online June 2020:2020.06.24.20135673. doi:10.1101/2020.06.24.20135673 51. Bardai G, Ouellet J, Engelhardt T, Bertolizio G, Wu Z, Rauch F. Prevalence of SARS-CoV-2 infections in a pediatric orthopedic hospital. von Ungern-Sternberg B, ed. Pediatric Anesthesia. 2021;31(2):247-248. doi:10.1111/pan.14047 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2 3 4 5	52. Blairon L, Mokrane S, Wilmet A, et al. Large-scale, molecular and serological SARS-CoV-2 screening of healthcare workers in a 4-site public hospital in Belgium after COVID-19 outbreak. <i>Journal of Infection</i> . Published online July 2020:S0163445320305144. doi:10.1016/j.jinf.2020.07.033
6 7	53. Moreno Borraz LA, Giménez López M, Carrera Lasfuentes P, et al. Prevalencia de infección por coronavirus SARS-CoV-2 en pacientes y profesionales de un hospital de media y larga estancia en España. <i>Revista Española de Geriatría y Gerontología</i> . 2020;56(2):75-80. doi:10.1016/j.regg.2020.10.005
8 9 10	54. Brunner WM, Hirabayashi L, Krupa NL, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG results among healthcare workers in a rural upstate New York hospital system. <i>Infection Control & Hospital Epidemiology</i> . Published online October 2020:1-4. doi:10.1017/ice.2020.1296
11 12 13	55. Carozzi FM, Cusi MG, Pistello M, et al. Detection of asymptomatic SARS-CoV-2 infections among healthcare workers: Results from a large-scale screening program based on rapid serological testing. <i>medRxiv</i> . Published online August 2020. doi:10.1101/2020.07.30.20149567
14 15	56. Vilibic-Cavlek T, Stevanovic V, Tabain I, et al. Severe acute respiratory syndrome coronavirus 2 seroprevalence among personnel in the healthcare facilities of Croatia, 2020. <i>Revista da Sociedade Brasileira de Medicina Tropical</i> . 2020;53. doi:10.1590/0037-8682-0458-2020
16 17 18	57. Chibwana MG, Jere KC, kamng'ona R, et al. High SARS-CoV-2 seroprevalence in Health Care Workers but relatively low numbers of deaths in urban Malawi. <i>medRxiv</i> . Published online August 2020:2020.07.30.20164970. doi:10.1101/2020.07.30.20164970
19 20 21	58. Coffman B. New Co-Immunity Project data show COVID-19 infection among health care workers may be lower than the general population UofL News. <i>UofLNews</i> . Published online August 2020.
22 23	59. Cooper DJ, Lear S, Watson L, et al. A prospective study of risk factors associated with seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a large UK teaching hospital. <i>medRxiv</i> . Published online November 2020:2020.11.03.20220699. doi:10.1101/2020.11.03.20220699
24 25	60. Denyer S. Japanese firm's blanket testing of employees could serve as model. LMT Online. Published online June 2020.
26 27 28	61. Dimeglio C, Herin F, Miedougé M, et al. Screening for SARS-CoV-2 antibodies among healthcare workers in a university hospital in southern France. <i>Journal of Infection</i> . 2020;0(0). doi:10.1016/j.jinf.2020.09.035
29 30 31	62. Fuereder T, Berghoff AS, Heller G, et al. SARS-CoV-2 seroprevalence in oncology healthcare professionals and patients with cancer at a tertiary care centre during the COVID-19 pandemic. <i>ESMO Open.</i> 2020;5(5). doi:10.1136/esmoopen-2020-000889
32 33	63. Fusco FM, Pisaturo M, Iodice V, et al. COVID-19 among healthcare workers in a specialist infectious diseases setting in Naples, Southern Italy: Results of a cross-sectional surveillance study. <i>Journal of Hospital Infection</i> . 2020;105(4):596-600. doi:10.1016/j.jhin.2020.06.021
34 35	64. Geraci L. Antibody tests show just 2% exposure rate to COVID-19. The Lancaster News. Published online May 2020.
36 37	65. Eduardo Samo Gudo. Inquérito Sero-epidemiológico de SARS-CoV-2 na Cidade de Nampula. República de Moçambique Ministério da Saúde; 2020:19.
38 39 40	66. Hackner K, Errhalt P, Willheim M, et al. Diagnostic accuracy of two commercially available rapid assays for detection of IgG and IgM antibodies to SARS-CoV-2 compared to ELISA in a low-prevalence population. <i>Research Square</i> . Published online August 2020. doi:10.21203/rs.3.rs-50887/v1
41 42 43 44 45	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46 47	

