Supplementary Information

The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency

Paraskevi Athanasouli ^{1,10}, Martina Balli ^{1,10}, Anchel De Jaime-Soguero ^{1, *}, Annekatrien Boel ², Sofia Papanikolaou ^{3,4}, Bernard K. van der Veer ¹, Adrian Janiszewski ¹, Tijs Vanhessche ¹, Annick Francis ⁵, Youssef El Laithy ¹, Antonio Lo Nigro ¹, Francesco Aulicino ⁶, Kian Peng Koh ¹, Vincent Pasque ^{1,7}, Maria Pia Cosma ^{6,8,9}, Catherine Verfaillie ¹, An Zwijsen ⁵, Björn Heindryckx ², Christoforos Nikolaou ⁴, and Frederic Lluis^{1,*}

¹ KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium

² Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium

³ Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece

⁴ Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece

⁵ Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium

⁶ Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain

⁷ KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium

⁸ ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain

⁹ Universitat Pompeu Fabra (UPF), Barcelona, Spain

¹⁰ These authors contributed equally

*email: anchel.dejaime@cos.uni-heidelberg.de Frederic.lluisvinas@kuleuven.be

Supplementary Figure 1

GATA6

NANOG⁺

Supplementary Fig. 1: PE cells are characterized by a diminished Wnt/ β -Catenin signaling activity compared to the EPI lineage.

(a) TCF7 and LEF1 protein levels in naive EPI and PE-like cells from 1 experiment. (b) Forcedirected layout displaying relationships between undefined ICM, EPI and PE cells. Cells are colored by lineage ⁵⁰. (c) Force-directed layout of E3.5 and E4.5 cells. Cells are colored by embryo developmental timepoint ⁵⁰. (d) GO enrichment analysis of DEGs between EPI and PE lineages in E4.5 preimplantation embryos ⁴⁹. Red dashed line=FDR 0.05. (e) Differential Wnt signaling transcriptome profile between EPI and PE lineages in E4.5 preimplantation embryos ⁴⁹. (f) (Left) Representative immunofluorescence (IF) image of active β-Catenin protein signal in E3.5+24H ex vivo cultured embryos. EPI-NANOG⁺ cells (red arrow) and PE-GATA6⁺ cells (green arrow). Scale bar=50µM. Zoomed region of interest is reported below the images. (Right) Nuclear active β-Catenin signal intensity in EPI-NANOG⁺ and PE-GATA6⁺. NANOG⁺ n=91, GATA6⁺ n=100; 2 independent experiments; two-tailed unpaired *t* test. Horizontal line denotes the median value, box indicates the interguartile range (IQR) and whiskers denote the 1.5 × IQR. (g) Total active β -Catenin signal intensity in EPI-NANOG⁺, PE-GATA6⁺ and doublepositive NANOG⁺/GATA6⁺ cells in E3.5 embryos. Mean ± SEM; NANOG⁺ n=30, GATA6⁺ n=93 and undefined NANOG⁺/GATA6⁺ cells n=41; 2 independent experiments; one-way ANOVA test. (h) Total active β -Catenin signal intensity in EPI-NANOG⁺ and PE-GATA6⁺ cells. Integrated intensity in arbitrary units (arb. units). NANOG⁺ n=76; GATA6⁺ n=69; 2 independent experiments; two-tailed unpaired t test. Source data for all experiments are provided as a Source data file.

Supplementary Fig. 2: Wnt signaling inhibition as major contributor of PE lineage development.

(a) Representative images of active β -Catenin levels in mESCs upon DKK1 treatment for 3 passages from 3 independent experiments. (b) Total number of ICM cells per embryo. Mean \pm SEM; Control: n=29, DKK1: n=30; 3 independent experiments; two-tailed unpaired *t* test. (c) Effect of DKK1 on mouse embryo developmental kinetics. Bars represent percentage of each developmental stage in each treatment group. Combined data of 2 *in vitro* culture sessions; see Source data file. (d) Representative IF image of embryo morphology upon DKK1 treatment from 3 independent experiments. Scale bar=50µM. Source data are provided in the Source data file.

