SUPPLEMENTARY DATA

Supplementary Materials and Methods

Patients and germline testing

Indications for germline testing included: a personal history of two cancers, one of which was a hematopoietic malignancy; family history of another hematopoietic malignancy within two generations of the index case; family history of a non-hematopoietic tumor diagnosed at age 50 or younger within two generation of the index case; and/or the identification of gene variants on tumor molecular profiling associated with HHMs¹. Written informed consent was obtained according to approved institutional protocols in accordance with the Declaration of Helsinki. Single nucleotide and copy number variants were classified for pathogenicity using American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines (Figure S1)².

Next generation sequencing

Exome sequencing was performed using the Agilent SureSelect Clinical Research Exome kit (Agilent Technologies, Santa Clara, CA, USA) that targets the exome, augmented with spike-in probes covering noncoding regions known to contain risk alleles, including the 5'UTRs of *ANKRD26*, *DKC1*, *TERC*, and *TERT*, one intronic region (c.1017+572) in *GATA2* (NM_032638.4), and two intronic regions (c.3724+78 and c.3724+139) in *RTEL1* (NM_032957.4)^{1,3,4}. Sequencing was performed using Illumina NextSeq technology with 150-bp paired-end reads (Illumina, San Diego, CA, USA). The mean depth of coverage per sample was over 150X, and on average more than 96% of the targeted regions were covered at a minimum of 30×. Variants within the genes associated with hereditary hematologic malignancies (HHMs) were identified and evaluated using a validated bioinformatic pipeline. The raw variants were filtered to retain high quality variants which were annotated using the Alamut-Batch software and further filtered based on the global population frequency in 1000 Genomes project, Exome Sequencing Project, and ExAC database. Sequence data were analyzed for the presence of single-nucleotide variants (SNVs) and small insertions and deletions (indels). Variants were interpreted by a team of board-certified geneticists and genetic counselors. Single nucleotide and copy number variants were classified for pathogenicity using American College of Medical Genetics and Genomics/Association for Molecular Pathology (**Figure S1)**².

Figure S1. Pipeline for filtering germline variants and pathogenicity annotation

Pathogenic variants were prioritized using American College of Medical Genetics and Genomics (ACMG)/ Association for Molecular Pathology (AMP) guidelines².

Statistical analysis

Clinical and pathologic data were available from medical records. Comparisons were made using the chi-square or Fisher's exact tests for categorical variables, and the Kruskal-Wallis test for continuous variables. Analyses of treatment outcomes used accepted definitions of complete remission (CR) and overall survival $(OS)^{5.6}$. Survival estimates were calculated using the Kaplan-Meier method, and differences between curves were assessed using the log-rank test. Disease-related index (DRI) groups were assigned based on the CIBMTR refined criteria⁷. Multivariable logistic regression was used to integrate known clinical and genetic risk factors and potential confounders for analysis of graft-versus-host disease (GVHD). Staging of acute and chronic graft-versus-host disease (GVHD) was performed using standard algorithms^{8,9}. All analyses were performed using JMP software v.14.0.0 (SAS Inc. Cary, NC), with p< 0.05 considered statistically significant. Graphs were created using GraphPad Prism version 8 (GraphPad Software, La Jolla, CA).

Supplementary Results

Table S1. List of pathogenic/likely pathogenic (P/LP) germline variants in our inherited myeloid malignancy cohort

Patient nu.	Center	Gene	P/LP variant		
1	UofC	RUNX1	p.S388X		
5	UofC	NBN	p.K219Nfs*16		
12	UofC	RUNX1	p.R204X		
13	UofC	TERT	p.M970V		
15	UofC	BRCA1	del exons 13-15		
16	UofC	DDX41	p.D140fs		
20	UofC	CHEK2	p.I200T		
21	UofC	CHEK2	p.S428F		
22	UofC	DDX41	p.P78Qfs*3		
23	UofC	DDX41	p.P78Qfs*3		
24	UofC	RTEL1	p.R1264H		
25	UofC	DDX41	p.M1?		
26	UofC	CHEK2	p.T367Mfs*15		
27	UofC	CHEK2	p.I200T		
28	UofC	DDX41	p.A500Cfs*9		
29	UofC	CHEK2	p.I200T		
30	UofC	ATM	c.2921+1G>A, p.?		
31	UofC	DDX41	p.R164W		
32	UofC	TP53	p.R181H		
37	UofC	CHEK2	p.I200T		
38	UofC	DDX41	p.L574R*fs143		
39	UofC	CHEK2	p.I200T		
40	UofC	BRCA1	c.3109insAA		
47	UofC	BRCA1	c.187delAG		
51	UofC	TERC	n.357_365 del		
51	UofC	TERT	p.A202T		
52	UofC	BRCA2	p.S1982Rfs*22		
52	UofC	APC	p.I1307K		
54	UofC	BRCA1	c.5503_*1416del		
55	UofC	CHEK2	p.Y72*		
56	UofC	CHEK2	p.I200T		
58	UofC	DDX41	p.Q41*		
59	UofC	DDX41	p.A492Gfs*17		
64	UofC	ATM	p.V2716A		
65	UofC	TP53	exon1 del		
65	UofC	MLH1	p.V612del		
71	UofC	SBDS	p.Lys62* and c.258+2T>C (p.?)		
72	UofC	BLM	p.C237Afs*12		
81	UofC	PALB2	p.R170lfs*14		
84	UofC	GATA2	c.872-46_1017+692del, p.?		
85	UofC	USB1	p.G69Dfs*46)		
87	UofC	CHEK2	p.S428F		
91	UofC	DDX41	p.M1?		
92	UofC	DDX41	p.P258L		
95	UofC	FANCE	p.R371W		
100	UofC	DDX41	p.K108Sfs*3		
101	UofC	CHEK2	p.I200T		
123	UofC	RUNX2	p.E72Qfs*102		
123	UofC	NF2	p.W60Gfs*63		