1 2 3

4

5

6

7 8

9

10 11

12

13 14

15

16

17

18

19 20

21

22 23

24

25 26

27

28

29

30 31

32

33 34

35

36 37

38

39

40

45 46 47

67. Haq M, Rehman A, Noor M, et al. Seroprevalence and Risk Factors of SARS CoV-2 in Health Care Workers of Tertiary-Care Hospitals in the Province of Khyber Pakhtunkhwa, Pakistan. medRxiv. Published online September 2020:2020.09.29.20203125. doi:10.1101/2020.09.29.20203125 68. He L, Zeng Y, Zeng C, et al. Positive Rate of Serology and RT-PCR for COVID-19 among healthcare workers during different periods in Wuhan, China. Journal of Infection. Published online August 2020. doi:10.1016/j.jinf.2020.08.027 69. Herzberg J, Vollmer T, Fischer B, et al. Prospective Sero-epidemiological Evaluation of SARS-CoV-2 among Health Care Workers in a German Secondary Care Hospital. International Journal of Infectious Diseases. 2021;102:136-143. doi:10.1016/j.ijid.2020.10.026 70. Jeremias A, Nguyen J, Levine J, et al. Prevalence of SARS-CoV-2 Infection Among Health Care Workers in a Tertiary Community Hospital. JAMA Internal *Medicine*. Published online August 2020. doi:10.1001/jamainternmed.2020.4214 71. Jespersen S, Mikkelsen S, Greve T, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence Survey Among 17 971 Healthcare and Administrative Personnel at Hospitals, Prehospital Services, and Specialist Practitioners in the Central Denmark Region. Clinical Infectious Diseases. Published online October 2020:ciaa1471. doi:10.1093/cid/ciaa1471 72. Kassem AM, Talaat H, Shawky S, et al. SARS-CoV-2 infection among healthcare workers of a gastroenterological service in a tertiary care facility. Arab Journal of Gastroenterology. 2020;21(3):151-155. doi:10.1016/j.ajg.2020.07.005 73. Kern PM, Müller H-H, Menzel T, Weisser H. Studie zur Immunität gegen SARS-CoV-2: Keine signifikante humorale Immunität gegen SARS-CoV-2 im medizinischen Personal eines Klinikums der Maximalversorgung und in der Stadtregion Fulda. Der Klinikarzt. 2020;49(06):268-273. doi:10.1055/a-1198-1243 74. Khalil A, Hill R, Wright A, Ladhani S, O'Brien P. SARS-CoV-2-Specific Antibody Detection in Healthcare Workers in a UK Maternity Hospital: Correlation With SARS-CoV-2 RT-PCR Results. Clinical Infectious Diseases. 2020;(ciaa893). doi:10.1093/cid/ciaa893 75. Kumar A, Sathyapalan D, Ramachandran A, Subhash K, Biswas L, Beena KV. SARS-CoV-2 antibodies in healthcare workers in a large university hospital, Kerala, India. Clinical Microbiology and Infection. 2021;27(3):481-483. doi:10.1016/j.cmi.2020.09.013 76. Lackermair K, William F, Grzanna N, et al. Infection with SARS-CoV-2 in primary care health care workers assessed by antibody testing. Family Practice. Published online August 2020:cmaa078. doi:10.1093/fampra/cmaa078 77. Lahner E, Dilaghi E, Prestigiacomo C, et al. Prevalence of Sars-Cov-2 Infection in Health Workers (HWs) and Diagnostic Test Performance: The Experience of a Teaching Hospital in Central Italy. International Journal of Environmental Research and Public Health. 2020;17(12). doi:10.3390/ijerph17124417 78. Liu M, Cheng S-Z, Xu K-W, et al. Use of personal protective equipment against coronavirus disease 2019 by healthcare professionals in Wuhan, China: Cross sectional study. BMJ. 2020;369. doi:10.1136/bmj.m2195 79. Liu T, Wu S, Tao H, Zeng G, Zhou F, Wang X. Prevalence of IgG Antibodies to SARS-CoV-2 in Wuhan Implications for the Longevity of Antibodies Against SARS-CoV-2. Research Square. Published online November 2020. doi:10.21203/rs.3.rs-99748/v1 80. Lorenzo D, Carrisi C. COVID-19 exposure risk for family members of healthcare workers: An observational study. International Journal of Infectious Diseases. 2020;98:287-289. doi:10.1016/j.ijid.2020.06.106 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4	81. Mussagy Mahomed. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Tete (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
5	82. Arlete Mahumane. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Chimoio (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
6 7 8	83. Majdoubi A, Michalski C, O'Connell SE, et al. Antibody reactivity to SARS-CoV-2 is common in unexposed adults and infants under 6 months. <i>medRxiv</i> . Published online November 2020:2020.10.05.20206664. doi:10.1101/2020.10.05.20206664
9 10	84. Majiya H, Aliyu-Paiko M, Balogu VT, et al. Seroprevalence of COVID-19 in Niger State. medRxiv. Published online August 2020. doi:10.1101/2020.08.04.20168112
11 12 13	85. Fill Malfertheiner S, Brandstetter S, Roth S, et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study. <i>Journal of Clinical Virology</i> . 2020;130:104575. doi:10.1016/j.jcv.2020.104575
14 15	86. Martin C, Montesinos I, Dauby N, et al. Dynamics of SARS-CoV-2 RT-PCR positivity and seroprevalence among high-risk healthcare workers and hospital staff. Journal of Hospital Infection. 2020;106(1):102-106. doi:10.1016/j.jhin.2020.06.028
16 17 18	87. de Melo MS, Borges LP, de Souza DRV, et al. Anti-SARS-CoV-2 IgM and IgG Antibodies in Health Workers in Sergipe, Brazil. Infectious Diseases (except HIV/AIDS); 2020. doi:10.1101/2020.09.24.20200873
19 20 21 22	88. Morcuende M, Guglielminotti J, Landau R. Anesthesiologists' and Intensive Care Providers' Exposure to COVID-19 Infection in a New York City Academic Center: A Prospective Cohort Study Assessing Symptoms and COVID-19 Antibody Testing. <i>Anesthesia and analgesia</i> . 2020;131(3):669-676. doi:10.1213/ANE.000000000005056
23 24 25	89. Moscola J, Sembajwe G, Jarrett M, et al. Prevalence of SARS-CoV-2 Antibodies in Health Care Personnel in the New York City Area. JAMA. 2020;324(9):893-895. doi:10.1001/jama.2020.14765
26 27	90. Nishida T, Iwahashi H, Yamauchi K, et al. Seroprevalence of SARS-CoV-2 Antibodies Among 925 Staff Members in an Urban Hospital Accepting COVID-19 Patients in Osaka Prefecture, Japan. <i>medRxiv</i> . Published online January 2020:2020.09.10.20191866. doi:10.1101/2020.09.10.20191866
28 29 30	91. Olalla J, Correa AM, Martín-Escalante MD, et al. Search for asymptomatic carriers of SARS-CoV-2 in healthcare workers during the pandemic: A Spanish experience. <i>QJM: An International Journal of Medicine</i> . 2020;(hcaa238). doi:10.1093/qjmed/hcaa238
31 32 33	92. Pallett SJC, Rayment M, Patel A, et al. Point-of-care serological assays for delayed SARS-CoV-2 case identification among health-care workers in the UK: A prospective multicentre cohort study. <i>The Lancet Respiratory Medicine</i> . 2020;8(9):885-894. doi:10.1016/S2213-2600(20)30315-5
34 35 36	93. Péré H, Wack M, Védie B, et al. Sequential SARS-CoV-2 IgG assays as confirmatory strategy to confirm equivocal results: Hospital-wide antibody screening in 3,569 staff health care workers in Paris. <i>Journal of Clinical Virology</i> . 2020;132:104617. doi:10.1016/j.jcv.2020.104617
37 38	94. Poulikakos D, Sinha S, Kalra PA. SARS-CoV-2 antibody screening in healthcare workers in a tertiary centre in North West England. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2020;129:104545-104545. doi:10.1016/j.jcv.2020.104545
39 40 41 42	95. Psichogiou M, Karabinis A, Pavlopoulou I, et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. <i>medRxiv</i> . Published online June 2020. doi:10.1101/2020.06.23.20137620
43 44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