Supplementary Fig. 3: Loss of *Tcf7* does not affect PE specification.

(a) TCF7 protein levels in three independent mock and $Tcf7^{-/-}$ clones from 1 experiment. (b) (Left) Representative flow cytometry images of mESC populations co-stained for PECAM1 and PDGFR α in WT and $Tcf7^{-/-}$ cells. (Right) Flow cytometry analysis of PDGFR α^+ /PECAM1⁻ cells in WT and $Tcf7^{-/-}$ cells. Mean \pm SD; n=3 independent experiments. two-tailed unpaired *t* test. (c) Representative flow cytometric images of mESC populations co-stained for PECAM1 and PDGFR α markers in WT and $Tcf7^{-/-}$ cells upon 0, 24, 48, 72 and 96H of 0.25µM RA treatment. n=3. (d) Flow cytometry analysis of PDGFR α and PECAM1 populations at 96H of RA treatment. Mean \pm SD; n=3 independent experiments; two-way ANOVA test. (e) Gene expression analysis of pluripotency and PE gene markers in WT and $Tcf7^{-/-}$ upon RA differentiation. Gene expression values are reported as Log₂ of fold change expression. Source data for all experiments are provided as a Source data file.

h

Supplementary Fig. 4: *Tcf7l1* overexpression promotes PE specification while TCF7 has negligible role in PE induction.

(a) (Upper panel) Schematic representation of *Tcf7l1* transgene as designed by Nishiyama et al. 2009. (Lower panel) TCF7L1 and FLAG protein levels in uninduced (+Dox) and 24h induced cells (-Dox). Representative of 3 independent experiments. (b) Venus/FITC expression in uninduced (+Dox) and 24H induced cells (-Dox). Exemplary sorting gating strategy for experiments presented in Fig. 4a-e, Supplementary Fig.4c,d and RNA sequencing samples. Colored areas separate negative, low and high Venus-expressing populations. Venus^{high} population was sorted (last panel) (c) qRT-PCR of Venus and Tcf711 in sorted cell populations after 24h of transgene induction. Populations were sorted based on Venus expression into Venus^{neg}, Venus^{low} and Venus^{high}. WT mESCs and uninduced (+Dox) cells were used as control. Gene expression was normalized to Gapdh. (d) Percentage of GATA6 and NANOG positive nuclei normalized on the total number of cells (DAPI signal); see Source data file. Each dot represents a field of view. (e) TCF7 levels upon transgene induction with Dox treatment. EV: empty vector, A1: cell clone with stably incorporated transgene cassette. Representative of 3 independent experiments.(f) qRT-PCR of Tcf7 upon transgene induction for 2, 5 and 8 days. EV treated with Dox was used as control. Mean ± SD; n=3 independent experiments; see Source data file. Two-way ANOVA test. (g) qRT-PCR of pluripotency and PE genes normalized to Gapdh upon Tcf7 overexpression for 2, 5 and 8 days. Values are reported as fold change relative to EV treated with Dox. Mean ± SEM; n=3 independent experiments; see Source data file; multiple unpaired t tests with Holm-Sidak method; no statistically significant differences detected. (h) GO enrichment analysis of upregulated genes after 8 days of Tcf7l1 OE.

Supplementary Fig. 5 *Tcf7l1* overexpression promotes conversion to PE fate through a downregulation of naive and formative pluripotency.

(a) Transcriptional regulator target gene enrichments for genes up- or down-regulated at D1, D2 and D4 of *Tcf7l1* induction. Genes were selected at |logFC|≥2 and adjusted p-value≤0.05.
(b) Genomic regions around genes associated with naive, general and formative pluripotency genes with TCF7L1 binding peaks around the TSS region.

