SUPPLEMENTARY DIGITAL MATERIAL 1

Authors	Study	Characteristi	Symptoms	Diagnostic	Therapeutic	Duration of	Follow up	Results	Risk
Years	design;	cs of patients		tools	approaches	treatment			of bias
	Evidence								
	levels								
Canbaz	Retrospecti	21 pt,	Urge	Frequency,	Percutaneous	12	3-6-9 and	Frequency,	High
2017	ve study;	5 males and	incontinenc	nocturia,	Posterior Tibial	consecutive	12 months	incontinence,	risk
	Level 2	16 female pt;	e, urgency,	urgency,	Nerve	weekly		urgency	
		42.7±6.9 y	and	urge	Stimulation	sessions		episodes, and	
			frequency	incontinence,	(PTNS)			nocturia	
				voided				decreased daily.	
				volume.				Voided volume	
				OAB-q,				improved	
				OAB-V8,					
				ICIQ-SF					
De Seze	Prospective	70 patients,	Symptoms	QOL,	Transcutaneous	Daily sessions	3 months	Clinical	Low
2011	study;	51 women	of an	urgency,	posterior tibial	of 20 min		improvement of	risk
	Level 2	and 19 men	overactive	frequency,	nerve			symptoms of	
		48.3±10.2 y	bladder	maximum	stimulation			the patients	
				cystometric	(PTNS)				
				capacity,					

Supplementary Table I.—Characteristics and outcomes of studies included in the systematic review.

				reflex					
				volume					
Engeler	Prospective	17 pt,	Refractory	Voided	Sacral	Implantation	Assessme	Chronic sacral	Unclea
2015	study;	13 female pt,	neurogenic	volume, post	neuromodulatio	of	nt after 6	neuromodulatio	r risk
	Level 2	4 male pt.	lower	void residual,	n	neuromodulat	months	n is effective	
		46.2 (range	urinary	frequency,		or	and then	and safe	
		16.9-74.6 y)	tract	incontinence			each year.		
			dysfunction				24		
							months, 6		
							years		
Ferreira	Clinical	Group A: 15	Urinary	EDSS,	Group A:	Twice a week	6 months	Rehabilitation	Low
2019	trial;	females pt,	incontinenc	perineal	Traditional	for 6 months		plus	risk
	Level 1	38.6 ± 13.5 y	e	sensitivity;	exercises +			electrostimulati	
		Group B: 15		OAB-q,	intravaginal			on engendered	
		females pt,		Cutaneous	electrostimulati			better results	
		$49.8\pm16.5~\mathrm{y}$		anal reflex;	on Group B:			than exercise	
				Genital	Traditional			alone	
				dystopia;	exercises				
				voluntary					
				contraction;					
				Stress test					
				with loss of					
				urine,					

Fjorback 2007	Prospective study; Level 2	12 pt, 7 men, 5 females pt 46 y (range: 32–63 y)	Symptoms of Detrusor Overactivit y	Qualiveen questionnaire ; PERFECT Bladder volume at first contraction and maximum detrusor	Posterior Tibial Nerve Stimulation (PTNS)	Acute assessment	Acute assessmen t	Electrical stimulation of posterior tibial nerve has no acute effects.	Low risk
Gobbi 2011	Prospective study; Level 2	18 pt, 2 male, 16 female pt 46,6±13 y	Symptoms of detrusor overactivity , dyssynergia	pressure EDSS, frequency, nocturia, urgency, voided volume, residual, QoL, VAS	Percutaneous posterior tibial nerve Stimulation (PTNS)	30 min, once a week for 12 sessions	3 months	PTNS is effective, safe and well- tolerated	Low risk
Kabay, 2008	Prospective study; Level 2	29 pt, 12 male, 17 female pt 46.5±8.5 y	Urge incontinenc e, urgency,	EDSS, cystometry capacity	Percutaneous posterior tibial nerve	-	-	PTNS is effective to suppress detrusor	Low risk