96. Kolthur-Seetharam U, Shah D, Shastri J, et al. SARS-CoV2 Serological Survey in Mumbai by NITI-BMC-TIFR: Preliminary Report of Round-2. NITI-BMC-TIFR; 2020. 97. Shields AM, Faustini SE, Perez-Toledo M, et al. SARS-CoV-2 seroconversion in health care workers. medRxiv. Published online May 2020:2020.05.18.20105197. doi:10.1101/2020.05.18.20105197 98. Ismael Amaral Silva PA, Ismael C, Marchon da Silva C, Domenge C. 1761P Universal screening of SARS-CoV-2 of oncology healthcare workers a Brazilian experience. Annals of Oncology. 2020;31:S1024. doi:10.1016/j.annonc.2020.08.1825 99. Solodky ML, Galvez C, Russias B, et al. Lower detection rates of SARS-COV2 antibodies in cancer patients versus health care workers after symptomatic COVID-19. Annals of Oncology. 2020;31(8):1087-1088. doi:10.1016/j.annonc.2020.04.475 100. Soriano V, Meiriño R, Corral O, Guallar MP. Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies in Adults in Madrid, Spain. Clinical Infectious Diseases. 2020;(ciaa769). doi:10.1093/cid/ciaa769 101. Instituto Nazionale di Statistica. PRIMI RISULTATI DELL'INDAGINE DI SIEROPREVALENZA SUL SARS-CoV-2. Instituto Nazionale di Statistica; 2020. 102. Steensels D, Oris E, Coninx L, et al. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. JAMA. 2020;(7501160). doi:10.1001/jama.2020.11160 103. Stock AD, Bader ER, Cezayirli P, et al. COVID-19 Infection Among Healthcare Workers: Serological Findings Supporting Routine Testing. Frontiers in Medicine. 2020;7. doi:10.3389/fmed.2020.00471 104. Takita M, Matsumura T, Yamamoto K, et al. Geographical Profiles of COVID-19 Outbreak in Tokyo: An Analysis of the Primary Care ClinicBased Point-of-Care Antibody Testing. Journal of Primary Care & Community Health. 2020;11:215013272094269. doi:10.1177/2150132720942695 105. Tong X, Ning M, Huang R, et al. Surveillance of SARS-CoV-2 infection among frontline health care workers in Wuhan during COVID-19 outbreak. Immunity, Inflammation and Disease. 2020;8(4):840-843. doi:10.1002/iid3.340 106. Trieu M-C, Bansal A, Madsen A, et al. SARS-CoV-2Specific Neutralizing Antibody Responses in Norwegian Health Care Workers After the First Wave of COVID-19 Pandemic: A Prospective Cohort Study. The Journal of Infectious Diseases. 2020;2021-(jiaa737). doi:10.1093/infdis/jiaa737 107. Tu D, Shu J, Wu X, et al. Immunological detection of serum antibodies in pediatric medical workers exposed to varying levels of SARS-CoV-2. The Journal of Infection. 2021;82(1):159-198. doi:10.1016/j.jinf.2020.07.023 108. Valdivia A, Torres I, Huntley D, et al. Caveats in interpreting SARS-CoV-2 IgM+/IgG- antibody profile in asymptomatic health care workers. Journal of Medical Virology. 2020;n/a(n/a). doi:10.1002/jmv.26400 109. Chafloque-Vasquez RA, Pampa-Espinoza L, Salinas JCC. Seroprevalence of COVID-19 in workers in a hospital in the Peruvian Amazon. ACTA MEDICA PERUANA. 2020;37(3). doi:10.35663/amp.2020.373.1050 110. Edna Viegas. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Maputo (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

