
Supplementary Information and Figures
TIS transformer: Remapping the human proteome using deep learning

Jim Clauwaert 1a, Zahra McVey 2, Ramneek Gupta 2, Gerben Menschaert 1b

1 BioBix, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Gent,
Belgium and 2 Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd., Oxford, United Kingdom

1. Model

1.1. Model architecture
The model architecture consists of multiple layers that are identical in structure but feature unique

trainable model parameters. Two sets of embeddings are used; trainable nucleotide embeddings (A, C,
G, T, N, [START], [STOP], [MASK]) and fixed positional embeddings. The transformer structure features
multiple layers with multiple attention heads per layer. The workings of the Performer network are described
by Choromanski et al. [2021]. The outputs of the network are send to a set of fully connected layers to obtain
a binary output at each input position.

Algorithm 1 TIS Transformer network architecture. Given are the different layers, their respective dimen-
sions as defined by their hyperparameter names, the dimensions for TIS Transformer (Table A4), and the
resulting total weights.

TIS Transformer | 118,070
Nucleotide Embedding | input tokens × dim | 8× 30 | 240
Positional Embedding | fixed positional embeddings | 0
Performer | 115,848

Layer (× depth | 6) | 19,308
Layer norm | dim × 2 | 30× 2 | 60
Attention head (× n_head | 6) | 1,488

WQ | dim × dim_head | 30× 16 | 496
WK | dim × dim_head | 30× 16 | 496
WV | dim × dim_head | 30× 16 | 496

Wo | dim_head ∗ n_head × dim | 96× 30 | 2,910
Layer norm | dim × 2 | 30× 2 | 60
Linear | dim × dim ∗ 4 | 30× 120 | 3,720
Linear | dim ∗ 4× dim | 120× 30 | 3,630

Linear | dim × dim ∗ 2 | 30× 60 | 1,860
Linear | dim × 2 | 60× 2 | 122

1.2. Attention
Custom attention strategies can be performed by the attention heads independent of the number of

weights utilized to calculate the Q, K, V matrices. In this model, full attention is calculated through the
Fast Attention Via Positive Orthogonal Random Features (FAVOR+) algorithm (Figure A13: left). These
allow every input token to attend to all other inputs along the transcript. In contrast, local attention restricts
the attention matrix to only neighboring positions. Local attention is implemented by dividing the attention
matrix in smaller blocks on which full attention is calculated (Figure A13: right). Three blocks around the
evaluated input are calculated. These local attention heads do not apply the FAVOR+ algorithm and use
rotary positional embeddings Su et al. [2022]. The block size of the local attention heads is referred to as
’local_window_size’ in Supplementary Table A4-A6.

2. Model selection

2.1. Hyperparameter optimization
Hyperparameter optimization is performed for a single set-up: transcripts from chromosomes 1, 7, 13,

and 19 are excluded (test set) and chromosomes 2 and 14 are applied to select the optimal hyperparameters
(validation set). Overall, no individual hyperparameters were observed to be more effective than others
in improving performances. It was observed that a correlation exists between the total number of model
parameters and model performance. To reflect this, the performances of three model architectures are
given; TIS Transformer S(mall), TIS Transformer and TIS Transformer (L)arge (see Table A2, A3, A4, A5).
Each network represents a tripling of model parameters. Performance gains showed to be most substantial
when increasing the model parameters (i.e. number of layers, number and dimensions of attention heads,

aJim Clauwaert. Tel.: +32 926 49922; Email: jim.clauwaert@ugent.be
bGerben Menschaert. Tel.: +32 926 49922; Email: gerben.menschaert@ugent.be

1

dimension of the hidden state) up to a certain point, after which gains stagnate. Although three times bigger,
the performance of the TIS Transformer L is marginally better than that of TIS Transformer. The minimal
loss on the validation set for both architectures is similar before they both start overfitting (see Figure A4).
These findings reflect those given in the main manuscript, where further improvements of machine learning
approaches are likely to be hampered by a set of noisy annotations. This was shown through the correlation
of performances with the support level of the transcripts and the verification of other annotation platforms
such as CCDS.