			and		stimulation			overactivity in	
			frequency		(PTNS)			MS patients	
Kabay	Prospective	19 pt, 6	Symptoms	Voided	Percutaneous	30 min once a	3 months	PTNS results in	Low
2009	study;	male, 13	of	volume,	Posterior Tibial	week for 3		prominent	risk
	Levels 2	female pt	neurogenic	detrusor	Nerve	months		improvements	
		44.9 ± 8,3 y	detrusor	contraction,	Stimulation			on the clinical	
			overactivity	pressure and	(PTNS)			and urodynamic	
				capacity,				outcome	
				maximal					
				flow rate					
Khan	Clinical	58 pt	Detrusor	EDSS, IIQ,	Treatment	2-3	12 months	The treatment	Low
2010	trials;	Group A: 24	overactivity	QOL	group received	session/week		group compared	risk
	Levels 1	pt	,		personalized,	for 6 weeks.		with the control	
		Group B 34	sphincter		multidisciplinar	Continue with		group showed	
		Control	dyssynergia		y rehabilitation	maintenance		improvement in	
		$49.9\pm8.6~y$, poor		program.	program for		IIQ	
			bladder		Control group	12 months			
			compliance,		maintenance				
			urinary		program only				
			retention						
Lucio	Clinical	27 pt,	Frequency,	PERFECT,	Pelvic Floor	Twice a week	3 months	PFMT is an	Low
2010	trials;	Group A 13	urgency,	EDSS,	Muscle	for 12 weeks		effective	risk
	Levels 1	pt	urge	capacity,				approach	

		Control	urinary	compliance,	Training				
		group 14 pt	incontinenc	maximal	(PFMT)				
		34.7±8.8 y	e, nocturnal	flow rate,					
			enuresis,	frequency,					
			nocturia,	voided					
			hesitancy,	volume					
			slow						
			stream,						
			incomplete						
			emptying						
Lucio	Clinical	Group A: 18	Overactive	ICIQ-SF,	Pelvic floor	Twice / week	3 months	There was	Low
2011	trial;	female pt	bladder	QoL, EDSS,	muscle training	for 30 min for		improvement in	risk
	Levels 1	Group B: 17	symptoms	OAB-V8,	(PFMT) with	12 weeks		the QoL and	
		female		PERFECT	home exercises,			reduction of	
		controls			versus			overactive	
		35 y (range			perineometer			bladder	
		20-49 y)			inside the			symptoms for	
					vagina with no			women who did	
					exercise.			the PFMT.	
Lucio	Clinical	30 pt	Lower	PFM	Group A:	30 min of	3 months	PFMT alone or	Low
2014	trial; Levels	Group A: 10	urinary	function,	PFMT+ EMG	treatment		in combination	risk
	1	Group B: 10	tract	PFM tone,	biofeedback	sessions twice		with NMES or	
		Group C: 10	symptoms	FSFI	Group B:	per week		TTNS	

		45.5 y (range		questionnaire	PFMT+ EMG			contributes to	
		27-54 y)		, PERFECT;	biofeedback			the	
				EDSS, VAS	and NMES			improvement of	
					Group C:			arousal,	
					PFMT+EMG			lubrication,	
					biofeedback+			satisfaction and	
					PTNS			improves the	
								score of FSFI	
Lucio	Clinical	30 female pt	Lower	24-hour pad	Group A:	50-minute	3 months	PFMT alone or	Low
2016	trial; Level	Group A: 10	urinary	test, 3-day	PFMT + EMG	treatment		in combination	risk
	1	Group B: 10	tract	bladder	biofeedback +	sessions twice		with NMES or	
		Group C: 10	symptoms	diary,	NMES	per week		TTNS is	
		43.5 y (range		strength and	Group B:			effective	
		42-52 y)		muscle tone,	PFMT + EMG				
				urodynamic	biofeedback				
				studies,	+NMES				
				EDSS, OAB-	Group C:				
				V8, ICIQ-SF,	PFMT + EMG				
				Qualiveen	biofeedback +				
				instrument	PTNS				
McClurg	Clinical	30 female pt	Urinary	EMG, 3-day	Group 1: PFTA	Stimulation at	0, 9	Group 3	Low
2006	trial; Levels	50,5 y (range	symptoms	Voiding		clinic	weeks;	demonstrated	risk
	2)	33-67 y)		Diary, 24-				superior benefit	