111. Vlachoyiannopoulos P, Alexopoulos H, Apostolidi I, et al. Anti-SARS-CoV-2 antibody detection in healthcare workers of two tertiary hospitals in Athens, Greece. <i>Clinical Immunology</i> . 2020;221:108619. doi:10.1016/j.clim.2020.108619
112. Dalla Volta A, Valcamonico F, Pedersini R, et al. The Spread of SARS-CoV-2 Infection Among the Medical Oncology Staff of ASST Spedali Civili of Brescia: Efficacy of Preventive Measures. <i>Frontiers in Oncology</i> . 2020;10:1574. doi:10.3389/fonc.2020.01574
113. Ward H, Cooke G, Atchison C, et al. Declining prevalence of antibody positivity to SARS-CoV-2: A community study of 365,000 adults. <i>medRxiv</i> . Published online October 2020:2020.10.26.20219725. doi:10.1101/2020.10.26.20219725
114. Xiong S, Guo C, Dittmer U, Zheng X, Wang B. The prevalence of antibodies to SARS-CoV-2 in asymptomatic healthcare workers with intensive exposure to COVID-19. <i>medRxiv</i> . Published online June 2020;2020.05.28.20110767. doi:10.1101/2020.05.28.20110767
115. Zhang J, Liu J, Li N, et al. Serological detection of 2019-nCoV respond to the epidemic: A useful complement to nucleic acid testing. <i>medRxiv</i> . Published online March 2020:2020.03.04.20030916. doi:10.1101/2020.03.04.20030916
116. Zhao D, Wang M, Wang M, et al. Asymptomatic infection by SARS-CoV-2 in healthcare workers: A study in a large teaching hospital in Wuhan, China. <i>International Journal of Infectious Diseases</i> . 2020;99:219-225. doi:10.1016/j.ijid.2020.07.082
117. Ahmad K, Rezvanizadeh V, Dahal S, et al. COVID-19 IgG/IgM antibody testing in Los Angeles County, California. <i>European Journal of Clinical Microbiology & Infectious Diseases</i> . Published online November 2020. doi:10.1007/s10096-020-04111-3
118. Halbrook M, Gadoth A, Martin-Blais R, et al. Incidence of SARS-CoV-2 infection among asymptomatic frontline health workers in Los Angeles County, California. <i>medRxiv</i> . Published online November 2020:2020.11.18.20234211. doi:10.1101/2020.11.18.20234211
119. Iwuji K, Islam E, Berdine G, Nugent K, Test V, Tijerina A. Prevalence of Coronavirus Antibody Among First Responders in Lubbock, Texas. <i>Journal of Primary Care & Community Health</i> . 11:2150132720971390. doi:10.1177/2150132720971390
120. Parker-Magyar A. Few among Long Hill first responders test positive for COVID-19 antibodies. Echoes Sentinel. Published online June 2020.
121. Caban-Martinez AJ, Schaefer-Solle N, Santiago K, et al. Epidemiology of SARS-CoV-2 antibodies among firefighters/paramedics of a US fire department: A cross-sectional study. <i>Occupational and Environmental Medicine</i> . 2020;77(12):857-861. doi:10.1136/oemed-2020-106676
122. Staletovich J. South Florida Cities Begin Testing Employees For COVID-19 Antibodies. WLRN. Published online May 2020.
123. Hibino M, Iwabuchi S, Munakata H. SARS-CoV-2 IgG seroprevalence among medical staff in a general hospital that treated patients with COVID-19 in Japan: Retrospective evaluation of nosocomial infection control. <i>Journal of Hospital Infection</i> . 2020;107:103-104. doi:10.1016/j.jhin.2020.10.001
124. Calcagno A, Ghisetti V, Emanuele T, et al. Risk for SARS-CoV-2 Infection in Healthcare Workers, Turin, Italy. <i>Emerging Infectious Diseases</i> . 2021;27(1):303-305. doi:10.3201/eid2701.203027
125. Alharbi SA, Almutairi AZ, Jan AA, Alkhalify AM. Enzyme-Linked Immunosorbent Assay for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) IgM/IgA and IgG Antibodies Among Healthcare Workers. <i>Cureus</i> . Published online September 2020. doi:10.7759/cureus.10285
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