Notwithstanding the size of the data set and overall high computational requirements of transformer
architectures, model optimization is possible on a single RTX 3090 and converged after ca. 10 hours due to
the relative shallowness of the final transformer architecture (Supplementary Tables A3–A5). The details of
varying model architecture performances are given by Supplementary Table A2 and Supplementary Figure
A4, A5, A6.

2.2. Benchmarking
A multitude of studies have previously been performed applying machine learning techniques for the

prediction of TISs. Previous studies utilizing the transcript nucleotide sequence have been listed in Supple-
mentary Table A1 Zien et al. [2000], Saeys et al. [2007], Chen et al. [2014], Kabir et al. [2015], Goel et al.
[2020], Zhang et al. [2017], Zuallaert et al. [2018], Kalkatawi et al. [2019], Wei et al. [2021]. In contrast to
existence of multiple studies, no single data set exists that functions as the go-to benchmark data set for this
problem setting. This can be attributed to various reasons, the main ones being the computational limita-
tions of some techniques making it impossible to process multiple millions of samples, and the obscurity of
the ground truth, resulting in multiple existing platforms each featuring varying sets of annotated TISs.

In this study, we utilize the full genome of the selected organism (Homo sapiens) of Ensembl to train,
validate, and test the model with. We believe this approach to have several advantages over custom sub-
sampled data sets. The vast majority of transcript positions are non-TIS sites, where sub-sampling mainly
affects the negative set. The technique used to sub-sample the negative set influences the population sampled,
and thus the resulting performances. To illustrate, a model sampling ca. 10,000 samples of the negative
set at random effectively covers only 0.002% of the population. For a setting where 0.01% of the negative
samples bear sequence similarity to the region of an actual TIS position (i.e. hard to predict), this would
result in five such samples in the negative set. Performances measured on such models will easily result in
near-perfect precision and accuracy scores. However, it fails to portray the model’s capability when applied
on the full transcriptome, where the vast number of negative samples results in a set of false positives that
heavily outweighs the number of positive samples. Most studies aim to balance the number of positive and
negative samples. While several studies discuss an approach that seeks to sample the negative samples that
have similarity with the positive samples (i.e. hard to predict), each study follows a new approach. As
such, variations between various methods of sampling causes resulting model performances to vary. This
is illustrated by our results contradicting published results. TITER performs better than DeepGSR as
published by [Kalkatawi et al., 2019].

It is impossible to perform a benchmark against approaches utilizing support vector machines due to the
size of the data. Large data sets are required to train for neural networks, but pose a problem for support
vector machines, where the training and evaluation time scale quadratically with the number of samples
processed. It is nonetheless implausible that support vector machines can offer comparable performances
considering the low number of samples they are trained with. Additionally, all previous studies incorpo-
rating support vector machines as part of their benchmark list these models as inferior to neural network
implementations [Zuallaert et al., 2018, Wei et al., 2021, Kalkatawi et al., 2019]. Lastly, we were unable
to apply DeepTIS [Wei et al., 2021] due to a lack of information given in the paper. Some of the missing
or unclear details include specific hyperparameter values (e.g. q which defines the input window length) or
the exact model architecture of ’DeepTIS2’, featured in the paper as the best performing one. The online
GitHub repository seemed incomplete as there was no code utilizing recurrent neural networks, which should
be part of the backbone of ’DeepTIS2’. We were unable to reach the authors of this work for clarification.