141	UofC	CHEK2	p.S428F	
148	UofC	FANCA	p.L845P and c.3624C>T, p.(=)	
150	UofC	CHEK2	p.S428F	
151	UofC	CHEK2	p.T367Mfs*15	
156	UofC	CHEK2	p.I200T	
167	UofC	DDX41	deletion of exons 12-17	
171	UofC	CHEK2	p.I200T	
172	UofC	CHEK2	p.1200T	
173	UofC	DDX41	p.D140Gfs*2	
174	UofC	GATA2	p.A286V	
176	UofC	APC	p.11307K	
179	UofC	CHEK2	p.1200T	
191	UofC	CHFK2	p T367Mfs*15	
193	UofC	TP53	p V216M	
196	UofC	BRCA2	n Q1089Sfs*10	
207	UofC	MIITYH	c 939+3A>C n 2	
215		CHEK2	n 1200T	
210		CHEK2	n T476M	
210			c 7630-24>C n 2	
220		BRCA2	n K585fs*3	
222	LlofC		n M12	
224	LlofC	BRCA2	ρ.ΝΠ?	
220	LlofC	MSH6	p.R2092115-14	
240	UofC	DALRO	p.00001	
254	UofC	PALD2 BDCA2	n E15/Al fe*22	
255	UofC		p.r1340LIS 22	
250	UofC		p.12001	
250	UofC			
209	UofC			
202	UofC			
203	UofC		c.2034-1G/A, p. :	
204	UofC		ρ.Ν4 Ι9LIS 3	
200	UofC		p.A4_PTTuup	
207	Adeleide		p.L452ts	
200	Adelaide	1733	p.E2/1K	
274	Adelaide		p.VV398C	
204	Adelaide		p.Y1/6C	
312	Adelaide	WRAP33	c.1164+1G>A	
315	Adelaide		p.D140ts	
318	Adelaide		p.Y516C	
330	Adelaide		c.435-2_435-1delAGInsCA	
330	Adelaide		p.K219ts	
347	Adelaida	PALB2	p.K1/UIS-14	
349	Adelaide	GATAZ	p. i 354W	
350	Adelalde		p.T367Mfs*15	
354	Adeiaide	BLM	p.K899"	
355	Adelaide	BRCAI	p.Q1777Pfs*74	
359	Adeiaide	AIR	p.K1273N	
360	Adelaide	SRD2	c.258+2T>C	
362	Adelaide		Loss of whole gene	
363	Adelaide		p.R971H	
368	Adelaide	<u>1253</u>	p.R196L	
374	Adelaide	PIPN11	p.M504T	
381	Adelaide	DDX41	p.M1?	
384	Adelaide	DDX41	p.D140fs	

385	Adelaide	GATA2	c.1017+2T>G
390	Adelaide	DDX41 p.M1?	
396	Adelaide	DDX41	p.D140Gfs*2
397	Adelaide	DDX41	p.M1?
398	Adelaide	NBN	p.K219fs
413	Adelaide	FANCB	p.R409W homozygous
419	Adelaide	NF1	p.F894C
419	Adelaide	TERT	p.V56L
420	Adelaide	SBDS	p.K62*
421	Adelaide	MSH6	p.T1284fs
425	Adelaide	BRCA1	p.E1257fs
427	Adelaide	DDX41	c.644+5G>C p.(?)
430	Adelaide	DDX41	p.T529fs
437	Adelaide	RUNX1	p.R169I
438	Adelaide	RUNX1	p.A324Lfs*7
443	UPenn	DDX41	p.Q41*
444	UPenn	DDX41	p.M1?
445	UPenn	DDX41	p.L452Cfs*9
448	UPenn	DDX41	p.M1?
472	UofC	CHEK2	p.I200T

