MYTHO IS A NOVEL REGULATOR OF SKELETAL MUSCLE AUTOPHAGY AND INTEGRITY

Supplementary figures and legends

Figure S1: Mytho is expressed in various tissues and is upregulated in catabolic conditions. A Quantification of *Mytho* mRNA levels assessed using RT-qPCR in the TA of fed and 24-h starved $FoxO1^{f/f}$, $FoxO3^{f/f}$, $FoxO4^{f/f}$,

FoxO1^{-/- mKO}, FoxO3^{-/- mKO} and FoxO4^{-/- mKO} mice. Results are shown as fold increase from FoxO^{f/f} Fed. GAPDH was used as houseke20eping gene. B Microarray analysis from a publicly available GEO data set (accession number: GSE24207) showing Mytho expression in various tissues. C Immunoblot analysis of MYTHO from homogenates of denervated or innervated TA muscles. GAPDH was used as loading control. All values are expressed relative to innervated TA muscles. D Adult TA muscles were transfected with pBI-GFP (one leg) or pBI-GFP 3xflag MYTHO (contralateral leg). After 7 to 10 days, cross-sectional area of transfected fibers was quantified. E Schematic representation of the experimental design: TA muscles were transduced with AAV-Fluc and AAV-MYTHO and muscles were examined 3 weeks later in Fed or 48h starved mice. F-G MYTHO protein content (F) and mRNA expression (G) were quantified by immunobloting and RT–qPCR, respectively. H Analysis of TA muscle mass (shown as % of AAV-fluc). I Quantification of Murfl and Atroginl gene expression by RT-qPCR. Data is shown as fold increase from AAV fluc. J Schematic representation of the experimental design. TA muscles were transfected with either AAV sh-RNA scramble or AAV sh-RNA MYTHO. Transduced muscles were examined 3 weeks later. K Murfl and Atroginl mRNA expression levels were assessed by RT-qPCR in TA samples from control and septic (LPS-injected) mice. Data is shown as fold-increase from AAV sh-RNA scramble. L Heatmap showing mRNA expression levels of genes regulating catabolic signaling in TA muscles 3 weeks post transfection as determined by RT-qPCR. Colors indicate relative expression levels; red indicates high expression and gray indicates low expression. Data are presented as mean \pm SEM (with individual values) and the number of independent biological replicates is indicated within bars. Data in A and K were analyzed with two-way ANOVA and corrections for multiple comparisons were performed with the two-stage step-up method of Benjamini, Krieger and Yekutieli (*p < 0.05and q<0.1). Comparisons in C, D, F, G, H, I were performed using paired two-tailed t-test (*p<0.05). Comparisons in L were performed using paired one-tailed t-tests (*p < 0.05). Detailed information on raw data, statistical tests, p-values and q-values are provided in the Source Data file. The drawings in C, D, E and J were created with BioRender.com.

Figure S2. MYTHO regulates muscle mass, fiber-type composition and anabolic signaling in mice. A-D TA isomeric tension measured *in situ* at 3, 6, 12 and 20 weeks post injection of AAV sh-RNA scramble or AAV sh-RNA MYTHO (data were analysed with two-way ANOVA with Benjamini, Krieger and Yekutieli multiple comparisons test: *=p < 0.05 and q<0.1). E Representative images of Masson's trichrome staining (upper pannel) and H&E staining (lower pannel) at 6 weeks post injection of AAV sh-RNA scramble or AAV sh-RNA MYTHO (n=6 mice per group). Scale bars: 200 µm for upper pannel, 100µm for lower pannel. F SDH, Masson's trichrome and H&E staining of the same muscle area at 6 weeks AAV posttransduction (n=6 mice per group). Yellow arrows indicate myofiber abnormalities (ragged blue fibers, miofiber necrosis and small regenerating fibers). Scale bars:

 μ m. **G** Representative images of H&E and SDH staining at 3 weeks (n=6 mice per group) or 20 weeks (n=4 mice per group) post injection of AAV shRNA scramble or MYTHO. White arrows indicate rare abnormalities in myofibers at 3 weeks postransduction. Scale bar: 50 μ m. **H** Analysis of fiber diametre in TA injected for 3 weeks with either AAV sh-RNA scramble or AAV sh-RNA MYTHO. Data in the grah on the left were analysed withtwo-way ANOVA with Benjamini, Krieger and Yekutieli multiple comparisons test (*=p < 0.05 and q<0.1). Data in the grah on the right were analysed with a paired two-tailed t-test (*p<0.05). **I** Representative images of IgG, laminin and DAPI immunostaining of TA at 3 weeks post injection of AAV sh-RNA scramble or AAV-shRNA MYTHO (n=8 mice per group). White arrows indicate necrotic myofibers. Scale bars: 100 μ m. **J** Analysis of fiber type proportion in TA injected with either AAV sh-RNA scramble or AAV sh-RNA MYTHO for 12 weeks. (data were analysed with two-way ANOVA with Benjamini, Krieger and Yekutieli multiple comparisons test: *=p < 0.05 and q<0.1). The number of mice for each group is indicated within bars. Data are presented as mean ± SEM (with individual data). *=p<0.05 and q<0.1 when applicable. Detailed information on raw data, statistical tests, p-values and q-values are provided in the Source Data file.