To ensure a fair comparison of the listed methods, all methods are being trained and evaluated on the
exact same data sets. Due to several constraints imposed by individual methods, all transcript positions
matching at least one of these constraints are excluded from the data. These constraints are: only ATG
sites, only positions on transcripts with a length of less than 30,000 nucleotides, only transcript positions
that are distanced at least 300 nucleotides from the start and end of the transcript, and no ’N’ annotated
nucleotides within a 300nt window of the candidate TIS site. Applying these constraints on the full results in
a train, validation and test set of 3,608,307, 641,264 and 1,069,321 candidate TIS positions. Due to several
available network architectures being implemented using outdated software packages for GPU accelerated
computation (TISRover: Lasagne, TITER: Theano), the decision was made to re-implement all models
using PyTorch (Lightning). Since convergence of the TITER model took ca. 24 hours to complete, we
decided to forego the training and use of 32 individual models with which a prediction is made due to
computational requirements. The use of 32 independent neural networks is cited to have further improved
results by Zhang et al. [2017], likely due to reduction of the variance error. Nonetheless, it is clear that
this step would not close the performance gap between a single TITER model and the TIS Transformer
model. All scripts used to perform the benchmark are found in the public GitHub repository https:
//github.com/jdcla/TIS_transformer/tree/main/scripts/benchmarks. By cross-referencing the total
number of model weights we have verified the correct implementation of each network architecture.

2.3. Loss function
We hypothesize that weighing the loss function only has an effect for prediction tasks featuring fewer

data samples, where the adjusted loss forces the learning process to focus on certain correlations more.

2

https://github.com/jdcla/TIS_transformer/tree/main/scripts/benchmarks
https://github.com/jdcla/TIS_transformer/tree/main/scripts/benchmarks

3. Results analysis

3.1. Rank (k) and ’false positives’
With hundreds of millions of predictions, it is necessary to select only a subset of predictions for further

analysis. Following the total number of Ensembl TIS annotations k unique to each chromosome, we have
determined a custom ranking for the predictions of each chromosome that is scaled to this number (rank
k). For a chromosome with 1000 positively annotated TIS, the highest ranking output gets rank (k): 0,
the 500th highest output rank(k): 0.5, and the 2000th highest prediction a rank (k): 2. Applying this
ranking, it is possible to get a quick idea on how the model prediction compares to other predictions within
the chromosome. In general, false positives refer to positive predictions with rank (k) < 1 that were not
previously annotated by Ensembl.

3.2. pBLAST
To cross-reference model predictions that are not featured by Ensembl, we evaluated the CDSs result-

ing from predicted TISs using pBLAST. These were queried against Swiss-Prot, TrEMBL (mammals) and
all supplementary isoforms. pBLAST matches were filtered following three constraints based on various
properties: a match requires to be at least 95% identical to the query sequence, a maximum difference in
length between the query and match of 5%, and a maximum difference in distance between the aligned start
and stop sites of 5% of their total length. We are aware that given constraints are not perfect. However,
constraints were tuned by evaluating the total number of matches returned when evaluating the pBLAST
results on the annotations provided by Ensembl, and found to return a large portion of the correct proteins
without including some obvious false positives.

3.3. Online result browser
In addition to featuring the raw results, the code and the scripts used to obtain the results on the

public GitHub repository, we host an online server that provides a more accessible approach towards making
our findings open to the public (Supplementary Figures A1–3). The tool is accessible through https:
//jdcla.ugent.be/TIS_Transformer. The link is furthermore linked through our public GitHub repository
at https://github.com/jdcla/TIS_transformer. With this, we hope to attract a larger group of users
that is otherwise not experienced with coding or data manipulation.

The result browser allows the user to filter predictions based on various features. Currently implemented
filters are: gene/transcript name, ORF type, ORF length, Ensembl annotation, transcript type, prediction
rank, and number of matches on transcript. The query returns a table of all matches, and all related
information of the TISs and resulting CDSs, for easy download and visualisation. To illustrate, one can
easily collect the small ORFs on non-coding sequences, all transcripts featuring multiple TISs, and transcripts
featuring upstream ORFs.