				hour Pad-	Group 2:	(weekly) was	4, 6	in the number	
				Test,	PFTA+EMG	initially	months	of leaks and pad	
				Uroflowmetr	Biofeedback;	for 5 min,		test than Group	
				y, IIQ, UDI,	Group 3:	increasing to		2, with Group 1	
				KHQ,	PFTA +EMG	a maximum		showing less	
				MSQoL54	Biofeedback	of 30 min for		improvement	
					+NMES	9 weeks		when compared	
								to week 0	
McClurg	Clinical	74 pt,	Symptoms	Incontinence	Neuromuscular	9 weeks	0, 9	Active	Low
, Ashe	trial; Levels	Group A 37	of lower	Impact	Electrical		weeks;	Neuromuscular	risk
2008	1	pt, 26 female,	urinary	Questionnair	Stimulation		4, 6	Electrical	
		11 male	tract	e, Urinary			months	Stimulation,	
		Group B 37	dysfunction	distress				Pelvic Floor	
		pt, 31		inventory, he				Muscle	
		female, 6		International				Training and	
		male pt		Prostate				EMG	
				Symptom				Biofeedback	
				Score, VAS,				could alleviate	
				Multiple				symptoms of	
				Sclerosis				lower urinary	
				Impact Scale,				tract	
				Barthel index				Dysfunction in	
								MS	

McClurg	Clinical	37 pt,	Lower	Bladder	PFMT and	9 weeks	9, 16, 24	9-week PFMT	Low
, Lowe-	trial; Levels	11 male, 26	urinary	diary, pad	EMG		weeks	program	risk
Stronge	1	female pt	tract	test,	biofeedback			improved the	
2008		52.0±8.8 y	dysfunction	uroflowmetr				function of	
				у,				PFM, reduced	
				International				the symptoms	
				Prostate				associated with	
				Symptom				lower urinary	
				Score; VAS				tract	
								dysfunction and	
								increased QoL	
								in people with	
								MS	
McClurg	Clinical	Group A:	Symptoms	Leakage of	Group A:	EMG	9,16, and	At 9 weeks,	High
2009	trial; Level	37 pt	associated	episode per	PFMT +	biofeedback	24 weeks	group A had	risk
	1	Group B:	with lower	day,	vaginal or anal	at weekly		significantly	
		37 controls	urinary	symptoms	electrical	clinic visit for		less	
		11 male pt,	tract	questionnaire	stimulation	9 weeks		incontinence,	
		26 female pt	dysfunction	s, pelvic	Group B:			and lighter pads	
		>18 y		floor muscle	PFMT			than group B.	
				function				At 24 weeks,	
				using				pad weights	
								were the only	

				Oxford, and				objective	
				EMG.				outcome that	
								remained	
								statistically	
								significant.	
Rafii	Clinical	50 pt,	Urinary	EDSS, ICIQ-	Pelvic Floor	Exercises 3	1, 2, 3	PFMT reduces	Low
2017	trial; Levels	female pt	incontinenc	SF, DASS-	Muscle	times a day	months	urinary	risk
	1	33 y (range	e	21	Training	for 12		incontinence,	
		18-50 y)			(PFMT)	consecutive		stress, anxiety	
						weeks at		and depression	
						home.			
Vahtera	Clinical	80 pt, 50	Symptoms	EMG, post	Pelvic floor	3-5 times a	3 weeks,	PFMT	Low
1997	trial; levels	female, 30	of lower	voided	muscle	week for at	2-6	combined with	risk
	1	male pt	urinary	residual	exercises	least 6 months	months	electrical	
		42.4± 9.5 y	tract	volume,	(PFMT)			stimulation of	
			dysfunction	EDSS				the pelvic floor	
								constitute an	
								effective	
								treatment for	
								lower urinary	
								tract	
								dysfunction in	