b

b	Cas9 gRNA targeting <i>Tcf7l1</i> gene							
С		MiSoa	MiSeg predominant mutation					
1	embryos	editing frequency	Chromosome	Positions (mm10)	Туре	Length		
			chr6	72788276 72788332	DEL	57		
	Embryo1 Tcf7l1≁	100%	chr6	72788203 72788287	DEL	85		
1	Embryo2 Tcf7l1≁	100%	chr6	72788277 72788290	DEL	14		
			chr6		INS	1		
			chr6	72788279_72788278	INS	2		
			chr6	72788273_72788381	DEL	109		
	Embryo3 Tcf7l1≁	100%	chr6	72788262_72788299	DEL	38		
		4000/	chr6	72788278_72788281	DEL	4		
	Embryo4 Tcf7l1≁	100%	chr6	72788279_72788284	DEL	6		
	Embryo5 Tcf7l1≁	100%	chr6	72788278_72788458	DEL	181		
		1-/- 100%	chr6	72788231 72788298	DEL	68		
	Embryob ICT/II		chr6	72788278_72788281	DEL	4		
		100%	chr6	72788277_72788290	DEL	14		
	Embryo7 Tcf7l1*		chr6	72788156_72788273	DEL	118		
			chr6	72788270_72788458	DEL	189		
	Embryo8 Tcf7l1≁	100%	chr6	72788249_72788284	DEL	36		
			chr6	72788274_72788320	DEL	47		
		10001	chr6	72788269_72788278	DEL	10		
	Embryo9 Icf/I1*	100%	chr6	72788280_72788282	DEL	3		
	Embryo10 Tcf7l1≁	100%	chr6	72788278_72788281	DEL	4		
			chr6	72788280_72788356	DEL	77		
	Embryo11 Tcf7I1-	100%	chr6	72788278_72788281	DEL	4		
	Embryo12 Tcf7l1 ^{-/-}	100%	chr6	72788269_72788282	DEL	14		
	Embryo13 Tcf7l1≁	100%	chr6	72788278_72788281	DEL	4		
			chr6	72788279_72788284	DEL	6		
			chr6	72788279_72788369	DEL	91		
		100%	chr6	72788278 72788303	DEL	26		
	Embryo14 Ict/l1 ^{,,}		chr6	72788279 72788326	DEI	48		

chr6

chr6

100%

Embryo15 Tcf7I1-

72788262_72788290

72788277_72788290

DEL

DEL

29

14

Supplementary Fig. 6 TCF7L1 as main regulator of *in vivo* PE cell fate specification.

(a) *Tcf7l1* and *Tcf7l2* gene expression profile in EPI lineage from E3.5 to E4.5 compared to gene expression levels of different lineage markers. (b) Schematic representation of CRISPR/Cas9 *in vivo* experiment. Created with BioRender.com. (c) MiSeq results of CRISPR/Cas9 *Tcf7l1*^{-/-} embryos.

Supplementary Fig. 7: Gating strategies employed for FACS plots presented in the manuscript figures.

(a) Exemplary gating strategy to identify naive EPI (PECAM1⁺/PDGFR α^{-}) and PE-like populations (PECAM1⁻/PDGFR α^{+}) used in Fig.1b-e and Supplementary Fig. 1a. (b) Exemplary gating strategy to identify the PE-like population (PECAM1⁻/PDGFR α^{+}) in NT and DKK1 treated cells presented in Fig. 2a. (c) Exemplary gating strategy to identify the PE-like population (PECAM1⁻/PDGFR α^{+}) in DMSO and iCRT3 treated cells presented in Fig. 3a. (d) Exemplary gating strategy to identify the PE-like population (PECAM1⁻/PDGFR α^{+}) in WT and *Tcf711^{-/-}* or *Tcf7^{-/-}* cells presented in Fig. 3c,d and Supplementary Fig. 3b. (e) Exemplary gating strategy to identify naive EPI (PECAM1⁺/PDGFR α^{-}), PE-like (PECAM1⁻/PDGFR α^{+}) and the intermediate populations in WT and *Tcf711^{-/-}* or *Tcf7^{-/-}* cells during RA timecourse presented in Fig. 3e,f and Supplementary Fig. 3c,d.

Supplementary Fig. 8: Uncropped and unprocessed scans of blots presented in Supplementary Figures.