Table S2. Demographic characteristics of 472 patients

	Germline DDX41 (n= 35)	Germline CHEK2 (n= 23)	Other IMM (n= 63)	No IMM (n= 351)	p value
Age at diagnosis, years, median (range)	67 (51 – 84)	62 (39 – 82)	61 (19 – 80)	66 (18 – 90)	0.002
Female, n (%)	10 (28.6)	13 (56.5)	27 (42.9)	158 (45)	0.16
Diagnosis, n (%)					
AML	23 (65.7)	13 (56.5)	31 (49.2)	175 (49.9)	
MDS	10 (28.5)	4 (17.4)	27 (42.8)	139 (39.6)	0.005
MDS/MPN	1 (2.9)	1 (4.4)	3 (4.8)	24 (6.8)	
MPN	1 (2.9)	5 (21.7)	2 (3.2)	13 (3.7)	
Therapy-related MN, n (%)	4 (11.4)	6 (26.1)	26 (41.3)	132 (37.6)	0.01
First degree relative with any cancer, n (%)	16/19 (84.2)	21/22 (95.4)	33/38 (86.8)	131/187 (70)	0.10
First degree relative with hematologic cancer, n (%)	10/19 (52.6)	9/22 (40.9)	6/38 (15.8)	36/187 (19.2)	0.001

AML, acute myeloid leukemia; MDS, myelodysplastic syndromes; MN, myeloid neoplasm; MPN, myeloproliferative neoplasm; IMM, inherited myeloid malignancy

Figure S2. Deleterious germline variants in patients with inherited myeloid malignancies

Distribution of pathogenic and likely pathogenic germline variants in University of Chicago and South Australian cohorts.

Representation of pathogenic/likely pathogenic germline variants in DDX41 and CHEK2, with their recognized functional domains.

Figure S4. Chronic GVHD-free survival after allogeneic HSCT in patients with versus without P/LP germline *DDX41* variants

Kaplan-Meier curve showing the probability of chronic graft-versus-host disease (cGVHD) free survival in transplanted myeloid neoplasm patients stratified based on germline P/LP *DDX41* status.

Figure S5. Clonal evolution of relapse after allogeneic hematopoietic stem cell transplant in patients with P/LP germline *DDX41* variants

We analyzed data on four patients with pathogenic/likely pathogenic germline *DDX41* variants who underwent serial genetic assessments of their disease pre- and posttransplant. At the time of relapse after HSCT, the reduction in chimerism correlated with the re-emergence of germline *DDX41* variant. The subclonal somatic mutations (e.g., *ASXL1, DDX41* R525H) expanded subsequently with morphologic relapse. Pt 58 died as a result of severe GI GVHD. Patients 444 and 448 received post-transplant cyclophosphamide for GVHD prophylaxis. 7+3, 7-days of cytarabine plus 3-days of daunorubicin chemotherapy; Aza+ven, azacitidine + venetoclax; CR, complete remission; Dx, diagnosis; GI, gastrointestinal; GVHD, graft versus host disease; HSCT, hematopoietic stem cell transplant; VAF, variant allelic frequency

References

1. Singhal D, Hahn CN, Feurstein S, et al. Targeted gene panels identify a high frequency of pathogenic germline variants in patients diagnosed with a hematological malignancy and at least one other independent cancer. *Leukemia*. 2021;35(11):3245-3256.

2. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015;17(5):405-424.

3. Guidugli L, Johnson AK, Alkorta-Aranburu G, et al. Clinical utility of gene panel-based testing for hereditary myelodysplastic syndrome/acute leukemia predisposition syndromes. *Leukemia*. 2017;31(5):1226-1229.

4. Singhal D, Wee LYA, Kutyna MM, et al. The mutational burden of therapy-related myeloid neoplasms is similar to primary myelodysplastic syndrome but has a distinctive distribution. *Leukemia*. 2019;33(12):2842-2853.

5. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. *Blood*. 2017;129(4):424-447.

6. Platzbecker U, Fenaux P, Ades L, et al. Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials. *Blood*. 2019;133(10):1020-1030.

7. Armand P, Kim HT, Logan BR, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. *Blood*. 2014;123(23):3664-3671.

8. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. *Biol Blood Marrow Transplant*. 2015;21(3):389-401 e381.

9. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. *Bone Marrow Transplant*. 1995;15(6):825-828.