3

https://jdcla.ugent.be/TIS_Transformer
https://jdcla.ugent.be/TIS_Transformer
https://github.com/jdcla/TIS_transformer

4. Supplementary Tables

Table A1: Overview of studies on TIS annotation using sequence information. For every study is given, the year of
publication, the name of the tool, the machine learning approach (SVM: Support Vector Machine, NN: Neural Network), the
size of the input sequence around the candidate TIS, the total number of model parameters, the total number of data samples
used in the study, and the location of public code repository. ’-’ denotes that the value does not apply. ’?’ is used when the
answer is unclear from the manuscript.

Author Year Model name Type Input size # parameters # Samples Code Repo

Zien et al. [2000] 2000 - SVM 200nt Variable 13,503 -
Saeys et al. [2007] 2007 StartScan Varia 200nt - 1,267,701 -
Chen et al. [2014] 2014 iTIS-PseTNC SVM 198nt Variable 2,318 -
Kabir et al. [2015] 2015 iTIS-PseKNC SVM 198nt Variable 2,318 -
Goel et al. [2020] 2020 - SVM 303nt Variable 3,020 -
Zhang et al. [2017] 2017 TITER NN 203nt ∼431K 104,675 GitHub
Zuallaert et al. [2018] 2018 TISRover NN 203nt ∼240K 94,642 -
Kalkatawi et al. [2019] 2019 DeepGSR NN 203nt ∼181M 28,244 Zenodo
Wei et al. [2021] 2021 DeepTIS NN ? ? 115,728 GitHub
Clauwaert et al. 2022 TIS Transf. NN Variable ∼118K/356K 431,011,438 GitHub

Table A2: Model performances for the varying models used to remap the human proteome. The test and validation
sets refer the the contig identifiers. The training set uses all remaining contigs. pBLAST refers to the fraction of false positives
TISs (rank (k) < 1) that return a match when performing pBLAST search on their resulting CDSs.

Model name # parameters Val. set Test set ROC AUC PR AUC pBLAST

TIS Transformer S ∼41K 2, 14 1, 7, 13, 19 0.9998 0.7541 -

TIS Transformer (1) ∼118K 2, 14 1, 7, 13, 19 0.9999 0.8143 -
TIS Transformer (2) ∼118K 1, 13 2, 8, 14, 20 0.9999 0.8437 -
TIS Transformer (3) ∼118K 1, 13 3, 9, 15, 21 0.9999 0.8183 -
TIS Transformer (4) ∼118K 1, 13 4, 10, 16, 22 0.9999 0.8225 -
TIS Transformer (5) ∼118K 1, 13 5, 11, 17, X 0.9999 0.8392 -
TIS Transformer (6) ∼118K 1, 13 6, 12, 18, Y 0.9999 0.8250 -

TIS Transformer L (1) ∼356K 2, 14 1, 7, 13, 19 0.9999 0.8292 0.34
TIS Transformer L (2) ∼356K 1, 13 2, 8, 14, 20 0.9999 0.8535 0.33
TIS Transformer L (3) ∼356K 1, 13 3, 9, 15, 21 0.9999 0.8401 0.34
TIS Transformer L (4) ∼356K 1, 13 4, 10, 16, 22 0.9999 0.8328 0.36
TIS Transformer L (5) ∼356K 1, 13 5, 11, 17, X 0.9999 0.8409 0.33
TIS Transformer L (6) ∼356K 1, 13 6, 12, 18, Y 0.9999 0.8355 0.38

Table A3: Overview of the hyperparameters that define the TIS Transformer S(mall) model architecture. This
model was used as a step to compare different architectures. Also given are the keys used to define the model using the code
at https://github.com/jdcla/TIS_transformer

.

Hyperparameter Argument Value Hyperparameter Argument Value

learning rate –lr 0.001 dim. of heads –dim_head
dim. of hidden state –dim 20 kernel function –kernel_fn torch.nn.Relu()
layers –depth 4 local window size –local_window_size 256
attention heads (layer) –heads 4 local attention heads –local_attn_heads 3
Total trainable model parameters ∼41K

Table A4: Overview of the hyperparameters that define the TIS Transformer model architecture. Also given are
the keys used to define the model using the code at https://github.com/jdcla/TIS_transformer

.