Supplementary Table 1: Antibodies

NAME	SOURCE	IDENTIFIER
Antibodies		
Rat monoclonal anti-Nanog	eBioscience™	Cat#14-5761-80; RRID:AB_763613
Goat polyclonal anti-Gata6	R&D systems	Cat#AF1700, RRID:AB_2108901
Mouse monoclonal anti-Gata4	BD Biosciences	Cat#560327, RRID:AB_1645188
Mouse monoclonal anti-Cdx2	Biogenex	Cat#AM392GP
Rabbit monoclonal anti-(active)- β-catenin	Cell Signaling Technology	Cat#8814, RRID:AB_11127203
Goat polyclonal anti-Tcf3 (M-20) (Tcf7l1)	Santa Cruz Biotechnology	Cat#sc-8635, RRID:AB_2199133
Goat polyclonal anti-Nestin	Santa Cruz Biotechnology	Cat#sc-21248, RRID: AB_2148925
Mouse monoclonal anti-β- catenin	BD Biosciences	Cat#610154, RRID:AB_397555
Rabbit monoclonal anti-Tcf1 (C63D9)	Cell Signaling Technology	Cat#2203, RRID:AB_2199302
Rabbit monoclonal anti-Lef1 (C12A5)	Cell Signaling Technology	Cat#2230, RRID:AB_823558
Mouse anti-β-Actin (C4)	Santa Cruz Biotechnology	Cat#sc-47778, RRID: AB_626632
PE anti-mouse CD140a (PDGFRA) (APA5)	Thermo Fisher Scientific	Cat#12-1401-81, RRID:AB_657615
APC anti-mouse CD31 (PECAM-1) (390)	Thermo Fisher Scientific	Cat#17-0311-82, RRID:AB_657735
PE Rat IgG2α, κ Isotype Clone R35-95 (RUO)	BD Biosciences	Cat#553930, RRID:AB_479719
APC Rat IgG2α, к Isotype (eBR2a)	Thermo Fisher Scientific	Cat#17-4321-81, RRID:AB_470181

Supplementary Table 2: Reagents and resources

NAME	SOURCE	IDENTIFIER
Chemicals, Peptides, and		
Recombinant Proteins		
XAV939	Sigma Aldrich	Cat#X3004
PD0325901	Sigma Aldrich	Cat#PZ0162
CHIR99021	Sigma Aldrich	Cat#SML1046
Retinoic acid	Sigma Aldrich	Cat#R2625
iCRT3	Sigma Aldrich	Cat#SML0211
Doxycycline (Dox)	Sigma Aldrich	Cat#D9891
Phosphatase inhibitor Cocktail 2	Sigma Aldrich	Cat# P5726
Phosphatase inhibitor Cocktail 3	Sigma Aldrich	Cat# P0044
Protease inhibitor cocktail	Sigma Aldrich	Cat# P8340
Recombinant Murine LIF	Peprotech	Cat#250-02
Recombinant	Peprotech	Cat#120-14E
Human/Murine/Rat Activin A		
Recombinant Human FGF-basic	Peprotech	Cat#100-18B
Recombinant Human DKK-1	Peprotech	Cat#120-30
Chorionic gonadotropin human	Sigma Aldrich	Cat#CG10-1VL
Cook Blasto	Cook Ireland Ltd, Ireland	Cat# G46296
N2 Supplement	Thermo Fisher Scientific	Cat#17502048
B27 Supplement	Thermo Fisher Scientific	Cat#12587010
Neurobasal	Gibco	Cat#21103-049
DMEM/F12	Gibco	Cat#11320-074
DMEM	Gibco	Cat#41965–039
Knockout DMEM	Gibco	Cat#10829-018
Knockout serum replacement	Gibco	Cat#10828-028
Normal Donkey serum	Jackson ImmunoResearch	Cat#017-000-121,
		RRID:AB_2337258
Human Plasma Fibronectin	Millipore	Cat#FC010
EmbryoMax 0.1% Gelatin Solution	Sigma Aldrich	Cat#ES-006-B
Accutase solution	Sigma Aldrich	Cat#A6964
Trypsin 0.05%	Gibco	Cat#25300-054
Cell Dissociation Solution	Sigma Aldrich	Cat#C5914
EmbryoMax® M2 Medium	Sigma Aldrich	Cat#MR-015-D
EmbryoMax® KSOM Mouse	Sigma Aldrich	Cat#MR-121-D
Embryo Media	- C	
RIPA buffer	Sigma Aldrich	Cat#R0278
Critical Commercial Assays	-	
GenElute™ Mammalian Total	Sigma Aldrich	Cat#RTN350
RNA Miniprep Kit		
On-Column DNase I Digestion	Sigma Aldrich	Cat#DNASE70
Set		
iScript™ cDNA Synthesis Kit	Bio-Rad	Cat#1708890
Arcturus® PicoPure® DNA	Thermo Fisher Scientific	Cat#KIT0103
Extraction Kit		
KAPA Stranded RNA-Seq	Roche	Cat#7962207001
Library Preparation Kit Illumina®		
Platforms		
Qubit dsDNA HS Assay Kit	Thermo Fisher Scientific	Cat#Q32854
Experimental Models: Cell		
lines		
WESC	Merrill et al. 2004	N/A
Tcf7I1 KO ESC	Merrill et al. 2004	N/A
Ict7 KO ESC	De Jaime-Soguero et al. 2017	N/A
Tcf7l1 OE ESC	Nishiyama et al. 2009	N/A