Fig S3. MYTHO depletion does not impair mitochondrial respiration. A Schematic representation of the experimental design. **B** Mitochondrial respiration analysis of GAS muscles transduced for 3, 6 or 20 weeks with AAV sh-RNA scramble or AAV sh-RNA MYTHO. V G+M: respiration rate driven by the addition of Glutamate and Malate. V ADP = respiration rate driven by the subsequent addition of ADP. C H₂O₂ emission at 3, 6 and 20 weeks in muscles injected with AAV sh-RNA scramble or AAV sh-RNA MYTHO. V G+M: H₂O₂ production rate driven by the addition of Glutamate and Malate. V ADP = H₂O₂ production rate driven by the addition of Glutamate and Malate. V ADP = H₂O₂ production rate driven by the addition of Glutamate and Malate. V ADP = H₂O₂ production rate driven by the addition of Glutamate and Malate. V ADP = H₂O₂ production rate driven by the subsequent addition of Succinate. V AA: H₂O₂ production rate driven by the subsequent addition of ADP. V Succ: H₂O₂ production rate driven by the subsequent addition of Antimycin A. The number of mice for each group is indicated within bars. Data in **B** and **C** were analysed with two-way repeated measure ANOVA with Benjamini, Krieger and Yekutieli multiple comparisons test (*=p<0.05 and q<0.1). Data are presented as mean ± SEM (with individual data). Detailed information on raw data, statistical tests, p-values and q-values are provided in the Source Data file. **A** was created with BioRender.com.

Figure S4: MYTHO depletion activates growth signaling. A Heatmap of the top 50 most robustly regulated genes (>2-fold change and p < 0.05 and q<0.1) derived from microarray analysis of Gastrocnemius (GAS) muscle at 3 weeks post AAV sh-RNA scramble or AAV sh-RNA MYTHO injections. Colors indicate relative

expression levels; red indicates high expression and gray indicates low expression. **B** Top upregulated (red) and downregulated (blue) pathways as identified through GO enrichment analysis. **C** Heatmap of differentially expressed genes extracted from the GO annotation muscle system process. Upregulated genes in GAS injected with AAV sh-RNA MYTHO appear in red while downregulated genes appear in gray. **D** Representative immunoblot and corresponding quantification of puromycin incorporation in TA from AAV sh-RNA scramble and AAV sh-RNA MYTHO injected muscles at 3 weeks post transduction. Data are presented as fold-increase from AAV sh-RNA MYTHO. The number of mice for each group is indicated within bars. Data in **D** were analysed with a paired one tailed *t*-test. Data are presented as mean \pm SEM (with individual data). Detailed information on raw data, statistical tests, p-values and q-values are provided in the Source Data file.

Figure S5: MYTHO depletion activates growth signaling. A-F Immunoblots performed on TA homogenates 20 weeks after the injection of AAV sh-RNA scramble or AAV sh-RNA MYTHO.

Quantification of MYTHO, p62, ATG7, LC3BI, LC3II, LC3II/ LC3I, pAMPK, AMPK and pAMPK/AMPK are shown in graphs **D** to **H**. Results are presented as fold increase from AAV sh-RNA scramble. **G-H** Immunoblots and corresponding quantifications of p-S6 and S6 content in TA homogenates transduced with AAV sh-RNA scramble or AAV sh-RNA MYTHO for 20 weeks. **I** *Mytho* transcript per million (TPM) in TA muscle from patients with mild, moderate and severe myotonic dystrophy type 1 (DM1) (<u>GSE86356</u>). **J** Quantification of *Mytho* gene expression by RT-qPCR in the *vastus lateralis* of patients with DM1 (5 females, 3 males; age: 51.8 ± 4.0 ; CTG repeats: 476 ± 59), compared to healthy samples (5 females, 6 males; age: 45.8 ± 6.7). **K-L** Immunoblots and corresponding quantifications of pAKT, AKT, pS6, S6 and GAPDH in *vastus lateralis* homogenates of patients with DM1 (6 males; age 58.5 ± 2.5 ; CTG repeats: 233.5 ± 74.68) and healthy controls (8 males; age: 64.7 ± 2.7). The number of participants/patients or mice for each group is indicated within bars. Data are presented as mean \pm SEM (with individual data). *=p < 0.05 and q<0.1 when applicable. Detailed information on raw data, statistical tests, p-values and q-values are provided in the Source Data file. The drawings in **A**, **I** and **J** were created with BioRender.com.