								male MS	
								patients	
Zecca,	Prospective	83 pt,	Symptoms	3-day	Percutaneous	30 min once a	3 months	A sensory	High
Digesu,	study;	21 male, 62	of detrusor	bladder	tibial nerve	week for 12		response, alone	risk
Robsha	Level 2	female pt	overactivity	diary, PPBC,	stimulation	weeks		or in	
w,		49 y (range	, detrusor	PPIUS,	(PTNS)			combination	
Puccini		22-72 y)	sphincter	KHQ, OAB-				with a motor	
2014			dyssynergia	q				response, is	
			, detrusor					better	
			underactivit					associated with	
			у					a successful	
								outcome of	
								PTNS than	
								motor response	
								alone	
Zecca,	Prospective	83 pt,	Lower	Bladder	Percutaneous	30 min once	24 months	Prolonged	High
Digesu,	study;	21 male, 62	urinary	diary, post-	tibial nerve	a week for 12		PTNS improves	risk
Robsha	Level 2	female pt	tract	micturition	stimulation	weeks		lower urinary	
w, Sing		49 y (range	symptoms	residual of	(PTNS)			tract symptoms	
2014		22-72 y)		voiding					

Patients pt; Years old y; Multiple Sclerosis MS; PERFECT P power, E endurance, R repetitions, F fast contractions, ECT every contraction timed; Overactive Bladder OAB; Electromyography EMG; Pelvic floor muscle PFM; Pelvic floor muscle training PFMT; Neuromuscular electrical stimulation NMES; Transcutaneous posterior tibial nerve stimulation TPTNS; Overactive Bladder Questionnaire OAB-q, Over-Active Bladder Awareness Tool - 8-item OAB-V8, Incontinence Questionnaire Short Form ICIQ-SF, Quality of Life Questionnaires QoL; Multiple Sclerosis Quality of Life-54 Instrument MSQoL54; Kings Health QoL questionnaire KHQ; Expanded Disability Status Scale EDSS; Incontinence Impact Questionnaire IIQ-7; Female Sexual Function Index FSFI; Urogenital Distress Inventory UDI; King's Health Questionnaire KHQ; Pelvic Floor Training Advice PFTA; Depression, Anxiety and Stress Scale - 21 Items DASS-21; Patient perception of bladder condition PPBC; patient perception of intensity of urgency scale PPIUS.

References

1. European Multiple Sclerosis Platform: Recommendations on rehabilitation services for persons with multiple sclerosis in Europe. Brussels: EMSP; 2004.

2. Amarenco G, de Sèze M, Ruffion A, Sheikh I. Clinical and urodynamic evaluations of urinary disorders in multiple sclerosis. Ann Phys Rehabil Med 2014;57:277-87.

3. Al Dandan HB, Coote S, McClurg D. Prevalence of Lower Urinary Tract Symptoms in People with Multiple Sclerosis: A Systematic Review and Meta-analysis. Int J MS Care. 2020;22:91-99.

4. de Sèze M, Ruffion A, Denys P, Joseph PA, Perrouin-Verbe B. The neurogenic bladder in multiple sclerosis: review of the literature and proposal of management guidelines. Mult Scler. 2007;13:915-28.

5. Lúcio AC, Perissinoto MC, Natalin RA, Prudente A, Damasceno BP, D'ancona CA. A comparative study of pelvic floor muscle training in women with multiple sclerosis: its impact on lower urinary tract symptoms and quality of life. Clinics (Sao Paulo). 2011;66:1563-8.

6. Gallien P, Gich J, Sánchez-Dalmau BF, Feneberg W. Multidisciplinary management of multiple sclerosis symptoms. Eur Neurol. 2014;72:20-5.

7. Di Benedetto P, Finazzi-Agrò E. Conservative management of adult neurogenic lower urinary tract dysfunction. EJPRM 2017;53:981-90.

8. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, *et al.* Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;2;350:7647.

9. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, *et al.* Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000; 283:2008–12.

10. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014;14:579.

11. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Oxford: Cochrane Collaboration; 2008.

12. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, *et al.* GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383-94.

13. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, *et al.* GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011;64:1283-93.

14. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, *et al.* GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol. 2011;64:407-15.

15. Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, *et al.* GRADE guidelines: 5. Rating the quality of evidence--publication bias. J Clin Epidemiol. 2011;64:1277-82.

16. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, *et al.* GRADE Working Group. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J Clin Epidemiol. 2011;64:1303-10.

17. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11:193-206.

18. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105-14.

19. Higgins JP, Altman DG, Gøtzsche PC, Jüni P. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Br. Med. J. 2011; 343: 889–893.

20. Canbaz Kabay S, Kabay S, Mestan E, Cetiner M, Ayas S. Long term sustained therapeutic effects of percutaneous posterior tibial nerve overactive bladder in multiple sclerosis patients: 12-months results. Neurourol Urodyn. 2017;36:104-110.

21. Gobbi C, Digesu GA, Khullar V, El Neil S, Caccia G, Zecca C. Percutaneous posterior tibial nerve stimulation as an effective treatment of refractory lower urinary tract symptoms in patients with multiple sclerosis: preliminary data from a multicentre, prospective, open label trial. Mult Scler 2011;17:1514-9.

22. Kabay SC, Yucel M, Kabay S. Acute effect of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with multiple sclerosis: urodynamic study. Urology. 2008; 71:641-5.

23. Kabay S, Kabay SC, Yucel M, Ozden H, Yilmaz Z, Aras O, *et al.* The clinical and urodynamic results of a 3-month percutaneous posterior tibial nerve stimulation treatment in patients with multiple sclerosis-related neurogenic bladder dysfunction. Neurourol Urodyn. 2009;28(8):964-8.

24. Zecca C, Digesu GA, Robshaw P, Puccini F, Khullar V, Tubaro A, *et al.* Motor and sensory responses after percutaneous tibial nerve stimulation in multiple sclerosis patients with lower urinary tract symptoms treated in daily practice. Eur J Neurol. 2014;21:506-11.

25. Lúcio AC, Campos RM, Perissinotto MC, Miyaoka R, Damasceno BP, D'ancona CA. Pelvic floor muscle training in the treatment of lower urinary tract dysfunction in women with multiple sclerosis. Neurourol Urodyn. 2010;29:1410-3.

26. Lúcio A, D'ancona CA, Perissinotto MC, McLean L, Damasceno BP, de Moraes Lopes MH. Pelvic Floor Muscle Training With and Without Electrical Stimulation in the Treatment of Lower Urinary Tract Symptoms in Women With Multiple Sclerosis. J Wound Ostomy Continence Nurs. 2016;43:414-9.

27. de Sèze M, Raibaut P, Gallien P, Even-Schneider A, Denys P, Bonniaud V, *et al.* Transcutaneous posterior tibial nerve stimulation for treatment of the overactive bladder syndrome in multiple sclerosis: results of a multicenter prospective study. Neurourol Urodyn. 2011;30:306-11.

28. Rafii F, Sajjadi M, Shareinia H, Sarraf P. Pelvic Floor Muscle Training Instruction to Control Urinary Incontinence and its Resulting Stress, Anxiety and Depression in Patients with Multiple Sclerosis. Jundishapur J Chronic Dis Care. 2017; 6:37333.

29. Fjorback MV, van Rey FS, van der Pal F, Rijkhoff NJ, Petersen T, Heesakkers JP. Acute urodynamic effects of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with MS. European Urol 2006;51:464-70

30. Vahtera T, Haaranen M, Viramo-Koskela AL, Ruutiainen J. Pelvic floor rehabilitation is effective in patients with multiple sclerosis. Clin Rehabil 1997; 11: 211–219.

31. McClurg D, Ashe RG, Lowe-Strong AS. Neuromuscular electrical stimulation and the treatment of lower urinary tract dysfunction in multiple sclerosis--a double blind, placebo controlled, randomised clinical trial. Neurourol Urodyn. 2008;27:231-7.