Hyperparameter argument value Hyperparameter argument value

learning rate –lr 0.001 dim. of heads –dim_head 16
dim. of hidden state –dim 30 kernel function –kernel_fn torch.nn.Relu()
layers –depth 6 local window size –local_window_size 256
attention heads (layer) –heads 6 local attention heads –local_attn_heads 4
Total trainable model parameters ∼118K

Table A5: Overview of the hyperparameters that define the TIS Transformer L(arge) model architecture. This
model was used as a step to compare different architectures. Also given are the keys used to define the model using the code
at https://github.com/jdcla/TIS_transformer

.

Hyperparameter Argument Value Hyperparameter Argument Value

learning rate –lr 0.001 dim. of heads –dim_head 16
dim. of hidden state –dim 48 kernel function –kernel_fn torch.nn.Relu()
layers –depth 8 local window size –local_window_size 256
attention heads (layer) –heads 8 local attention heads –local_attn_heads 5
Total trainable model parameters ∼356K

4

https://github.com/jdcla/TIS_transformer
https://github.com/jdcla/TIS_transformer
https://github.com/jdcla/TIS_transformer

Table A6: A set of ORF annotated sequences that have been recently added to GENCODE as part of Ribo-seq
studies. The list has been retrieved from a recent publication on the advancement of ORF detection through a community-led
framework Mudge et al. [2022]. uORF: upstream open reading frame; uoORF: upstream overlapping open reading frame.

Gene Transcript ORF biotype CDS length Rank (k)

ENSG00000288654 ENST00000677770 uORF 25aa 1.61 -
ENSG00000288657 ENST00000678782 uORF 23aa 0.80 -
ENSG00000288666 ENST00000677315 uORF 59aa 1.21 -
ENSG00000288678 ENST00000679970 uORF 21aa 1.02 -
ENSG00000288677 ENST00000518377 uORF 34aa 2.75 -
ENSG00000288708 ENST00000683730 uORF 29aa 2.29 -
ENSG00000289490 ENST00000689938 uORF 18aa 2.42 -
ENSG00000289360 ENST00000685210 uORF 25aa 1.82 -
ENSG00000288914 ENST00000688005 uoORF 32aa 1.52 -
ENSG00000289025 ENST00000685402 uORF 17aa 1.28 -
ENSG00000140521 ENST00000650303 uoORF 261aa >3 Model suggests alt. 241aa peptide
ENSG00000288528 ENST00000674075 uORF 32aa 1.83 -
ENSG00000288529 ENST00000674115 uORF 42aa 0.90 -
ENSG00000255529 ENST00000649091 uoORF 86aa 1.14 -
ENSG00000288546 ENST00000674331 uORF 40aa - Transcript not present in GRCh38v107
ENSG00000288645 ENST00000676296 uoORF 129aa 1.27 -
ENSG00000288623 ENST00000675818 uoORF 86aa 1.04 -
ENSG00000288614 ENST00000675098 uORF 39aa 0.99 -
ENSG00000288652 ENST00000675347 uORF 68aa 2.02 -
ENSG00000288645 ENST00000676205 uoORF 45aa 0.64 -
ENSG00000288618 ENST00000675181 uORF 32aa 1.31 -
ENSG00000288642 ENST00000617114 uoORF 103aa 1.19 -
ENSG00000288634 ENST00000674552 uORF 16aa 1.48 -
ENSG00000288633 ENST00000676334 uORF 20aa 2.00 -
ENSG00000288632 ENST00000675268 uORF 52aa 0.88 -

5

5. Supplementary Figures

Figure A1: A screenshot of the result browser at https://jdcla.ugent.be/TIS_transformer featuring multiple filter
arguments.