Supplementary tables.

Table S1: shRNA sequence used to downregulate *Mytho* expression.

Gene	Targeting sequence (5'-3')
D230025D16Rik	TGCTGTAAGGATGAGGTCATGGCTTAGT
(Mytho)	TTTGGCCACTGACTGACTAAGCCATCCTCATCCTTA
shRNA	

Table S2: Primers used for *Mytho* cloning.

Gene	Forward primer (5'-3')	Reverse primer (3'-5')
D230025D16Rik (Mytho)	AAAGCTAGCATGCTGGACCTGGAGGTGGT	TAAGGATCCGGGCAGCTCTGCTGTTC

Antibody	Source / Product no.	Dilution	Analysis
Mouse IgG2b monoclonal anti-MHC type I	DSHB #BA-F8	1:25	IF
Mouse IgG1 mono- clonal anti-MHC type IIa	DSHB #SC-71	1:200	IF
Mouse IgM monoclonal anti-MHC type IIb	DSHB #BF-F3	1:200	IF
Rabbit polyclonal anti-laminin	Sigma-Aldrich # L9393	1:750	IF
Mouse monoclonal anti-Stim1	BD Biosciences # 610954	1:200	IF
Mouse monoclonal anti-Serca2	ThermoFisher, MA3-910	1:200	IF
Rat monoclonal 4/80 - Macrophage Marker	Abcam #ab6640	1:100	IF
Alexa Fluor 350 IgG2b (y2b) goat anti-mouse	Invitrogen, A-21140	1:500	IF
Alexa Fluor 488 IgG goat anti-rabbit	Invitrogen, A-11008	1:500	IF
Alexa Fluor 488 IgM goat anti-mouse	Invitrogen, A-21042	1:500	IF
Alexa Fluor 594 IgG1 (y1) goat anti-mouse	Invitrogen, A-21125	1:100	IF
Alexa Fluor 568 IgG goat anti-rat	Invitrogen, A-11007	1:500	IF
Alexa Fluor 594 IgG goat anti-rabbit	Invitrogen, A-11037,	1:500	IF
Alexa Fluor 568 IgG goat anti-rabbit	ThermoFisher, A-11011	1:500	IF

Table S3: Antibodies used for *in situ* immunolabeling.

MHC: Myosin heavy chain; DSHB: Developmental Studies Hybridoma Bank (University of Iowa, IA).

Table S4: Antibodies used for immunoblotting.

Antibody	Source / Product no.	Dilution	Analysis
Rabbit anti-Atg7	Cell signaling #8558	1/1000	WB
AKT	Cell signaling #9272	1/1000	WB
p-AKT (Ser473)	Cell signaling #9271	1/1000	WB
Rabbit anti-phospho AMPKα (Thr172)	Cell signaling #2535	1/1000	WB
Rabbit anti-AMPKa	Cell signaling #2532	1/1000	WB
Rabbit anti-LC3	Cell signaling #12741	1/1000	WB
Rabbit anti-LC3B	Sigma #L7543	1/1000	WB
Rabbit anti-GAPDH	Cell signaling # 2118	1/2500	WB
Mouse anti-GAPDH	Santa Cruz #32233	1/10000	WB
Mouse anti-Bnip3	Sigma-Aldrich #B7931	1/1000	WB
Anti-puromycin, clone 12D10	Millipore # MABE343	1/2500	WB
Mouse anti-p62/SQSTM1	Novus Biologicals Inc. clone 2C11	1/1000	WB
Rabbit anti-C16orf70 (MYTHO)	Abcam # 181987	1/1000	WB
Mouse anti-Desmin	D76 Developmental Studies Hybridoma Bank (DSHB)	1/500	WB
Rabbit anti-phospho-S6 (Ser240/244)	Cell signaling #2215	1/1000	WB
Rabbit anti-total S6	Cell signaling #2217	1/1000	WB
Goat anti mouse IgG	Abcam # Ab6728	1/5000	WB
Goat anti rabbit IgG	Abcam # Ab6721	1/5000	WB

Further details about the validation of those antibodies above can be found in the Reporting Summary.

Table S5: Primers used for qPCR.