126. Chau NVV, Toan LM, Man DNH, et al. Absence of SARS-CoV-2 antibodies in health care workers of a tertiary referral hospital for COVID-19 in southern Vietnam. Journal of Infection. 2020;82(1):e36-e37. doi:10.1016/j.jinf.2020.11.018 127. Khan MS, Haq I, Qurieshi MA, et al. SARS-CoV-2 seroprevalence in healthcare workers of dedicated-COVID hospitals and nonCOVID hospitals of District Srinagar, Kashmir. medRxiv. Published online October 2020:2020.10.23.20218164. doi:10.1101/2020.10.23.20218164 128. Costa SF, Giavina-Bianchi P, Buss L, et al. SARS-CoV-2 seroprevalence and risk factors among oligo/asymptomatic healthcare workers(HCW): Estimating the impact of community transmission. Clinical Infectious Diseases. 2020;(ciaa1845). doi:10.1093/cid/ciaa1845 129. Mohr N, Harland K, Krishnadasan A, Santibanez S, Talan D. Diagnosed and Undiagnosed COVID-19 in US Emergency Department Health Care Personnel: A Cross-sectional Analysis. Annals of Emergency Medicine. Published online December 2020. doi:10.1016/j.annemergmed.2020.12.007 130. Noor M, Haq M, Ul Haq N, et al. Does Working in a COVID-19 Receiving Health Facility Influence Seroprevalence to SARS-CoV-2? Cureus. Published online November 2020. doi:10.7759/cureus.11389 131. Singhal T, Shah S, Naik R, Kazi A, Thakkar P. Prevalence of COVID-19 Antibodies in Healthcare Workers at the Peak of the Pandemic in Mumbai, India: A Preliminary Study. Indian Journal of Medical Microbiology. 2020;38(3):461-463. doi:10.4103/ijmm.IJMM 20 308 132. Dacosta-Urbieta A, Rivero-Calle I, Pardo-Seco J, et al. Seroprevalence of SARS-CoV-2 Among Pediatric Healthcare Workers in Spain. Frontiers in Pediatrics. 2020;8. doi:10.3389/fped.2020.00547 133. Sartore-Bianchi A, Patelli G, Tosi F, et al. INCIDENCE OF SARS-COV-2 INFECTION IN PATIENTS WITH ACTIVE CANCER: MONO-INSTITUTIONAL SERIES OF A COMPREHENSIVE CANCER INSTITUTION IN LOMBARDY DURING THE COVID-19 PANDEMIC (NIGUARDA CANCER CENTER, MILANO, ITALY). In: Tumori Journal. Vol 106. AIOM Abstracts.; 2020:1-215. doi:10.1177/0300891620953388 134. Brousseau N, Morin L, Ouakki M, et al. COVID-19: Étude de séroprévalence chez des travailleurs de la santé de centres hospitaliers au Québec. Institut National de Sante Publique du Quebec; 2020:20. 135. Chen Y, Tong X, Wang J, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. The Journal of Infection. 2020;81(3):420-426. doi:10.1016/j.jinf.2020.05.067 136. Favara DM, Cooke A, Doffinger R, McAdam K, Corrie P, Ainsworth NL. COVID-19 Serology in Oncology Staff Study: Understanding SARS-CoV-2 in the Oncology Workforce. Clinical Oncology (Royal College of Radiologists (Great Britain). 2021;33(1):e61-e63. doi:10.1016/j.clon.2020.07.015 137. Fujita K, Shinpei Kada, Osamu Kanai, et al. Quantitative SARS-CoV-2 antibody screening of healthcare workers in the southern part of Kyoto city during the COVID-19 peri-pandemic period. medRxiv. Published online May 2020. 138. Godbout EJ, Pryor R, Harmon M, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare workers in a low prevalence region. Infection Control & Hospital Epidemiology. Published online December 2020:1-3. doi:10.1017/ice.2020.1374 139. Houlihan CF, Vora N, Byrne T, et al. Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. The Lancet. 2020;396(10246):e6-e7. doi:10.1016/S0140-6736(20)31484-7 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3 4 5	140. Insúa C, Stedile G, Figueroa V, et al. Seroprevalence of SARS-CoV-2 antibodies among physicians from a children's hospital. <i>Archivos Argentinos De Pediatria</i> . 2020;118(6):381-385. doi:10.5546/aap.2020.eng.381
6 7	141. Kohler PP, Kahlert CR, Sumer J, et al. Prevalence of SARS-CoV-2 antibodies among Swiss hospital workers: Results of a prospective cohort study. <i>Infection Control & Hospital Epidemiology</i> . Published online October 2020:1-5. doi:10.1017/ice.2020.1244
8 9	142. Kumar N, Bhartiya S, Singh T. Duration of anti-SARS-CoV-2 antibodies much shorter in India. Vaccine. 2021;39(6):886-888. doi:10.1016/j.vaccine.2020.10.094
10 11 12	143. Mesnil M, Joubel K, Yavchitz A, Miklaszewski N, Devys J-M. Seroprevalence of SARS-Cov-2 in 646 professionals at the Rothschild Foundation Hospital (ProSeCoV study). Anaesthesia Critical Care & Pain Medicine. 2020;39(5):595-596. doi:10.1016/j.accpm.2020.08.003
13 14 15	144. Missaglia R, Belingheri M, Antolini L, et al. SARS-CoV-2 pandemia in Lombardy: The impact on family Paediatricians. <i>Italian Journal of Pediatrics</i> . 2020;46(1):184. doi:10.1186/s13052-020-00950-0
16 17	145. Orth-Höller D, Eigentler A, Weseslindtner L, Möst J. Antibody kinetics in primary- and secondary-care physicians with mild to moderate SARS-CoV-2 infection. <i>Emerging Microbes & Infections</i> . 2020;9(1):1692-1694. doi:10.1080/22221751.2020.1793690
18 19 20	146. Plebani M, Padoan A, Fedeli U, et al. SARS-CoV-2 serosurvey in health care workers of the Veneto Region. <i>Clinical Chemistry and Laboratory Medicine (CCLM)</i> . 2020;58(12):2107-2111. doi:10.1515/cclm-2020-1236
21 22 23	147. Rudberg A-S, Havervall S, Månberg A, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden. <i>Nature Communications</i> . 2020;11(1):5064. doi:10.1038/s41467-020-18848-0
24 25 26	148. Schmidt SB, Grüter L, Boltzmann M, Rollnik JD. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. Adrish M, ed. <i>PLOS ONE</i> . 2020;15(6):e0235417. doi:10.1371/journal.pone.0235417
27 28	149. Sotgiu G, Barassi A, Miozzo M, et al. SARS-CoV-2 specific serological pattern in healthcare workers of an Italian COVID-19 forefront hospital. <i>BMC Pulmonary Medicine</i> . 2020;20(1):203. doi:10.1186/s12890-020-01237-0
29 30 31	150. Venugopal U, Jilani N, Rabah S, et al. SARS-CoV-2 seroprevalence among health care workers in a New York City hospital: A cross-sectional analysis during the COVID-19 pandemic. <i>International Journal of Infectious Diseases</i> . 2020;102:63-69. doi:10.1016/j.ijid.2020.10.036
32 33 34	151. Racine-Brzostek SE, Yang HS, Chadburn A, et al. COVID-19 Viral and Serology Testing in New York City Health Care Workers. American Journal of Clinical Pathology. 2020;154(5):592-595. doi:10.1093/ajcp/aqaa142
35 36 37	152. Hoffmann S, Spallek J, Heinz-Detlef G, Schiebel J, Hufert F. Testing the backbone of the healthcare system: A prospective serological-epidemiological cohort study of healthcare workers in rural Germany. Published online September 2020. doi:10.21203/rs.3.rs-84703/v1
38 39 40	153. Patel MM, Thornburg NJ, Stubblefield WB, et al. Change in Antibodies to SARS-CoV-2 Over 60 Days Among Health Care Personnel in Nashville, Tennessee. <i>JAMA</i> . 2020;324(17):1781. doi:10.1001/jama.2020.18796
41 42 43	
44 45 46	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