Figure A2: A screenshot of part of the resulting table at https://jdcla.ugent.be/TIS_transformer after filtering
results as featured in Figure A1

Figure A3: A screenshot of a visualization offered at https://jdcla.ugent.be/TIS_transformer of one of the predicted
TIS that matches the filter arguments given in Figure A1

6

https://jdcla.ugent.be/TIS_transformer
https://jdcla.ugent.be/TIS_transformer
https://jdcla.ugent.be/TIS_transformer

Figure A4: The loss and PR AUC curves of three model architectures trained for annotating TISs. The validation
and test sets used are chromosomes 2, 14 and chromosomes 1, 7, 13, 19, respectively. The hyperparameters for each model are
given in Table A3, A4, A5

.

Figure A5: The loss and PR AUC curves for the models trained on the TIS annotation task. Each model has a
different set of chromosomes for the train/test/validation set, as given in Table A2.

Figure A6: The loss and PR AUC curves for the models trained on the TIS annotation task. Each model has a
different set of chromosomes for the train/test/validation set, as given in Table A2.

Figure A7: Model performances and input information for the inputs binned by transcript support level and
tags given to the annotated translation initiation sites. ROC AUC and PR AUC performances (top) are given as well as
the total number of annotated TISs (by Ensembl) and ratio of positive samples (w.r.t. negative samples). Values are obtained
by binning predictions per transcripts according to transcript support level and by binning the predictions by tags given to the
annotated translation initiation site.

7

Figure A8: Fraction of good pBLAST matches for novel model predictions binned by transcript support level
and model output range. Evaluated predictions have been limited to those within rank (k) < 1.5 (to equalize the leftmost
bin size) and exclude those previously annotated by Ensembl. (left) The fraction of TISs that result in a coding sequence with
a strong pBLAST match. (right) The number of samples in each bin.

Figure A9: Fraction of good pBLAST matches for model predictions binned by transcript support level and
model output range. Evaluated predictions have been limited to those within rank (k) < 1.5 (to equalize the leftmost bin
size) and include those previously annotated by Ensembl. (left) The fraction of TISs that result in a coding sequence with a
strong pBLAST match. (right) The number of samples in each bin.

Figure A10: Property distributions between annotated and newly predicted TISs. These predictions constitute those
that are not annotated by Ensembl and have a rank (k) < 1, referred to as the false positive (FP) set. For both groups the ORF
type of the annotation and the biotype of the transcript are given. FP annotations on protein coding transcripts are either
additional CDSs detected alongside the canonical annotation, or alternative TIS.

8

Figure A11: Correlation between the model output for a given translation initiation site and the length of its
resulting protein. The trend line (red line) is obtained using LOWESS.

Figure A12: Model predictions on several transcripts with multiple high-ranking TIS positions. Shown are the
model outputs (y-axis) for each position of the transcript (x-axis). For high TIS predictions, the bounds of the resulting CDS
are given, as well as their length and prediction rank (n-highest prediction) on the chromosome. When a CDS is present in
Ensembl, the bounds are represented by full black lines.

9

Figure A13: Receiver operating characteristics (ROC) and precision-recall (PR) curves of the models trained
for the benchmark.

Figure A14: Attention schemes used by the attention heads in the model. (left) full attention heads allow every input
nucleotide position to attend to all other positions on the transcript. These attention heads utilize the FAVOR+ approximation
algorithm to allow input sequences of up to 30,000 tokens. (right): Local attention is implemented by dividing the attention
matrix in smaller blocks on which full attention is calculated. Three blocks around the evaluated input are calculated. The
window size of each block listed as ’local_window_size’ in Supplementary Table A4-A6.

10

References

W. Chen, P.-M. Feng, E.-Z. Deng, H. Lin, and K.-C. Chou. iTIS-PseTNC: A sequence-based predictor for
identifying translation initiation site in human genes using pseudo trinucleotide composition. Analytical
Biochemistry, 462:76–83, Oct. 2014. ISSN 0003-2697. doi: 10.1016/j.ab.2014.06.022.