Experimental Models:		
Organisms/Strains		
Mouse/CD-1	Envigo	030
Mouse/B6D2F1	Charles River	099
Oligonucleotides		
Primers for qRT-PCT	See Supplementary Data 11	Integrated DNA Technologies
Tcf7I1-targeting crRNA	See Supplementary Data 11	Integrated DNA Technologies
Tcf7I1 MiSeq primers	See Supplementary Data 11	Integrated DNA Technologies
Software and Algorithms		
PySCENIC v0.9.15	Sande et al. 2020	https://github.com/aertslab/pySCENI C
Seurat v3.0.0	Stuart et al. 2019	https://github.com/satijalab/seurat
Harmony v0.1.4	Nowotschin et al. 2019	https://github.com/dpeerlab/Harmony
Palantir v1.0.0	Setty et al. 2019	https://github.com/dpeerlab/Palantir
Cutadapt	Martin 2011	http://code.google.com/p/cutadapt/
HISAT2 v2.1.0	Kim et al. 2019	https://github.com/DaehwanKimLab/ hisat2
FeatureCounts v2.0.1	Liao et al. 2014	http://subread.sourceforge.net
DESeq2 v1.28.1	Love et al. 2014	http://www.bioconductor.org/packag es/release/bioc/html/DESeg2.html
ClueGO Cytoscape plug-in	Bindea et al. 2009	http://www.ici.upmc.fr/cluego/cluego Download.shtml
Metascape	Zhou et al. 2019	http://metascape.org.
GEM	N/A	http://groups.csail.mit.edu/cgs/gem/
g: Profiler	Raudvere et al. 2019	https://biit.cs.ut.ee/gprofiler
Ř v3.6.1	N/A	https://www.r-project.org/
IGV Genome Browser	Robinson et al. 2011	https://software.broadinstitute.org/sof tware/igv/
QuantStudio™ Real-Time PCR Software v1.3	N/A	https://www.thermofisher.com/be/en/ home/global/forms/life- science/quantstudio-6-7-flex- software.html
Harmony High-Content Imaging and Analysis Software v4.8	PerkinElmer	N/A
Leica Application Suite v3.7.4	Leica Microsystems	N/A
AxioVision SE64 Rel. 4.9.1	Zeiss	N/A
BATCH-GE	Boel et al. 2016	https://github.com/WouterSteyaert/B ATCH-GE
FlowJo v10.7.1	BD Biosciences	N/A
ImageJ v1.8.0 172	N/A	https://imagej.nih.gov/
GraphPad Prism v6.0	N/A	https://www.graphpad.com/scientific- software/prism/
Deposited data		
RNA-seq	This paper	GEO: GSE171204
Chip-seq	De Jaime-soguero et al. 2017	E-MTAB-4358
Single-cell RNA-seq	Posfai et al. 2021	GSE145609
Single-cell RNA-seq	Mohammed at al. 2017	GSE100597
Single-cell RNA-seq	Nowotschin et al. 2019	GSE123046