154. Self WH, Tenforde MW, Stubblefield WB, et al. Seroprevalence of SARS-CoV-2 Among Frontline Health Care Personnel in a Multistate Hospital Network 13 Academic Medical Centers, AprilJune 2020. *MMWR Morbidity and Mortality Weekly Report*. 2020;69(35):1221-1226. doi:10.15585/mmwr.mm6935e2

 155. Shah VP, Hainy CM, Swift MD, Breeher LE, Theel ES, Sampathkumar P. Unrecognized severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare personnel in a low-prevalence area. *Infection Control & Hospital Epidemiology*. Published online November 2020:1-3. doi:10.1017/ice.2020.1341

156. Bampoe S, Lucas DN, Neall G, et al. A cross-sectional study of immune seroconversion to SARS-CoV-2 in front-line maternity health professionals. *medRxiv*. Published online June 2020. doi:10.1101/2020.06.24.20139352

157. Dimcheff DE, Schildhouse RJ, Hausman MS, et al. Seroprevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection among Veterans Affairs healthcare system employees suggests higher risk of infection when exposed to SARS-CoV-2 outside the work environment. *Infection Control & Hospital Epidemiology*.:1-7. doi:10.1017/ice.2020.1220

158. Finkenzeller T, Faltlhauser A, Dietl K-H, et al. SARS-CoV-2-Antikörper bei Intensiv- und Klinikpersonal. *Medizinische Klinik - Intensivmedizin und Notfallmedizin*. 2020;115(3):139-145. doi:10.1007/s00063-020-00761-5

159. Grant JJ, Wilmore SMS, McCann NS, et al. Seroprevalence of SARS-CoV-2 antibodies in healthcare workers at a London NHS Trust. *Infection Control & Hospital Epidemiology*. Published online August 2020:1-3. doi:10.1017/ice.2020.402