K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Davis, A. Mo-
hiuddin, L. Kaiser, D. Belanger, L. Colwell, and A. Weller. Rethinking Attention with Performers.
arXiv:2009.14794 [cs, stat], Mar. 2021.

N. Goel, S. Singh, and T. C. Aseri. Global sequence features based translation initiation site prediction in
human genomic sequences. Heliyon, 6(9):e04825, Sept. 2020. ISSN 2405-8440. doi: 10.1016/j.heliyon.
2020.e04825.

M. Kabir, M. Iqbal, S. Ahmad, and M. Hayat. iTIS-PseKNC: Identification of Translation Initiation Site
in human genes using pseudo k-tuple nucleotides composition. Computers in Biology and Medicine, 66:
252–257, Nov. 2015. ISSN 0010-4825. doi: 10.1016/j.compbiomed.2015.09.010.

M. Kalkatawi, A. Magana-Mora, B. Jankovic, and V. B. Bajic. DeepGSR: An optimized deep-learning
structure for the recognition of genomic signals and regions. Bioinformatics, 35(7):1125–1132, Apr. 2019.
ISSN 1367-4803. doi: 10.1093/bioinformatics/bty752.

J. M. Mudge, J. Ruiz-Orera, J. R. Prensner, M. A. Brunet, F. Calvet, I. Jungreis, J. M. Gonzalez, M. Ma-
grane, T. F. Martinez, J. F. Schulz, Y. T. Yang, M. M. Albà, J. L. Aspden, P. V. Baranov, A. A.
Bazzini, E. Bruford, M. J. Martin, L. Calviello, A.-R. Carvunis, J. Chen, J. P. Couso, E. W. Deutsch,
P. Flicek, A. Frankish, M. Gerstein, N. Hubner, N. T. Ingolia, M. Kellis, G. Menschaert, R. L. Moritz,
U. Ohler, X. Roucou, A. Saghatelian, J. S. Weissman, and S. van Heesch. Standardized annotation of
translated open reading frames. Nature Biotechnology, 40(7):994–999, July 2022. ISSN 1546-1696. doi:
10.1038/s41587-022-01369-0.

Y. Saeys, T. Abeel, S. Degroeve, and Y. Van de Peer. Translation initiation site prediction on a genomic
scale: Beauty in simplicity. Bioinformatics, 23(13):i418–i423, July 2007. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btm177.

J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. RoFormer: Enhanced Transformer with Rotary
Position Embedding, Aug. 2022.

C. Wei, J. Zhang, and Y. Xiguo. DeepTIS: Improved translation initiation site prediction in genomic sequence
via a two-stage deep learning model. Digital Signal Processing, 117:103202, Oct. 2021. ISSN 1051-2004.
doi: 10.1016/j.dsp.2021.103202.

S. Zhang, H. Hu, T. Jiang, L. Zhang, and J. Zeng. TITER: Predicting translation initiation sites by deep
learning. Bioinformatics, 33(14):i234–i242, July 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btx247.

A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engineering support vector
machine kernels that recognize translation initiation sites. Bioinformatics, 16(9):799–807, Sept. 2000.
ISSN 1367-4803. doi: 10.1093/bioinformatics/16.9.799.

J. Zuallaert, M. Kim, A. Soete, Y. Saeys, and W. D. Neve. TISRover: ConvNets learn biologically relevant
features for effective translation initiation site prediction. International Journal of Data Mining and
Bioinformatics, 20(3):267–284, Jan. 2018. ISSN 1748-5673. doi: 10.1504/IJDMB.2018.094781.

11

	Model
	Model architecture
	Attention

	Model selection
	Hyperparameter optimization
	Benchmarking
	Loss function

	Results analysis
	Rank (k) and 'false positives'
	pBLAST
	Online result browser

	Supplementary Tables
	Supplementary Figures

