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Supplementary Figure 1: All the sections that we find in the radiology reports of our fine-tuning dataset
are listed on the y-axis along box plots of their number of tokens on the x-axis. The proportion of
reports that include each section is indicated on the left of the section names. Findings represent most
of the content, especially in CTs. The rule-based model can drop whenever required the black sections,
the yellow Findings section for rare edge-cases and never the red sections which concentrate the most
important conclusions of the studies.



1. Discriminative learning 2. Learning rate scheduling
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Supplementary Figure 2: Four different but compatible strategies to vary the learning rate and/or the
momentum across training time and layers.



1. Unfreezing only the head 2. Unfreezing all layers
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Supplementary Figure 3: Four distinct unfreezing scenarios regulating the amount of fine-tuning time
per layer.
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Supplementary Figure 4: We expect that larger batch sizes and higher learning rates allow to prevent
overfitting without using as much dropout, while speeding up the convergence of the training.



Implementation

To run our experiments, we implement the models, fine-tuning methods, hyperparameter optimization
strategies and XAI visualization tools using primarily PyTorch. The weights of all pre-trained models
are downloadable on HuggingFace: we upload a version of the weights of our own pre-training, named
**BERT**, on the platform too. Concerning the fine-tuning strategies, in particular ULMFit, we use
the fastai library, that provides a Learner object that can easily be trained with various unfreezing
scenarios or learning rate schedulings, among else. Some object wrappers are needed for fastai to
correctly interact with HuggingFace transformers library.

Concerning the hyperparameters optimization algorithms, we implement them using both ray and
tune librairies. Ray enables to easily build distributed applications, useful in our case to parallelize the
training of models with different hyperparameter settings. Tune gives access to many search algorithms
and trial schedulers, such as ASHA, Population-based Training or other state-of-the-art approaches.
We also mention the Bayesian Optimization library that we used as a first attempt, but it lacks the
diversity and ease of parallelization of Tune.

Once the distributed trainings are launched, we rely on Weights & Biases platform to monitor and
visualize the different trials. Finally, Captum helps us visualize the Integrated Gradients outputs: we
draw saliency maps that describe which tokens trigger the output of the model on each report.

Beyond the release of *BERT** on HuggingFace, the architectures and the code to replicate this
work will be made available upon publication, on GitHub.



Supplementary Table 1: Hyperparameter values

Hyperparameter Name

Exploration Range

Best Model Value

CheXbert Value

Learning Rate

1e-05 to 5e-04

Learning Rate Scheduling ~Constant; Triangular; w/ or w/o Final decay

Momentum
Momentum Scheduling
Batch Size

Dropout

Weight Decay
Number Epochs

Loss Weights

Head Architecture
Unfreezing Scenario

B, s, 6

Optimizer
Hyperparameter Opti.
Hyperparameter Space

0.8 to 0.95 by 0.05 increments

Constant; Triangular

8

0 to 0.5 by 0.05/0.1 increments

1e-06 to le-04
1 to 5 by 1 increments

0 to 0.5 each, summing to 1

1 or 2 linear layers
4 scenarios
Various values
Adam or AdamW
Tree of P. Esti. or grid
Continuous or Discrete

6.29¢-05 and 2.06e-05 when training the head only

Triangular with final decay
0.8
Triangular
8
0.4
8.1e-06
1+3
~0.4 except for "No COVID-19"
1 linear layer
1 epoch head only then full model
Various values
AdamW
Tree of P. Estimator
Continuous

2e-05
Constant
Not specified
Constant
18
0.1
Not specified
8
Not weighted
14 linear heads
Always full model
Not used
Adam
Small grid
Discrete




Transformer hidden-states visualization

We can assess the performance of the model visually and compare different trained instances. Using a
t-SNE projection of the hidden states ([CLS] token only) followed by a k-means clustering, we obtain the
visualizations on Figure 5: BERT-base pre-trained only provides very little understanding of the reports
to the classification head; **BERT** pre-trained only understands some of the content but do not
cluster according to COVID-19 presence, instead it uses other criteria learned during the pre-training;
*BERT** fine-tuned clusters almost perfectly per COVID-19 presence and feeds the classification
head with well-curated vectors. Besides providing a visual assessment of the performance of different
models, this proves how important it is to fine-tune both the classification head and the rest of the
model during the fine-tuning phase.
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Supplementary Figure 5: t-SNE projection of the CLS hidden tokens of different BERT models, when feeding
the COVID-19 reports of the fine-tuning dataset. Each report is represented by a point in the 2-D projection
space, and each cluster is represented by a surface encapsulating 75% of the points (the ones that cluster best).



Error Analysis

The COVID-19 test set can be used to understand more the types of errors our model is subject to. The
number of false negatives is very limited: only 1.5% of the reports with true COVID-19 are classified
as no COVID-19. In addition, after review, we disagree with certain labels assigned to these reports
and agree with the classification of the model as no COVID-19. To sum up, if we remove the labeling
errors, the false negatives of this model are extremely rare.

The uncertain false negatives, ie the misclassifications of true uncertain COVID-19 as no COVID-19,
represent 7% of the reports labeled as uncertain COVID-19: due to the uncertainty present in these
reports, it can be difficult to conclude whether the model is right or wrong, and we consider that these
types of errors, which are rare, do not hurt the performance of the model in practice.

A more substantial amount of errors are due to false positives: 1/3 of the total amount of reports
are due to true no COVID-19 reports being classified as uncertain COVID-19. The model prefers to
have a higher recall and avoid as much as possible false negatives, hence some precautions taken of the
reports where it is harder to take a decision.

The rest of the errors are due to misclassifications between COVID-19 and uncertain COVID-19
reports. Most of these errors can be detected using the confidence levels that the model provide, along
its output: when the confidence levels are lower than usual, we can use a human review to take a
decision between COVID-19 and uncertain COVID-19.

In general, we can use confidence levels to filter reports where the model is uncertain, and use
human review on them: with this approach, the model can drop the 10% of the reports with lowest
confidence and achieve 93.0 macro-averaged F1-score. This process almost eradicates the rare false
negatives, with the remaining ones being highly likely mislabeling errors. Using these confidence levels
and the XAI plots, we consider that the model is reliable for a clinical use.