160. Mansour M, Leven E, Muellers K, Stone K, Mendu DR, Wajnberg A. Prevalence of SARS-CoV-2 Antibodies Among Healthcare Workers at a Tertiary Academic Hospital in New York City. *Journal of General Internal Medicine*. 2020;35(8):2485-2486. doi:10.1007/s11606-020-05926-8

161. Martín V, Fernández-Villa T, Lamuedra Gil de Gomez M, et al. Prevalence of SARS-CoV-2 infection in general practitioners and nurses in primary care and nursing homes in the Healthcare Area of León and associated factors. *COVID19 en Atención Primaria*. 2020;46:35-39. doi:10.1016/j.semerg.2020.05.014

162. Meissner EG, Litwin C, Crocker T, Mack E, Card L. 460. Point-of-Care, In-Home SARS-CoV-2 IgG Antibody Testing to Assess Seroprevalence in At-Risk Health Care Workers. *Open Forum Infectious Diseases*. 2020;7(Supplement_1):S297-S297. doi:10.1093/ofid/ofaa439.653

163. Mostafa A, Kandil S, El-Sayed MH, et al. Universal COVID-19 screening of 4040 health care workers in a resource-limited setting: An Egyptian pilot model in a university with 12 public hospitals and medical centers. *International Journal of Epidemiology*. 2020;(dyaa173). doi:10.1093/ije/dyaa173

164. Paradiso AV, Summa simona D, Silvestris N, et al. COVID-19 SCREENING AND MONITORING OF ASYMPTOMATIC HEALTH WORKERS WITH A RAPID SEROLOGICAL TEST. *medRxiv*. Published online May 2020:2020.05.05.20086017. doi:10.1101/2020.05.05.20086017

165. Sydney ER, Kishore P, Laniado I, Rucker LM, Bajaj K, Zinaman MJ. Antibody evidence of SARS-CoV-2 infection in healthcare workers in the Bronx. *Infection Control & Hospital Epidemiology*. 2020;41(11):1348-1349. doi:10.1017/ice.2020.437

166. Zhou F, Li J, Lu M, et al. Tracing asymptomatic SARS-CoV-2 carriers among 3674 hospital staff: A cross-sectional survey. *EClinicalMedicine*. 2020;26. doi:10.1016/j.eclinm.2020.100510

167. Buntinx F, Claes P, Gulikers M, et al. Added value of anti-SARS-CoV-2 antibody testing in a Flemish nursing home during an acute COVID-19 outbreak in April 2020. *Acta Clinica Belgica*. 2020;0(0):1-6. doi:10.1080/17843286.2020.1834285

2	
3 4	168. Reuben J, Sherman A, Ellison JA, et al. SARS-CoV-2 Seroprevalence among First Responders in the District of Columbia, May July 2020. <i>medRxiv</i> . Published online November 2020:2020.11.25.20225490. doi:10.1101/2020.11.25.20225490
5	
6	169. Saberian P, Mireskandari SM, Baratloo A, et al. Antibody Rapid Test Results in Emergency Medical Services Personnel during COVID-19 Pandemic; a Cross
7	Sectional study. Archives of Academic Emergency Medicine. 2020;9(1).
8	
9	170. Tarabichi Y, Watts B, Collins T, et al. SARS-CoV-2 Infection among Serially Tested Emergency Medical Services Workers. Prehospital Emergency Care.
10	2020;0(0):1-7. doi:10.1080/10903127.2020.1831668
11	171. Vijh R, Ghafari C, Hayden A, et al. Serological survey following SARS-COV-2 outbreaks at long-term care facilities in metro Vancouver, British Columbia:
12	Implications for outbreak management and infection control policies. American Journal of Infection Control. Published online October 2020.
13	doi:10.1016/j.ajic.2020.10.009
14	
15	172. Bhattacharya D, Winnett A, Fulcher JA, et al. 70. Lack of SARS-CoV-2 Antibody Seroconversion After Prompt Identification and Cohorting of Sentinel sars-cov-2-
16	positive Residents in a Skilled Nursing Facility. Open Forum Infectious Diseases. 2020;7(Supplement_1):S165-S166. doi:10.1093/ofid/ofaa439.380
17	
18	173. Pérez-García F, Pérez-Zapata A, Arcos N, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among hospital workers in a severely affected
19	institution in Madrid, Spain: A surveillance cross-sectional study. Infection Control & Hospital Epidemiology. Published online October 2020:1-7.
20	doi:10.1017/ice.2020.1303
21	174. Pérez-García F, Pérez-Zapata A, Arcos N, et al. Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among hospital workers in a severely affected
22	institution in Madrid, Spain: A surveillance cross-sectional study. Infection Control & Hospital Epidemiology. 2021;42(7):803-809. doi:10.1017/ice.2020.1303
23	
24	175. Mughal MS, Kaur IP, Patton CD, Mikhail NH, Vareechon C, Granet KM. The prevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG
25	antibodies in intensive care unit (ICU) healthcare personnel (HCP) and its implications single-center, prospective, pilot study. <i>Infection Control & Hospital</i>
26	<i>Epidemiology</i> . Published online June 2020:1-2. doi:10.1017/ice.2020.298
27	<i>Epiaemology</i> : 1 abilistica offine 2020.1 2. doi:10.101//icc.2020.290
28	176. Rao S. Covid-19: Jayadeva says its survey hints at herd immunity. The Times of India. Published online June 2020.
29	
30	177. Shukla V, Lau CSM, Towns M, et al. COVID-19 Exposure Among First Responders in Arizona. Journal of Occupational and Environmental Medicine.
31	2020;62(12).
32	
33	178. Gray A. Prevalence Of COVID-19 Antibodies In Washoe Co. Expected To Be Low. KUNR. Published online June 2020.
34	179. Chughtai O, Batool H, Khan M, Chughtai A. Frequency of COVID-19 IgG Antibodies among Special Police Squad Lahore, Pakistan. Journal of the College of
35	Physicians and Surgeons Pakistan. 2020;30(7):735-739. doi:10.29271/jcpsp.2020.07.735
36	
37	180. Gujski M, Jankowski M, Pinkas J, et al. Prevalence of Current and Past SARS-CoV-2 Infections among Police Employees in Poland, JuneJuly 2020. Journal of
38	Clinical Medicine. 2020;9(10):3245. doi:10.3390/jcm9103245
39	
40	181. Jerónimo Langa. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Cidade de Lichinga (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020.
41	
42	
43	
44	
44	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
46	

