Supplementary Information

A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation

Justin Lakkis^{*}, Amelia Schroeder, Kenong Su, Michelle Lee, Alexander C. Bashore, Muredach P. Reilly,

Mingyao Li^{*}

*Correspondence:

Justin Lakkis (jlakks@gmail.com)

Mingyao Li (mingyao@pennmedicine.upenn.edu)

Supplementary Table 1. Datasets analyzed in this paper.

Data	Data Source	Number of Cells	Number of Genes	Number of
				proteins
MALT	10x Genomics	8,412	33,538	17
	https://www.10xgenomics.com/re			
	sources/datasets/10-k-cells-from-			
	a-malt-tumor-gene-expression-			
	and-cell-surface-protein-3-			
	standard-3-0-0			
PBMC	Hao et al. (2021)	161,764	20,729	224
	https://atlas.fredhutch.org/data/n			
	ygc/multimodal/pbmc_multimoda			
	I.h5seurat			
Monocyte	Generated ourselves. Data will be	37,112	22,060	283
	publicly available after the paper			
	is accepted for publication.			
H1N1	Kotliarov et al. (2020)	53,201	32,738	87
	https://nih.figshare.com/articles/dataset/CITE-seq_protein-			
	mRNA_single_cell_data_from_hig			
	h_and_low_vaccine_responders_t			
	o_reproduce_Figs_4-			
	6_and_associated_Extended_Data			
COVID	_Figs_/11349761?file=20706645	647.266	24 727	192
(Haniffa)	Stephenson et al. (2021)	647,366	24,737	192
	https://www.ebi.ac.uk/arrayexpre			
	ss/experiments/E-MTAB-10026			
COVID	Chan Zuckerberg Initiative Single-	240,627	33,567	192
(Sanger)	Cell COVID-19 Consortia (2020)			
	https://covid19.cog.sanger.ac.uk/s			
	ubmissions/release2/vento_pbmc			
	_processed.h5ad			

Supplementary Note 1: Early stopping

Let ES_{max} denote the patience parameter for early stopping and LR_{max} denote the patience parameter for learning rate decay. Let count be a counter which indicates the number of epochs that have elapsed since the validation loss decreased from its running minimum bestloss. After completing an epoch and computing the validation loss val_{loss} , check if $val_{loss}*1.005 < best_{loss}$. If so, setcount = 0 and update: $best_{loss} \leftarrow val_{loss}$. Otherwise, increment count by 1. If (count + 1) modulus LR_{max} is equal to 0, decay the learning rate lr by a factor d. That is, make the update $lr \leftarrow lr \times d$. If count equals ES_{max} , then end training as the validation loss has failed to decrease below its running minimum for ES_{max} consecutive epochs.

Supplementary Note 2: Software packages

We used used totalVI via the scvi-tools package (https://scvi-tools.org). We specifically used version 0.10.0 of scvi-tools and version 4.1.0 of Seurat (https://satijalab.org/seurat). The sciPENN package can be found online on github (https://github.com/jlakkis/sciPENN).

All analyses can be reproduced using this repository (https://github.com/jlakkis/sciPENN codes). All packages, including sciPENN, can be installed following the instructions in that repository.