Gene	Forward primer (5'-3')	Reverse primer (3'-5')	
	Mouse primers sequences		
D230025D16Rik (Mytho) Isoform201/203	CGCTCCTACCATTGAGCAAA	CCTCGGAAGTTGAGGTGGAA	
Lc3b	CGATACAAGGGGGGAGAAGCA	ACTTCGGAGATGGGAGTGGA	
p62/Sqstm1	GCACCTGTCTGAGGGCTTCT	GCTCCAGTTTCCTGGTGGAC	
Bnip3	TTCCACTAGCACCTTCTGATGA	GAACACCGCATTTACAGAACAA	
Gabarapl1	GAGGACCACCCCTTCG	CGGAGGGCACAAGGTACTTC	
Gabarap	TTCTTGATCCGGAAGCGAAT	CTGGTACAGCTGACCCATCG	
Wipi2	TTGATGCAAGTGGGACCAAG	GGAGCAGATGCTCACACACC	
Musa1/Fbxo30	TCGTGGAATGGTAATCTTGC	CCTCCCGTTTCTCTATCACG	
MAFbx/Atrogin-1/ Fbxo32	TGGGTGTATCGGATGGAGAC	TCAGCCTCTGCATGATGTTC	
MuRF-1/Trim63	TGCTTGGCACTTGAGAGGAA	AGAAGCTGGGCTTCATCGAG	
β 5/Psmb5	GTACAAAGGCATGGGGGCTGT	CGGTCCCAGAGATCCTGTTC	
β1/Psmb6	GCAGTTCACTGCCAATGCTC	CAACGTGGCAATGGTGAACT	
β2/Psmb7	TTGTCGCAGGAATGCTGTCT	CAGCAACAACCATCCCTTCA	
β5i/Psmb8	TACCTGCTTGGCACCATGTC	CGTTCCCCATTCCGAAGATA	
βli/Psmb9	GGACGGAAGAAGTCCACACC	GTGCAGAGGGGGAGAGCTTGT	
β2i/Psmb10	GCTGCGGACACTGAGATGAC	TTGGTACCGGAAAAGCGTCT	
Psmg2	AGCTGCGCAGTACTCCCTTC	ATCTCAGGGATGCACCGACT	
MyoG	GCACTGGAGTTCGGTCCCAA	TATCCTCCACCGTGATGCTG	
Myh1	TTCCTCCTTCCAGACCGTGT	AGGACCAGTTCGTGCTCCAT	
Myh2	ACTTTGGCACTACGGGGAAAC	CAGCAGCATTTCGATCAGCTC	
Myh4	CTTTGCTTACGTCAGTCAAGGT	AGCGCCTGTGAGCTTGTAAA	
Myh8	AAGAACCCAGGCGGTCTGTA	CGCGGACGTTGTACTGGATA	

Cathepsin L	CGGGTTGCCTAGAAGGACAG	ACAGCCCTGATTGCCTTGAT
18S	TGCGGTTTAGCGTCGGTGTC	CCAAGTGGCCAAAGCGTA
β-Actin	AACCGTGAAAAGATGACCCAG	CACAGCCTGGATGGCTACGTA
Cyclophilin	GCGTCTCTTCGAGCTGTTT	CTGGCACATGAATCCTGGAA
Gapdh	AAGAAGGTGGTGAAGCAGGCG	ACCAGGAAATGAGCTTGACAA
	Human prin	ner sequences
D230025D16Rik (Mytho)	TGGGCAATGTCTATGCTGAG	CTTTGTGTGGAGAGCCAAGC
Cyclophilin	CATACGGGTCCTGGCATC TT	AACACCACATGCTTGCCATC

Table S6: Software and Algorithms

Software and Algorithms	Source	Identifier
GraphPad Prism 9.4.0	N/A	https://www.graphpad.com/scientific-software/prism/
Igor Pro (Version 8)	N/A	WaveMetrics
(Fiji) ImageJ	N/A	https://fiji.sc/
BioRender	N/A	BioRender.com
Affymetrix® Transcriptome Analysis Console (TAC) 4.0.1	N/A	Thermo Fisher Scientific
Metascape	N/A	https://metascape.org/gp/index.html#/main/step1
ClustVis	N/A	https://biit.cs.ut.ee/clustvis/
ImageLab	N/A	Bio-Rad Laboratories
Zeiss ZEN 3.5 image acquisition software	N/A	Carl Zeiss
Funrich software	N/A	http://www.funrich.org
Dynamic Muscle Control and Analysis Software	N/A	Aurora Scientific Inc
GEOexplorer	N/A	https://geoexplorer.rosalind.kcl.ac.uk
Mitofun	N/A	https://zenodo.org/record/7510439#.Y9COzi3pOXI