32. McClurg D, Ashe RG, Marshall K, Lowe-Strong AS. Comparison of pelvic floor muscle training, electromyography biofeedback, and neuromuscular electrical stimulation for bladder dysfunction in people with multiple sclerosis: a randomized pilot study. Neurourol Urodyn. 2006;25:337-48.

33. McClurg D, Lowe-Strong A, Ashe RG. The benefits of pelvic floor muscle training in people with multiple sclerosis and lower urinary tract dysfunction. Neurourology and Urodynamics 2008;27:231–237.

34. Ferreira AP, Pegorare AB, Salgado PR, Casafus FS. Impact of a pelvic floor training program among Women with Multiple Sclerosis: A Controlled Clinical Trial. Am J Phys Med Rehabil. 2016;95:1-8.

35. McClurg D, Lowe-Strong A, Ashe R. Pelvic floor training for lower urinary tract dysfunction in MS. Nurs Times. 2009;105:45-7.

36. Khan F, Pallant JF, Pallant JI, Brand C, Kilpatrick TJ. A randomised controlled trial: outcomes of bladder rehabilitation in persons with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2010;81:1033-8.

37. Engeler DS, Meyer D, Abt D, Müller S, Schmid HP. Sacral neuromodulation for the treatment of neurogenic lower urinary tract dysfunction caused by multiple sclerosis: a single-centre prospective series. BMC Urol. 2015;23;15:105.

38. Zecca C, Digesu GA, Robshaw P, Singh A, Elneil S, Gobbi C. Maintenance percutaneous posterior nerve stimulation for refractory lower urinary tract symptoms in patients with multiple sclerosis: an open label, multicenter, prospective study. J Urol. 2014;191:697-702.

39. Pereira CMA, Castiglione M, Kasawara KT. Effects of physiotherapy treatment for urinary incontinence in patient with multiple sclerosis. J Phys Ther Sci. 2017;29:1259-1263.

40. Lúcio AC, D'Ancona CA, Lopes MH, Perissinotto MC, Damasceno BP. The effect of pelvic floor muscle training alone or in combination with electrostimulation in the treatment of sexual dysfunction in women with multiple sclerosis. Mult Scler. 2014;20:1761-8.

41. Roe B, Williams K, Palmer M. Bladder training for urinary incontinence in adults. Cochrane Database Syst Rev 2000;1308.

42. Subak LL, Quesenberry CP, Posner SF, Cattolica E, Soghikian K. The effect of behavioural therapy on urinary incontinence: a randomized controlled trial. Obstet Gynecol 2002; 100: 72–78.

43. Eustice S, Roe B, Paterson J. Prompted voiding for the management of urinary incontinence in adults (Cochrane Review). Cochrane Database Syst Rev 2000;(2):2113.

44. Shafik A, Shafik IA. Overactive bladder inhibition in response to pelvic floor muscle exercises. World J Urol. 2003;20:374-7.

45. Yamanishi T, Kaga K, Fuse M, Shibata C, Uchiyama T. Neuromodulation for the Treatment of Lower Urinary Tract. Low Urin Tract Symptoms 2015;7:121–32.

46. Tracey JM, Stoffel JT. Secondary and tertiary treatments for multiple sclerosis patients with urinary symptoms. Investig Clin Urol. 2016;57:377-383.

47. Silva Ferreira AP, de Souza Pegorare ABG, Miotto Junior A, Salgado PR, Medola FO, Christofoletti G. A Controlled Clinical Trial on the Effects of Exercise on Lower Urinary Tract Symptoms in Women With Multiple Sclerosis. Am J Phys Med Rehabil. 2019;98:777-782.

48. Andersson KE, Appel R, Cardozo L, Chapple C, Drutz H, Fourcroy J, *et al.* Pharmacological treatment of urinary incontinence. ICS; 2005 [Internet]. Available from: https://www.ics.org/Publications/ICI_3/v2.pdf/chap14.pdf [cited 2022, Jan 24].