182. Ivalda Macicame. Inquérito Sero-Epidemiológico de SARS-CoV-2 Na Província de Maputo (InCOVID 2020). República de Moçambique Ministério da Saúde; 2020. 183. Al-Thani MH, Farag E, Bertollini R, et al. Seroprevalence of SARS-CoV-2 infection in the craft and manual worker population of Qatar. medRxiv. Published online November 2020:2020.11.24.20237719. doi:10.1101/2020.11.24.20237719 184. Epstude J, Harsch IA. Seroprevalence of COVID-19 antibodies in the cleaning and oncological staff of a municipal clinic. GMS Hygiene and Infection Control; 15:Doc18. Published online July 2020. doi:10.3205/DGKH000353 185. Hassan SS, Seigerud Å, Mühr LSA, et al. SARS-CoV-2 infections among personnel providing home care services for the elderly in Stockholm, Sweden. medRxiv. Published online December 2020. doi:10.1101/2020.12.18.20248511 186. Ladhani SN, Jeffery-Smith A, Patel M, et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: Prospective cohort study, England. EClinicalMedicine. 2020;28. doi:10.1016/j.eclinm.2020.100597 187. Lindahl JF, Hoffman T, Esmaeilzadeh M, et al. High seroprevalence of SARS-CoV-2 in elderly care employees in Sweden. Infection Ecology & Epidemiology. 2020;10(1):1789036. doi:10.1080/20008686.2020.1789036 188. Regan T. Fellowship Village Benefits from Covid-19 Antibody Tests. Senior Housing News. Published online June 2020. 189. Alali WQ, Bastaki H, Longenecker JC, et al. Seroprevalence of SARS-CoV-2 in migrant workers in Kuwait. Journal of Travel Medicine. 2020;(taaa223). doi:10.1093/itm/taaa223 190. Addetia A, Crawford KHD, Dingens A, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. McAdam AJ, ed. Journal of Clinical Microbiology. 2020;58(11):e02107-20, /jcm/58/11/JCM.02107-20.atom. doi:10.1128/JCM.02107-20 191. Picon RV, Carreno I, da Silva AA, et al. Coronavirus disease 2019 population-based prevalence, risk factors, hospitalization, and fatality rates in southern Brazil. International Journal of Infectious Diseases. 2020;100:402-410. doi:10.1016/j.ijid.2020.09.028 192. D B, L B, P T, Pa P, A B, U L. Effectiveness of the measures aimed at containing Sars-cov-2 virus spreading in work settings: A survey in companies based in the Veneto region of Italy. La Medicina del lavoro. Published online October 2020. doi:10.23749/mdl.v111i5.10037 193. Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nature Medicine. 2020;26(8):1193-1195. doi:10.1038/s41591-020-0949-6 194. Chamie G, Marquez C, Crawford E, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 Disproportionately Affects the Latinx Population During Shelter-in-Place in San Francisco. Clinical Infectious Diseases. Published online August 2020:ciaa1234. doi:10.1093/cid/ciaa1234 195. McLaughlin C, Doll MK, Morrison KT, et al. High Community SARS-CoV-2 Antibody Seroprevalence in a Ski Resort Community, Blaine County, Idaho, US. Preliminary Results. medRxiv. Published online July 2020. doi:10.1101/2020.07.19.20157198 196. Muñoz L, Pífano M, Bolzán A, et al. Surveillance and Seroprevalence: Evaluation of IgG Antibodies for SARS-Cov2 by ELISA in the Popular Neighborhood Villa Azul, Quilmes, Province of Buenos Aires, Argentina.; 2020. doi:10.1590/SciELOPreprints.1147 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml