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Web Appendix A

Likelihood function

Specific details on the EM algorithm for our MLMM are provided below. Let 8 = ( ,BT, O'T)T7 where 3 is the vector
of all fixed effects and o is the vector of all variance components (unique components that make up ¥,, 3., and
3. ), denote our set of parameters we wish to estimate. Also let D;; denote the design matrix for the fixed effects,
3, for cluster i at period j. We can express the fully observed likelihood of our MLMM using

Nyj

T
FV,b,s10) = [ [T [] [/ (Yisnlbirsij:0)£(b:10)f(s10),

1
=1 j=1 k=1

where f(Y;r|b;,s:;;0), f(b;|@) and f(s;;]0) are the conditional multivariate normal density of the outcome,
multivariate normal density for the random cluster effects and multivariate normal density for the random cluster-

by-time interactions given by
-L - 1 T
F(Yi b, s:5:0) = (2m) /2|Ee| 12 eXp{—§(Y“ - D;;B-b;, - s;;) Eel(Yijk -D;;B3-b, - Sij)}
- _ 1
f(bi]0) = (2m) 2|3, 1/26XP{—§’" =y b}

F(si;10) = (2m)7H12)3, |‘”2exp{—— zglsij}.

\V]

Ignoring the normalization constant, we can write the log-likelihood as

Zl IZ] 1 T 1 ! 1 Lz T -1
(Y, b,35]0) = — =L 0 100 3 | - Ll log |3, - 5 log | 3| —521 5222
= i=1j=
1 I T N - )
_QZZ (Yiju = DijB = b; = s;5) B (Yijp — DijB3 = b; — s45).
i=1j=1k=1

To generate the score functions for the maximization step we take the partial derivative of our log-likelihood with

respect to a particular parameter, set the expression equal to zero, and solve for that parameter.

Score functions for EM algorithm

Score function for fixed effects, 3
To compute the score function for B we only need to consider the parts of the log-likelihood that contain this
parameter, specifically, — 3 Zz 1 ZJ 1 Zk (Y, — DB -b;, — sij)TEQI(Yijk - D;;3 - b; — s;;). Before we take

the partial derivative, we can further simplify this expression by removing any terms that do not involve 3 leaving



us with

I T N 1 I T Ny
ZZZﬁ132<mﬁtwwm—§ZZ§}waﬁ D;B.
i=15=1k=1 i=1j5=1k=1

Taking the partial derivative with respect to 3 gives us

Ny

B I T I T Nij _—
_ﬁ ZIZZ 112 (};ij Szg) ZZ;DUZE D;;B.

To derive the expression of the score function we set the partial derivative equal to zero and solve for 3 giving us

I T N I T Ny - L
0= Z Z D;;x (K]k b Szg) - Z Z Dijze D’L]/B
i=1j=1 k=1 i=1j=1 k=1
Lo Ny o7 Ny -
SB)=1Y Y Y DDy | Y Y Y DIEI(Yyr - b - s).
i=1j5=1k=1 i=1j5=1k=1

Score function for covariance components of random effects, 3, and X,
1
To generate the score function for X, we only need to consider —z log |3, —

1 -
5 Lyt bTsyt, = 3 log |y
5 > i1 b Eblbi of the log-likelihood. Taking the partial derivative with respect to Zb we have

I 1, T
82_1:1=§2b_§zb2b2

=1

Again setting the partial derivative equal to zero and solving for X gives us our score function

1
1
S(2p) =3 ) bib
i=1

T _ T -
To generate the score function for 3 we only need to consider —— log | X, | 5 Z;zl Zszl s;rj 3, 13ij =5 log | X, !
5 D iz1 2 j=1 8ij5s 8 of the log-likelihood. Taking the partial derivative with respect to 3, we have

o IT le-w T
ﬁ = TEé - 5 Z Zsijsij.



1 I T -
s =ﬁZ;SijSU'

=1

Score function for covariance components of error term, 3.
To generate the score function of X, we only need to consider —(Zle Z?zl /2) log | 2| - ZZ 1 Zj L Zk (Yijk—

T _
D;;B-b;-s;;) Eel(Yéjk—Dijﬁ—bi—Sij) = (25:1 ZjTﬂ Nz'j/Q)lOglEe Zz 1Zj 1 Zk (Y —D;;B-b;,—
s,;j)TEe_l(Y;;jk - D;;3~-b, — s;;) of the log-likelihood. Taking the partial derivative with respect to > we have

o Zf=1 Z?:l
2

I T Nij
1
826_1 - e - 5 Zl Z Z ijk — ’L]/G b S’L])(}/’ij z]ﬂ b Slj)

Setting the partial derivative equal to zero and solving for X, gives us our score function

it Xyo1 Nij 1 & T
0=+ 5—522 (Yijr — DijB = b; — 845)(Yijr. — DB — b; — s8i5)
i=1j5=1k=1
I T Nij -
S(%.) = ZZ Z ik — DigB = bi = 83;)(Yiji, = DB — by — si5)

Z“Zj 1

This is broken down into the following components

I T N
S(ze>=%{ZZZ%#—DU,@)(EM D)’ +ZZ bib; +ZZ /150
'=1Z'=1 Nz7 1=175=1k=1 =1 j= i=1j=

N 1 N;j
- bz ZZ(K]/C 1313 ) Z( Z( ijk T 1]16) T
i j=1lk=1 =1 =1
I Ny
( ijk — 1]/3) ) Z

™=

1

J

Nyj

[\/]ﬂ
[\/]ﬂ

Sij

™M~ iM~ ™

I
=

k
( ( ijk — Uﬁ) Zj
[ k=1

-~ ~

1 k=1

=1y

bi(im 5 ) + i(z N”sm)b

j=1 =1

14=

+

%{_JH

[\/]~
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=

Expected values for EM algorithm

We need to derive expressions for Eb;, Es;;, E b,»biT , Esyj s;rj, and for the expected value of all crossproducts of b;

and s;;. To achieve this we re-parameterize our MLMM to the equivalent expression

T T
Yijk = DB+ M;;¢; + €y,



where ¢; = (b;r , s;rj T is a vector of all random effects for cluster i and follows a multivariate normal distribution
characterized by N (0741, X,) with X, = diag (X, I ® 3,) where Iy denotes a T x T' identity matrix. Further,
M;; is the design matrix for the random effects, ¢;, for cluster i at time j. This gives us the following likelihoods

and likelihood function

- - 1 .
F(Yirl9:,0) = 2m) 212 7P exp {—ﬁ(Yijk - D;;8 - M ¢,) 3. (Vi — Dy - MJ@)}

_ _ 1 _
£(:0) = 2n) P12, exp |- 307576
1 Nij
=1

J

T
[ 1T T/ (Yijel @1, 0) £ (9:16).

7=1 k=1

(Y. ¢16) =

(2

Ignoring the normalization constant, we can write the log-likelihood as

I T
Zi:l Zj:l Nij
2

I I
(Y, ¢10) = =5 log |Z| - 5 log [I7 ® I | - log ||
1LY T, \Ta-1 1< T 1
—§Z (Yix —D;;B-M,;;¢;) B, (Yijr — D;;8 - 3¢¢ Zb 2, bi—gzsi (Ir® X, )s;
i=1 j=1 k=1 =1

( ijk — ’Ljﬂ z-llj—qbl)(yvljk‘ - Dl]l@ - MJ@)T

I T N
(Vi = D) (Yo~ D)~ <D > Mi6.(Yiy — D)

== T ~
Yzt 21 Nij i51 =1 Yic1 2 =1 Nij 5151 k=1
I Ny

I T j T
Y S (V- DB M —ZZZMWJMM.

By aar—
Zi:l Zj:l Nij i=1j=1k=1 Zz 1 ZJ 1 NU = k=1

Further, the posterior distribution of the random effects for cluster i is f(¢;|Y;;0) = f(Y;, ¢;10)/ f(Y;]0), which

is proportional to

T Nij T
DT I 71 1., T
exXp1~ Z Z i3 (Yigs = D;;B) = 5¢i | Ty + Ny Z M;; 3% M | @ig,
J=lk=1 j=1
where Y; = (Y; 11, cee Yi;NiT)T is a vector of all outcomes measured in cluster . Now we can easily generate the

expected value of ¢; and qbigbiT through the realization that f(¢;|Y;;0) is proportional to a multivariate normal

distribution with mean E(¢;|Y;,0) and covariance V(¢;|Y;, 0) given by

T 17 ij
-1 -1 T -1 T
E(i|Y;,0) = (2,' + Niy Y Mus M| Y Y M;s. (Y, - D;jB)
j=1 j=1k=1



-1

T
V(g|Y;,0) = |5 + Ny Y M;x M
j=1

E(¢:b; |Yi,0) = V($4]Y;,0) + E(,]Y;,0)E(¢,]Y;,60) "

Estimation via EM algorithm

The EM algorithm is an iterative process for maximizing the likelihood of a model and includes two steps: (1)
generating the expected values of the missing data (i.e. random effects) given the current parameter estimates
and (2) using those expected values to generate updated parameter estimates using score functions. The first step
fittingly refers to the expectation stage and the second step to the maximization stage since the score function for
each parameter produces a value that maximizes the likelihood. The EM algorithm iterates between these two steps

until convergence is met.

More specifically, to start the EM algorithm we need to provide initial parameter values, denoted by ﬁo and o”.
In our algorithm we use individually fitted LMMSs, one for each outcome, to initialize all parameters. Next, the
expected values of ¢; and d)id);—r are computed using the expressions derived above and then used in the score
functions in place of ¢; and qﬁiq&iT to generate updated parameter estimates, ﬁl and o'. These new parameter
estimates are then used to generate new expected values which are then used to produce a new set of updated
parameter values. This process continues until the likelihood converges, usually defined as a negligible change in

the likelihood (i.e. 107°).

Web Appendix B

~
7

Derivation of V
MLMM under Cluster-Period Means Approach

We can simplify our approach using cluster-period means (Li et al., 2021; Davis-Plourde et al., 2021). Let ?ij =
— — - 1 _ _ _ 1= 1
(Yijh N 7YijL)T where Yijl = N Z]kvzl Yvijkl. Also let €ij = (Eijlv e ,EijL)T with €ijl = N Zivzl €ijkl- Our MLMM

is equivalent to

Y’L'j = ﬂo +,gj +XZ](S + b’i + sij +Eij'



Within-Period Block of V,
The variance of ?iﬂ is

N

N
1 1
ijl) = Cov N Z Yijrt, g Z Yiin
k=1

<

var(

1
=32 (Nvar(Yi ) + N(N = 1)cov(Yyjp, Yijr))
1
=N (052;1 + oy + o+ (N =1) (o3 + Uil))
. o
O¢l
= Ubl + Og1 + N

The covariance between outcomes in the same period is

N N
COV(Yz]thjl') = cov Z z]klv Z ijkl

1
=Nz (Ncov(Yij, Yijrr) + N(N = 1)eov(Yijn, Yijrr))

1
=N (oo + o + o + (N = 1) (opp + ogur))

gl

=op togy t N

1
Therefore, the within-period block is 3, + X, + NES.

Between-Period Block of 17;

Recall that subjects are sampled cross-sectionally, therefore, k # k'. The within outcome covariance between periods
is
- - 1 & 1
cov(Y i, Vi) = COV(ﬁ Z Yijni, N Z Yijn
k=1 k'=1

=—(N (K]kla}fz]kl))

The between outcome covariance between periods is

1Y 1 &
cov(Yij, Yij) = cov (N Zlyz]kl; v k'Z—1 Y

1

=Nz (N cov(Yijur, Yiju ))

= Opll'-



Therefore, the between-period block is 3.

Combining Within-Period and Between-Period Blocks to obtain ‘71

~

17',; is block exchangeable, therefore, we can combine the within-period and between-period blocks using V; =
I; ® (WP - BP) + Jr ® BP, where WP is the within-period block, BP is the between-period block, It is a

T X T identity matrix, and Jp is a T X T' matrix of ones. This gives us

~ 1
‘/;=IT®(Eb+25+Nze_2b)+JT®Eb
1
=IT®(ES+NEE)+JT®EI)~ (1)

e -1
Derivation of V

Section 2.1 of Leiva (2007) states that given a block exchangeable matrix of the form, A=1,® (B-C)+J,® C,

if B—C and B + (u— 1)C are non-singular matrices, then
- - 1 - _
A1=Iu®(B—C)1+Ju®ﬂ[{B+(u—1)C}1—(B—C) 1}. (2)

This means that

~_ _ 1 _ _
V;1=IT®(WP—BP)1+JT®T{WP+(T—1)BP}1—(WP—BP) 1]
—L ez, 43 B J 1_2 S, 4 =% (T 12_1 SIS B
- T® 5+N € + T®T b+ 5+N €+( - ) b - S+N €
—Le(z, =3 B J 1_TE b 12_1 DRSS B 3
= T® S+N € + T®T b+ 5+N € - s+ﬁ € . ()

Derivation of covariance expression, {2;

Let Z; = (I, X;) ® I, where X; is the randomization schedule for cluster . The covariance matrix for the model

estimators are (Zle Z V7)™ where

I . Q, 0
’ ®ILW1[(IT Xi)ML]: R

I
-
=1 i Qo1

ZiTV;_lzz‘ = i
i=1

K2

X

where €1, is a TL X T L matrix, ;5 = Q;—l is a TL X L matrix, and 245 is a L X L matrix. Block matrix inversion

gives us Q5 = 9521 = (Qgy — 9219I11912)_1-



We can rewrite V; as

~_ 1
v 1=IT®A+JT®T[B—A],

1.\ 1.\
where A = (25 + NZ}C) and B = (TE;, +3, + NZ:e) . Using this expression we can generate our {2s.

Derivation of ©;; and Qfll

I
Q=) (IreI,)V, (Ire 1)

=1

i(IT®A+JT®%[B—A])

=1

IIT®A+JT®—[B A])

_ 1~ 1 1
Therefore, Q7 = Vi=7 [IT ® (zs + Nze) +Jr® zb}.
Derivation of Q5 = QQTl
T < S-1
Qi =y = Z(IT ®I,)V, (X;®I)

et S xae b

=1

I}
=
M“‘
o

<.
I
—

™~

X; ®A+U1T®—[B A]

<.
1
—

M-

=
Il
—

1.\ 1 1.\ !
Xi®(zs+Nze) +U1T®T|:(T2b+2]s+ﬁ2€> _(ES+N26) i|,
T
where U = ) 7, X
Derivation of Q9
I —~
Y (X[ eI)V, (X e 1)

bhent(f e ehmes

=1 \j

922

=U®A+V®T[B—A]



v
ZUA+T[B—A]

1 -1
NEE) +

N <

1.\ 1\
—U(ES+ [(sz+zs+ﬁze) _(25+N26) ]

where V = Zf:l (Z?:l Xij)Q'

Derivation of Q5 = 9521

We have the following matrices for our block inversion formula, 25 = 9521 = (g9 — Qo 9111912)_1,

Ny =U (X iE B K T, + X iE _1— 3 iE B
22 — S+N6 +T b+ 5+Ne 5+Ne

I -1 -1 -1
T 1 1 1 1
912 = 921 = éIXi@(ZS'l‘ NEE) +U1T®T|:(T2b+ZS+NZE) —(254‘—26) :|

I | 1
in=T{IT®<28+NEE)+JT®E;,]

This gives us

2 -1 2 -1 -1
1 1 U 1 U 1 1 1
Q210 Qyp = 7((W—T)(ES+NEE> +T(T§Jb+25+ﬁ26> (25+Nzé)(sz+zs+ﬁzé)
2 1 - 1 -1
+U TZb+ZS+NZ}€ Eb T2b+ES+NEE

_ 1 1\ 1\t
oy — 20101 0y = 77 {(ITU —TW +U> - IV) (23 + Nze) —(U*-1V) (sz +3, + Nze) }

-1
1\t 1\t
95=IT[(ITU—TW+U2—IV)(23+NZE) +(IV—U2)(T§],}+2S+N§3€) } ,

where W = Z};l (Zle Xij)Q'

We can map the variance component parameters to the set of unique ICC parameters by observing oil = Jilpll,
w2 2,1 l ' i 2 2 l ' '

Opll! = OylOyl'P1 5 Og1 = Uyl(Po - p1), O = Jleyz'(Po -p1), 00 = Uyz(l - po) and oy = Uyl%l'(ﬂz - po ). We

can further let T'y, 'y, T'5 denote the within-period ICC matrix, between-period ICC matrix and intra-subject ICC

matrix across L endpoints, defined as

112 1L 1 12 1L 12 1L
Po PO oo Po pr P1 - Pl L p” o p2
g2 2 Lz ST g 2 2
0 0 .. 0 1 1 e 1 2 e 2
Iy = , Iy = , Iy =
1L 2L L 1L 2L L 1L 2L
pPo PO -+ PO L R 21 p2- pa ... 1

10



2

2 . .
y1>- -+ 0y1), we can further rewrite the covariance

Defining the diagonal matrix of outcome variances as A,, = diag(o
matrix of the intervention effect estimators in terms of the ICCs through the realization that 3, = A?l/ 21"1A?1J/ 2,

3, = A}/Q (Ty - I‘l)A;m, and X, = A;/Q (Ty = Ty) A;/Q giving us

1 -1
Qs = IT{ (11U -TW +U* - IV') (A;/z’ (To-Ty) AL + NA;/Q (Ty — Ty) A;/z)
1 -1
-(U*-1v) (TA},”FIA;” + A% (D) = T1) A + A2 (T, - 1) A}/z) }

Y

IT i
= WAW[ (ITU - TW + U* = IV) (N (g = T;) + T, = T,)

-1
(U = IV)(TNTy + N (Tg —T;) + Ty - Tp) ™! } A2

IT 1)2

= A, { (ITU =TW + U® = IV) (T3 = NT; + (N = 1)T) "'

-1
—(U* = IV) Ty + (T = 1)NT; + (N = 1)) ™" } AL
Connection to Hooper and Girling model: ¥, 3, and ¥, as scalars

. 2 2 2
If we only have one outcome, y, then 3., 3, and 3, are scalars, i.e. 3, = o, 3 = 05, and 3, = 0}, then we

would have

-1
. 1 5\ 1 5\
var($) = IT[(ITU —TW +U> - IV) (03 + ]—Vaf) —(U*-1V) (Ta§ +oo+ Naf) }

-1
_IT|(ITU =TW +U? = IV)(TNaj + No- +02) = (U? = IV)(No? + a?)
N (TNo} + No? + 02)(No? + o2)
~ (IT/N)(TNo; + No- + 02)(No> + o2)

(ITU =TW +U? - IV)(TNo} + No? + 02) — (U? = IV)(No2 + 02)

The total variance of the outcome, y, is ol = a? + 03 + 062. Under the LMM we have the following ICCs and

Y

eigenvalues

op + 0y
Po = 2
Ty
2
Tp
P1 0_5
A2 =1+ (N—=1)py— Np;
_ Na? +062
o2

Y

Az =1+ (N-1)po+ (T -1)Np,

11



2 2 2
_TNoy, + Nog + o,

2
Oy

Using these expressions we can re-write our variance formula as

(O’g/N)ITAQAg

5) = ,
ar0) = T S TW s U V) — (02— TV

which is equivalent to the variance expression from Hooper and Girling (Hooper et al., 2016; Girling and Hemming,

2016).

Web Appendix C

~

. . . . . . I
Common intervention effects: derivation of variance expression, var(¢ )
Let Z; = (It ® A, X; ® 0.) where X; is the randomization schedule for cluster i, o, = (0'61,...,O'€L)T, and

A, = diag(o.). Also let Xy = A€2;,A6 and X, = AEZLA6 denote the scaled random effects. The covariance matrix

—~_ -1
for the model estimators are (Zle ZLTV; 1Zi) where

T

z'V, 'z =

! Ir® A, ~_1 Qi1 Qo
A Ir®A, X;®0, ||=
i=1 )(z ® o, le QQQ

M-

-
I
—

where ‘7;_1 is the same as previously derived, €217 is a 27 X 2T matrix, 215 = Q; is a 2T vector, and €255 is a scalar.

Block matrix inversion gives us Qg = (Qog — Q21271 Q10) " = var(s').

~ 1\ 1 1\ 1\
Recall we can rewrite V, ' = Iy ® (zs + NZE) +Jr ® [(sz +3,+ sz) - (23 + —26) } as

~_ 1
W1=h®A+h®7ﬂB—AL

1\ 1.\
where A = (25 + Ee) and B = (TE;, +3, + —26> . Also recall that

N N

~ 1
W:IT®(ES+N25)+JT®EZJ
=I;®(C-D)+J;®D
~_ _ 1 _ _
V'!=I,8(C-D) 1+JT®T[{C+(T—1)D} '—(c-D)'],
1

WhereC=Eb+ES+N

Y. and D =3X,.

12



Derivation of ;; and Qfll

I
Q= Z(IT ® AV, (I 8 A,)

=1

I
= Z(IT ®A.) (IT ®(C-D) ' +Jr® % [{c+(T-1)D}"' - (C- D)l]) (Ir ® A,)

=I(IT®A(C D)™’ +JT®A6%[{C+(T—I)D}_1-(C—D)_l]Ae)

_ _ _ 1 1 _ _ _ 1. _ _ _ e
Ir® (A-'CA = A'DACY) 1+JT®T[{A510A61+(T—1)A€1DA61} " (A'CA - A'DADY 1])

_ 1 _ _ _ _
This is of the form I+ ® (C' = D) + Jr ® 7 [{C'+ (T -1)D'}" = (C'- D) ] where C' = A'CA;" and
D' = A;lDAe_l. Therefore

-1
Q1

I8 (C'-D')+JreD')

Ir & (AL'CA. = A'DA) + Jr @ AL'DAY)

Nl N N N e

N

1 _ _ _
(I [ {25 + —26}1&61} +Jr ® Aelszel)
(IT®A AN I e = A H(B” —A‘l)Agl)
Derivation of ;5 and Q9
! ~
Qo =0y =y Ir 8 AV, (X; ® 00)

i=1

=Z(X ® A Ao, +ZX”1T® =A.[B- A]a)

=1 j=

I
1
=Y X;®A Ao +Ulr ® 7A[B - Alo,,

=1

where U = Zle Z?:l Xij.

Derivation of (g

I

Q=) (X{ @0 )WV ' (X;00,)
=1
I

(X ® o, )(IT®A+JT®—[B A])(Xi@»ae)

=1

v
UO':AO'E + TO’: [B-A]o.,

where V = Zle (Z?:l Xij)Q‘

13



Derivation of var(é')

We have the following matrices for our block inversion formula, var(8') = Qg = (Qag — Q91271 Q12) 7,

v
Qoo = UO':AO'E + —0’2— [B-Alo

T

LA B-Alo

I
T
Ql2=Qzl=ZXi®A€AUE+U1T®T

=1

1 11 1 1, iy -
911:7(1T®A61A 1A€1+JT®TA€1(B1—A1)A€1).

This gives us

I I
-1 _ T 1
921911912_;)@ ZI:X 711A Ao +UY X/'1r® 771 LA [B- Alo.
W o+ 2
= 70'6 AO’E+ T o, [B A]
_ 1% 1% U2
922—9219111912 =UO';|—AO'6+—O': [B—A]O'e— O'TAO' + — [B A]
T T T°%
1
= 7= (uTU -1TW +U* - 1V)o! Ao, + (IV - U*)o/ Bo,)
~ 1 -1
var(é’)z[—((]TU TW +U? = IV)a! Ao, + (IV - U)o, Bae)}

-1

1\ 1\
- JT[(ITU —TW +U* - IV)o, (25 + NEG) o.— (U= 1V)a, (sz +3, + Nze) 0'6:| ,

2
where W = erzl (Zi]:l Xij) . We can rewrite this expression in terms of the ICCs again using 062[ = 031(1 - pé),
2, = APTIAL? B, = AP (T - Ty) A%, and 35, = A}/? (T, — Ty) A}/? which gives us

~ 1
var(d') = IT{(ITU —TW + U = IV)w ( AP (T -T) A + NAW (Ty — T) A”Q) w

1 -1
— (U= IV)w (TA1/2I‘A1/2 AP (T -T) A + - 1/2(1“2—1“0)1&1/2) wi|

-1/2 1/2

T
[(ITU —TW + U = IV)w' A, * (N (Ty = Ty) + Ty = T) ™"

I

N
-1

—(U* = IV)w A, (TNT, + N (T -T,) + T, - Ty) " _1/2wi|

1/2 1/2

(T3 — NTy + (N - 1)T) ™"

IWT[ (rrv -TwW +U® - IV)w

—1/2

- (U -1v)w' (Ty + (T = 1)NT, + (N = 1)Ty) " ‘”%} :
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-
where w = (ay1(1 - p(l))l/Q, oy oyn(1 = pg)l/Q) .

Web Appendix D

Common ICCs across endpoints: derivation of covariance expression, {2

The common ICC assumption leads to simplification of the variance expression {25 by defining the three key ICC

matrices with their explicit simple exchangeable forms:

Ty =(po = poo) I, + pooJL
Ty =(p1 = pu) I + p11dL

Ly =(1 = po)Ip + paJy.

Plugging in these explicit forms into our current variance expression under the ICC parameterization (shown below

for ease)

IT
_A1/2

95=N y

(ITU = TW + U* = IV) (Ty = Ny + (N = 1)T) "'
-1
—(U® = IV) Ty + (T = 1)NT; + (N = 1)) ™" } A2
we get the following simplified expression
1T

Q= 5 A;”[ (ITU =TW + U” = IV) (1 = ps = N(p1 = p12) + (N = 1)(po = poo) Iz + (p2 = Np1a + (N = 1)poo)J) ™

= (U* = IV) (1 = p2 + (T = 1)N(p1 = p11) + (N = 1)(po = poo) Mz, + (p2 + (T = I)Npy1 + (N = 1)po)Jp) " } AY?

-1
IT _ _

- WA;/2|:(ITU—TW+U2—IV)(()\Q—TQ)IL+7'2JL) "= (U =1V (s = )T + m3) 1} AL
IT 1/2 2 ( 1 T2 )

= APl (TTu-TW + U - TV I - J
N y |:( ) )\2—7-2 L ()\2—7'2)()\24'(.[/—1)7—2) L

-1

1 T 1/2

—-(U*-1v ( I, - 3 J ) AL
( ) -7t (g —m) g+ (L—-1)75)" " Y

where Ay = 1+ (N =1)po—Np1, A3 = 1+ (N =1)pg+ (T =1)Npy, 7o = (N =1)poo = Np11 + p, and 73 = 7o+ T'Npy;.

To continue simplifying our expression, let x = ITU = TW + U? - 1V, y = U? - IV, ay = Ag — Ty, a3 = A3 — 73,

15



by = Ay + (L — 1)1y, and b3 = A3 + (L — 1)75. This gives us

-1

_ IT 1/2 1 Ty 1 T3 1/2
Qé_WAy |:x(a_2IL_@JL)_y(a_3IL_@JL Ay

-1
_ £A1/2[fm3 —Yarp o, YT3a2bs — xTra3D3 JL:| AL2

N Y az0a3 a2a3b2b3 v
IT/N by — b:

_ ( /_)G2G3A11//2 I — YT3A205 — TT2A303 J, Agl;/2
zas Yag (J}ag, - yag) b2b3 + L (yTga2b2 - .’L'TQClgbg)

Common ICCs across endpoints: proof of Theorem 1

For ease, we restate Theorem 1 below:

THEOREM 1. Under the parsimonious parameterization with common ICC values across endpoints, the l-th diagonal

element of Qs can be further written in the following analytical form

(IT/N)oy, y
(ITU-TW +U? - 1V) (A3 —13) = (U* = IV) (Mg = 7o)
(ITU = TW + U* = IV) Aa(As = 73) { X3 + (L = D)3} = (U2 = IV) A2 = 1) {X2 + (L — D)7}
(ITU =TW + U? = IV) {A3 + (L = 1)73} = (U2 = IV) { Ay + (L — 1)1}

var(8;) =

Furthermore, denote the variance of the [-th intervention effect estimator based on a univariate Hooper and Girling

model (Hooper et al., 2016; Girling and Hemming, 2016) is

(IT/N)oydars

HG /¢
5) =
var ( l) (ITU—TW+U2_IV)>\3_(U2_IV))\Q

and var(8;) < varHG(Sl) for any set of valid design parameters, with equality holds when ToAs = T3Mo o7 pog = P11 =

po =0 (a special case when ToA3 = T3As ).

Proof:

Given our expression for 5 under the common ICCs assumption (shown above), the I-th diagonal element is

2
var(5) = IToy, ( asaz ) (1 B YT3a0bs — xToa3b3 )
! N raz — Yyaz (.’L'ag - yag) b2b3 + L (yT3a2b2 - $T2a3b3)

i} ((IT/N)vil ) (33(52 ~ (L= 1)ry)agbs = y(bs = (L = 1)73)asby ) v

rag —yaz J)(bg - LTQ)a3b3 - y(bj - LTg)ang

: ( (IT/N)oy, ) (xA2a3b3 ~ yAgasby )

rasz — yaz J}bg - ybg

. (IT|N)ay, y
T ITU =TW + U2 = IVY( A3 —13) = (U2 = IV)(\y — 72)
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(ITU = TW + U? = IV)As(As — 73){ A3 + (L = 1)73} = (U? = IV)A3(N\g — 2){Aa + (L — 1)1}
(ITU =TW + U2 = IV){\3 + (L = D)3} = (U% = IV){ Xy + (L — 1)1} ’

which matches our variance expression in Theorem 1. Under the Hooper and Girling LMM, the variance of the [-th

outcome is

(IT/N)oaAaAs

HG ¢
o) = ’
var ( l) (ITU_TW+U2_Iv))\3_(U2—IV))\Q

Therefore, the variance ratio comparing the MLMM to the LMM is
~ 2 2 2
var(3) ((ITU=TW +U* —1V) x5 = (U” = IV) A, (IT/N)o%
varllG(5,) (IT/N)o? o) (ITU = TW + U% = IV)(\3 — 73) — (U2 = IV)(\g — 7)
(ITU - TW + U2 - IV))\Q()\g - ’7'3){)\3 + (L - ].)Tg} - (U2 - IV))\g(AQ - TQ){)\Q + (L - 1)’7’2}
(ITU =TW + U% = IV){\3 + (L = )13} = (U2 = IV){\s + (L — 1)}
(ITU = TW + U* = IV) A3 = (U* = IV ) A
X
(ITU =TW + U2 = IV){A\3 + (L = D)3} = (U% = IV){ Xy + (L — 1)1}
(ITU =TW + U> = IV)A3 (A3 = m3){As + (L = D)3} = (U% = IV)A; (Mg — 72){Ae + (L — 1)75}
(ITU —=TW + U2 = IV)(\3 —73) = (U? = IV)(\g — T2) '

We can again use = ITU = TW + U> = IV, y = U’ = IV, ay = Ay — To, a3 = A3 — 73, by = Ay + (L — 1)7o, and
by = A3 + (L — 1)73. This gives us

2X3 = YA (X3 azbs — yA3 asby
xbs — yby raz — yas

x2a3b3 - .’L’y)\g)\glagbz - J)y)\g_,l)\gagb;; + y2a2b2

x2a3b3 — xyasbs — xyazby + y2a2b2

To evaluate whether this ratio is less than or greater than one we can take the difference of the numerator and

denominator.

num. - den. = x2a3b3 - xy)\g)\glagbz — 2yA; Agazbs + y2a2b2 - (x2a3b3 — zyashs — Tyasby + y2a2b2)
= —zy({Xo + (L= D} (=235 72+ 73) + {hg + (L= D13}(=A3 Do + 7))
= —ey(2mmsdods = A5y = 073 ) (L= 1)/ As)s)

= 2y(Aga — Ao73) ((L = 1)/ Aa)As).

We know each term is positive except for x = ITU — TW + U? = IV and Yy = U -1v. Starting with « =
ITU = TW + U? = IV and as shown in Theorem 1 of Davis-Plourde et al. (2021), we can rewrite this term using
17917 = IV =U?) and tr(Q) = [ °(IU-W) where @ = "' Y X, X, —(I7' YL, X)) (7' Y, X[ ) is the

covariance matrix of the intervention vector under a specific design and 7 = {(T — 1)tr(Q)}_1{1;91T —tr(Q)} €
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[—1,1] is the generalized ICC of the intervention, which is the ratio of average covariance over the average variance
and measures the similarity between the intervention status for each cluster in different periods (Kistner and Muller,

2004). This gives us

2 =ITU =TW + U = IV = I’Ttx() = I’1:911
= I°((T - Dt() - {17917 — tx(2)})

= I(T - Dtx(Q) (1 - 7x) = 0.

Also shown in Davis-Plourde et al. (2021), typically under a standard SW-CRT design 7x € (0, 1) thus « > 0. Next,
2 2
let’s evaluate the sign of y given by y = U? = IV = (Zle Z;‘T=1 Xij) -1 Zle (Z;‘T=1 Xij) . By the Cauchy-Schwarz

inequality we know that

Spgel) () )

Additionally, y can be rewritten as y = =1 21;9171 < 0. Therefore, the difference between the numerator and
denominator is less than or equal to zero which leads to a variance ratio of less than or equal to one. Thus,
var(8;) < VarHG(Sl) for any set of valid design parameters, with equality holds when m9A3 = T35 or pog = p11 =

po = 0 (a special case when ToA3 = T3A2).

Web Appendix E

. . . . . . o
Common ICCs and intervention effects: derivation of variance expression, var(¢ )

Recall that if we assume common ICCs we have

Ty =(po = poo) I + poodr
Ty =(p1 = pu )L + p11JL

Ly =(1-p2)IL + paJy.

And if we assume common intervention effects, then the variance of the intervention effect estimator becomes

5, IT

var(8') =S| (ITU =TW + U* = 1V ) A (T = NT, + (N = 1)T) ™ A, P
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— (U = 1V)w A, (Dy + (T = 1)NT, + (N - 1)T,) ™ ‘”%}

IT
W{(ITU—TW+U2—IV)W AP (g =)+ 1d1) AP

-1
—(U2—IV) _1/2((A3—7’3)IL+7'3JL) _1/2wi|

-1

Ayw ™+ (J)_1 A;/QJLA;/Qw‘l)_l

%{(ITU—TW +UP=1V) (e = 72) («)

-1
(0= 1V) () (@) AT 4 (w07) T AYPTA )_1}

IT

-1
" IN) [ (ITU = TW + U* = IV) Qo + (L= 1)) " = (UP = IV) (Ag + (L = 1)73) ™ }

_ (IT/(LNX))(Ap + (L = 1)75) (A3 + (L = 1)73)
(ITU —TW + U2 — IV) (g + (L — 1)73) — (U2 = IV) (Mg + (L — 1)73)

where Ay = 1+ (N =1)py—Np1, A3 = 1+ (N —1)po+ (T'=1)Np1, 72 = (N —1)poo — Np11 + p2, and 73 = 75 + TN pyy

1/2 1/2)

as discussed previously. Under the common intervention effects model w = (Uul(l — po) oy (1= pg )
but under the common ICCs assumption po = pg, therefore w = (ay1/\1 ey ayL/\l ) where same as Ay and As,
A1 = 1 — pg is a distinct eigenvalue of the (endpoint-specific) nested exchangeable correlation structure (Li et al.,

2018) defined for cross-sectional SW-CRT's with a univariate outcome.

Common ICCs and intervention effects: proof of Theorem 2

For ease, we restate Theorem 2 below:

THEOREM 2. Under the parsimonious parameterization with common ICC values and a common intervention effect
across endpoints, the variance of the l-th intervention effect estimator (unscaled) under model (5), i.e. 6; = oyl)\1/26 ,
18

(IT/(LN))oy (A + (L = 1)79)(A3 + (L = 1)73)

both, 3y _
v 0 = G S TW 4 U2 = 1) + (B = D) = (07 = V)0 + (E = 1))

As shown in Theorem 1, under the parsimonious parameterization with common ICC values across endpoints, the

l-th diagonal element of Qs is denoted by

varlcc((g ) = (IT/N)JEZ X

VUUTU -TW + U2 = 1V) (A3 —73) = (U2 = IV) (M — 7)
(ITU = TW + U? = IV ) Aa(As = 73) {As + (L = 1)75} = (U2 = TV ) A3 (Ao = 72) {ha + (L = )7}
(ITU = TW + U2 = IV) {As + (L = )73} = (U% = IV) {Ap + (L — 1)1}

7

and var”™(8,) < var’“C(8,) for any set of valid design parameters.
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Proof:

var” () (IT/(LN))oy(As + (L = 1)) (A5 + (L = 1)75)
varloC(3))  (ITU =TW + U? = IV)(Ag + (L = )73) = (U* = IV) (A + (L = 1)7)

(ITU-TW +U* = 1V) (A = 73) = (U° = IV) (Ao = )

(IT/N)UZZ
(ITU = TW + U* = IV) {03 + (L = 1)} = (U° = IV) (A + (L = 1)72}
X UTU —TW + U2 = 1V) 2 (s — 73) D + (L = Dra} — (U2 = IV) Aa (e — 72) g + (L — D)2}
(1/L)A2 + (L= 1)) (A3 + (L = D)73) (ITU = TW + U* = IV) (A3 = 73) = (U* = IV ) (A2 = 72))
(ITU =TW + U2 = IV) Aa(As = 73) {As + (L = )13} = (U2 = IV) A3(Xa — 72) { Ao + (L — 1)75}

X

Again using ¢ = ITU = TW +U> = IV, y = U> = IV, a3 = Ay — T, a3 = A3 — 73, by = Ay + (L — 1)1, and

by = A3 + (L — 1)73. This gives us

_ (1/L)bobs (was — yas)
T wAaagbs — yhsashs
_ (wagbs)by — (yagbsy)bs
= (/5 (zasbs)As = (yagby)As
(zasbs){As + (L — 1)75} = (yaghy){\s + (L — 1)73}
(zasbs)Aa = (yagba)As
_ (wazbs) Ay = (yagba)As + (L = 1)(wasbs)ms — (L — 1)(yasby)Ts
= (/5 (zasbs) A — (yazba)As
_ (L = 1){(zasbs) s — (yazby)7s}
= (/L) (1 ¥ (zasbs) g = (yazba)As )

=(1/L)

We are interested in determining when this ratio is less than 1 which is when

(L = 1){(zagbs)ms — (yasby) 73}
(1/L) (1 " (9ca3b3))\2 - (ya2b2)/\3 ) <!
(zasbs) Ty — (yaghs )13

< 1.
(zagbg) Ay — (yazby)As

We know that 79 < Ay and 73 < A3 by definition and we already showed that x > 0 and y < 0 under a SW-CRT,

therefore the numerator is always less than the denominator which means the variance ratio is always less than 1.

Web Appendix F
Closed-cohort design: derivation of ‘71
Model under a Cluster-Period Means Approach

Again, we can simplify our approach using cluster-period means (Li et al., 2021; Davis-Plourde et al., 2021). Let

J— J— p— T — ]_ N — — — T — ]- N
Y= i1,....Yiyr) whereY,; = N Y i1 Yijr and let 7, = (F;,...,7;) where 3, = N Y g1 Yikl- Also let
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1
Eij = (Eijla cee ,EijL)T with Eijl = N ch\il €ijkl- Our MLMM is equivalent to

?2] = ,@0 +Bj +Xij5+bi +Sij +7i +E”

Within-Period Block of V,

The variance of Y, ;; is

1

var(Y i5;) = ~ (var(Yijp) + (N = 1)cov(Yijrr Yijen))
1
=N (Jl?l +ou+ ot +an+ (N = 1) (o + U?l))
2 2 Uil + 0521
SOt oat ——p—

The covariance between outcomes in the same period is

1

cov(Yij, Yijr) = N (cov(Yijnt, Yijrr) + (N = 1)eov(Yiju, Yijrr))
1
=N (Ubll' tog Yoy togr t (N = 1)(opr + Usll'))
oyt o
=opr tos t+ - N

1
Therefore, the within-period block is 3, + 3 + N (27 + Ee).

Between-Period Block of ‘7;

The within outcome covariance between periods is

e 1
cov(Y i1, Y1) v (cov(Yijur, Yijia) + (N = 1)cov(Yija, Yijn))

1 2 2 2
= (Ubl + J’Yl + (N - ].)O'bl)

=

0_2
_ 2 Yyl
—O'bl+—N .

The between outcome covariance between periods is

R — 1
cov(Y i, Yij) = N (cov(Yijut, Yijr) + (N = 1)eov(Yijn, Yigwr))
1
=N (opur + o + (N = L)ogyyr)
T
=opr t #

1
Therefore, the between-period block is 3, + NE,Y.
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Combining Within-Period and Between-Period Blocks to obtain ‘71

Combining the within-period and between-period block gives us

1 1 1
‘/i=IT®(21)+28+N(27+26)_(2b+N27)>+JT®(EIJ+N27)

1 1
=Ir® (25 + NZJe) +Jr® (Eb + N27> .
Closed-cohort design: derivation of ‘7;_1

The inverse of ‘71 can be computed using Leiva (2007) since ‘71 is exchangeable giving us

~_1 1 -1 1 1 1 -1 1 -1
‘/.i =IT®(ES+NEE) +JT®T|:(2b+25+N(27+EE)+(T—1)(25+N27>) - Es"'ﬁze

—I®2+12 _1+J®1 T2+2+T2+12 B 2+12 B
= 4T s T e TT b s TN N e s T e .

Closed-cohort design: derivation of €2

Again let Z; = (It, X;) ® I, where X is the randomization schedule for cluster . The covariance matrix for the

model estimators are (Zf=1 Z/V'Z,)™ where

I

ZZiTVi_lZi = i

-
i=1 i=1 X;

IT Qll 912

®I; V[l[( Iy X, )@IL}= ,
921 922

where €4 is a TL X T L matrix, ;5 = Q;—l is a T'L X L matrix, and 2y, is a L X L matrix. Block matrix inversion

. -1 -1 -1
gives us Q5 = gy = (Ngy — V91271 Q12) .
We can rewrite ‘7; as,

— 1
V, 1=IT®A+JT®T[B—A].

T 1o\
NE'* + —EE) . Using this expression we can generate our €s.

1 -1
where A = (Es + —26) and B = (TZb + X, + N

N

Recall in Web Appendix B that we already derived expressions for each €2 in terms of A and B:

922=UA+¥[B—A]
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I
T 1
912=921=;X7;®A+U1T®T[B_A]
-1 S-1yv-1 15 1 -1 1r -1 -1
= (1v;) =7V;=7<IT®A +JT®T[B -A ])

This gives us

" 1 U’
921911 912 = T (WA + T [B - A])
- 1 I 2
Doy — D1 Qo = 7 (IUA + Tv [B-A]- (WA + UT [B - A]))
1
= 77 (UTU —-TW - 1V + U*)A - (U* - IV)B)
Qs = IT[(ITU -TW - IV + U*)A - (U” - IV)B}_1

-1 -1 -1
2 1 2 T 1
T|:(ITU—TW+U —IV)(ES+NEE> - (U —IV)(TEb+N§JV+E +NE) :| ,
2 2
where U = Zle X5, V = Zle (Zle Xij) ,and W = Z;F:l (Zle Xij) . To rewrite this expression in terms of
the ICCs we can use Web Table 1. Specifically, we note that afl = Uilpll, oyt = Uyloylvplll, a?l = ozl(pé - pll)7
u' u’ 2 2,1 [ u' ' 2 2 l | l
Osil' = Uleyl’(Po -p1), 0o ~ = Uyl(P2 - p1), O~ = Uleyl’(P21 -p1), 0gq = Uyl(l —p2 —po +p1) and ogp =

aylayll(plzl)o - plgll pg + ,01 ) We can further let Ty, T';, T's, and I'y be defined as

1 12 1L 1 12 1L 1 12 1L 1 12 1L
Po Po -+ Po pPr P - P1 P20 --- P20 P2 P21 - P21
12 2 2L 12 2 2L 12 1 2L 12 2 2L
Po Po -+ Po 1 P - P1 P2,0 cee P20 P21 P2 ..o P21

Ly = , Iy = ; o = ; Ty =
1L 2L L 1L 2L L 1L 2L 1 1L 2L L
Po Po - Po P P - P2 P20 P20 --- P21 P21 ..o P2

2 . .
Defining the diagonal matrix of outcome variances as A, = dlag(a ., 0y1,), we can further rewrite the covariance

yly -

matrix of the intervention effect estimators in terms of the ICCs through the realization that X, = A?l/ 2F1A;/ 2,

2= A2 (Do -T) A% =, = AP (Ty —T))AL? and £, = A}/? (T, — Ty =Ty + T;) AL/? giving us

1 -1
Q(;=IT{(ITU—TW+U2—IV)( AP (T -T) A + - AP (D, - Ty - 1“0+1“1)A1/2)
-1
T -1
—(U? —IV)(TA”ZI‘ AP+ NAl/Q(I‘QI—I‘)Al/2+A1/2( -T)A) + N AP (T, - rg,_r0+r1)A§/2) }
T 1/2 -1
= A|ITU = TW + U = IV) (N (Tg = T1) + T, = Ty = T + I'y)

-1
— (U =IV)(TNT, +T(Ty-T)+ N(Ty-T,)+Ty - Ty - T, +r1)‘1} A2
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1T
N

= Ay (ITU =TW + U’ =IV)((N =1) (T =T;) + Ty = Ty) "

-1
— (U -IV)((T-1)(N =1L, + (T = 1Ty + (N = )Ty +Ty) " } AL

Web Appendix G

Closed-cohort design & common intervention effects: derivation of variance expres-

sion, var(¢')

In Web Appendix C we derived the variance expression for a cross-sectional SW-CRT using
—~_1 1
V; =IT®A+JT®T[B_A:|7

I 1o\t
where A = (ES + NZC) and B = (TZh + 3, + NXE) giving us

~ -1
var(8)) = IT[(ITU =TW +U* = IV)o Ao + (IV - U*)o! Bo.] .
We can use the same approach under a closed-cohort design. As shown in Web Appendix E, we have

- 1
v 1=IT®A+JT®T[B—A],

1.\ T 1o\
where A = (ZS + Nze) and B = (TEb +3,+ Nz"’ + Nze) under a closed-cohort design. Plugging these
expressions for A and B into the expression above gives us the variance of the common intervention effect under a
closed-cohort design

-1
5 1\ T 1 \!
var(8') = IT{(ITU —TW +U> = IV)a! (25 + Nze) o+ IV -U"o. (sz +8 4+ 2+ N&) a'{| .

Or equivalently

50 IT _ o
var(s') =W{(ITU—TW+ U° = 1V)w AP {(N = 1)(T = T1) + Ty = T} ' A,

-1
— (U = V)W AT = 1)(N = )Ty + (T = )Ty + (N = 1) + T} A;”%} :
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-
1/2
where w = (O'yl (1 - p(l) + pi - p%) / yeeoy OyL (1 - pOL + plL - pg) / ) and remaining parameters are the same as

previously described.

Web Appendix H

Closed-cohort design & common ICCs: derivation of covariance expression, {2;

The common ICC assumption leads to simplification of the variance expression 5 by defining the three key ICC

matrices with their explicit simple exchangeable forms:

Ty =(po = poo) XL + poodr
Ty =(p1 — p1 ) + p11dL
Ty =(1-poo)I + poodp

Ty =(py — po ) + parJp.

Plugging in these explicit forms into our current variance expression under the ICC parameterization (shown below

for ease)

1/2
y

IT -
05 = A {(ITU —TW +U” = IV){(N = 1)(Tg = T;) + T - Ty}

-1

—(U? = IV){(T = 1)(N = )Ty + (T = 1)Ly + (N = )T+ Lo} " | AL2

Y b

gives us

1T
Q; = WA;’Q[UTU ~TW +U” = IV){[1 = p2 = p2,0 + p2.1 + (N = 1)(po = poo = p1 + p11)] L1

+ [p20 = p2,1 + (N = 1)(poo — p11) ] JL}_l

= (U” = IV){[1 = pao + (N = 1)(po = poo) + (T' = 1)(p2 = pa,1) + (T = 1)(N = 1)(p1 = p11)] 11
+ P20 + (N = )poo + (T = Dpoy + (T = )N = )py ] T} 1| AP

-1

IT _ _
= —A;/Q{(ITU —TW +U” = IV){(\s = 7)I + 73JL} " = (U = IV){(\y =)D + 7} | AL

N Y

where A3 = 1+ (N =1)(pg—p1) —p2and Ay = 1+ (N = 1)pg + (T = 1)(N = 1)p; + (T — 1)psy are two distinct
eigenvalues of the (endpoint-specific) block exchangeable correlation structure (Hooper et al., 2016; Girling and

Hemming, 2016; Li et al., 2021). Further, 73 = py o — pa1 + (N = 1)(poo — p11) and 74 = 73+ T (pa1 + (N = 1)py1)

25



characterize the impact of the between-endpoint ICCs on the variance of intervention effect estimators through the
MLMM. In the special case where all endpoints are completely independent such that pgy = p11 = p2,0 = p2,1 = 0,
Qs becomes a diagonal matrix and each element becomes identical to the variance expression developed in Hooper,
Girling, and Li (Hooper et al., 2016; Girling and Hemming, 2016; Li et al., 2021) for closed-cohort SW-CRT's
with a univariate outcome. Our variance expression above is similar to the one derived in Web Appendix D for
cross-sectional designs. Using the same approach, letting x = ITU — TW + U? - IV, y = U? - 1V, a3 = A3 — 73,

a4 = )\4 — T4, b3 = A3 + (L - 1)7’3, and b4 = )\4 + (L - 1)’7’4. This gives us

q, = UTIN)asas yagaf yraashy = er3asby : JL} RE

Tag —yasg Y L= (.’E(L4 - yag) b3b4 + L (y7'4a363 - x73a4b4 Y

Closed-cohort design & common ICCs across endpoints: proof of Theorem 3

An extension of Theorem 1 to closed-cohort designs, denoted Theorem 3, is provided below:

THEOREM 3. Under the parsimonious parameterization with common ICC values across endpoints and a closed-

cohort design, the l-th diagonal element of Qs can be further written in the following analytical form

(IT/N)oy, y
(ITU-TW +U? = IV) (Mg —74) = (U? = IV) (A3 — 73)
(17U = TW + U? = IV ) As(hg = 7a) {0 + (L= D)} = (U2 = IV) Mgy = 73) (A + (L = 173}
(ITU-TW +U? = IV){As + (L = )73} = (U2 = IV) {03 + (L = 1)73}

var(8;) =

Furthermore, denote the variance of the l-th intervention effect estimator based on a univariate Hooper and Girling

model (Hooper et al., 2016; Girling and Hemming, 2016; Li et al., 2021) is

(IT|N)oyrshs
(ITU -TW +U? = IV) Ay = (U2 = IV) A3

UarHG(Sl) =

and var(3;) < varHG(gl) for any set of valid design parameters, with equality holds when TsAg = Ta\g or pog = P11 =

p2.0 = p21 =0 (a special case when Ts\y = T4A3).

Proof:
Given our expression for 25 under the common ICCs assumption (shown above) and using the same approach as

Theorem 1, the [-th diagonal element is

2
var(8;) = Moy ( a3ay ) (1 - YTaa3bs — xT304b4 )
t N ZTayg —yag (xa4 - y(lg) b3b4 + L (y7'4a3b3 - $T3a4b4)

. UT/N)oy y
S (ITU -TW + U? = IV)(\y = 74) = (U2 = IV)(\3 — 73)
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(ITU = TW + U? = IV)A3(00y = 7)) {0 + (L = )7y} = (U = IVIA (N3 = 73){ 05 + (L = 1)73}
(ITU =TW + U2 = IV){\ + (L = D)7y} — (U% = IV){ X3 + (L — 1)73} ’

which matches our variance expression in Theorem 3. Under the Hooper and Girling LMM, the variance of the [-th

outcome is

(IT/N)oaAshs

HG ¢
o) = ’
var ( l) (ITU—TW+U2—IV)>\4_(U2_IV))\S

Therefore, the variance ratio comparing the MLMM to the LMM is
~ 2 2 2
var(3))  ((ITU=TW +U* =1V )\, = (U” = IV) Ay (IT/N)o%
varllG(5,) (IT/N)o? A3\ (ITU = TW + U2 = IV)(\y — 74) — (U2 = IV)(\3 — 73)
(ITU -TW + U2 - IV))\g()\4 - ’7'4){)\4 + (L - ].)T4} - (U2 - IV))\4()\3 - T3){)\3 + (L - 1)’7’3}
(ITU =TW + U% = IV){\ + (L — D)1y} = (U2 = IV){ A3 + (L — 1)73}
(ITU = TW + U* = 1V) A\ = (U% = IV ) Mg
X
(ITU =TW + U2 = IV){\ + (L = D)7y} — (U% = IV){ A3 + (L — 1)73}
(ITU =TW + U* = IV)A; (A = 7)) {0 + (L= D7y} = (U7 = IV)A3 (Mg = 73){A\s + (L = 1)73}
(ITU —=TW + U2 = IV)(\y — 74) = (U? = IV)(\g — 73) '

We can again use x = ITU — TW + U? -1V, y = U? - IV, a3 = A3 =73, ay = My — T4, b3 = X3 + (L — 1)73, and
by = My + (L — 1)74. This gives us

2y — yAg [ TAT asby — yA3 asbs
1’b4 - ybg Ty — Yyasz

x2a4b4 - xy)\4)\§1a3b3 - xyAZl)\3a4b4 + y2a3b3

22asby — vyasby — zyaysbs + y2asbs

To evaluate whether this ratio is less than or greater than one we can take the difference of the numerator and

denominator.

num. - den. = 2°a,by — xy)\4)\§1a3b3 — 2yA; Azasby + y2a3b3 - (x2a4b4 — zyasby, — Tyasbs + y2a3b3)
= —ay (2msmads s = Nims = A3 ((L = 1)/ A3\

= zy(A\ams — As7a) (L = 1)/ Ashe).

We already showed in Web Appendix D that x > 0 and y < 0 in a SW-CRT design. Therefore, the difference
between the numerator and denominator is less than or equal to zero which leads to a variance ratio of less than or
equal to one. Thus, var(d;) < varHG(Sl) for any set of valid design parameters, with equality holds when 75\4 = T4 \3

Or poo = P11 = P2,0 = P21 = 0 (a special case when 7304 = 74 \;3).
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Web Appendix I

Closed-cohort design & common ICCs and intervention effects: derivation of variance

expression, var(J' )

Recall that if we assume common ICCs we have
Ty =(po = poo) XL + pood L
Ty =(p1 — pu )L + p1idr

Ty =(1 = pyo)Ip + poodL

Ty =(py — p2 )L + parJdp.

And if we assume common intervention effects, then the variance of the intervention effect estimator becomes

var(§') = {(ITU TW + U = IV)w AP {(N - 1)(Tg —T1) + T, - Ty} ' AP0
-1
— (U = 1V)w AP {(T = 1)(N = )T, + (T = )T + (N = )T + To} 7 AP }
_Ir 2 _1/2 -1/2
=~ (ITU -Tw +U* - 1V)w' {\g = 73) I +15J0} T A,

-1

- (07 - V)@ A O = )L+ madn) A

IT
LN,

{ (ITU =TW + U* = 1V) (A3 + (L = 1)) ™ = (U7 = 1V) (A + (L= 1)) ™ }

_ (IT/(LNA))(As + (L= 1)73) (Mg + (L = 1)74)
(ITU =TW + U2 = IV)\y + (L = 1)7,) = (U2 = IV)(\3 + (L = 1)73)’

where again we have A3 = 1+ (N = 1)(pg — p1) — p2, Ao = 1+ (N = 1)pg + (T = 1)(N = 1)py + (T = 1)pa,

T3 = pao — pa1 + (N = 1)(poo — p11), and 74 = 73 + T (pa1 + (N = 1)py;). Under the common ICCs assump-

-
tion, w = (ayl)\i/Q, .. .,UyL)\i/Q) where same as A3 and Ay, Ay = 1 — pg + p; — po is a distinct eigenvalue of the

(endpoint-specific) block exchangeable correlation structure (Li et al., 2018) defined for closed-cohort SW-CRTs

with a univariate outcome.

Closed-cohort design & common ICCs and intervention effects: proof of Theorem 4

An extension of Theorem 2 to closed-cohort designs, denoted Theorem 4, is provided below:

THEOREM 4. Under the parsimonious parameterization with common ICC values and a common intervention effect
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across endpoints under a closed-cohort design, the variance of the l-th intervention effect estimator (unscaled) under

model (11), i.e. §; = O'yl)\i/Q(S’, is

(IT/(LN))om (A + (L = 1)73) (A + (L = 1)74)
(ITU =TW +U? = IV)( Ay + (L = 1)1y) = (U2 = IV)(A3 + (L = 1)73)

UarbOth(Sl ) =

As shown in Theorem 8, under the parsimonious parameterization with common ICC values across endpoints, the

l-th diagonal element of Qs is denoted by

(IT/N)ay, y
(ITU-TW +U? = IV) (Mg —14) = (U? = IV) (A3 — 73)
(ITU = TW + U = IV ) As(As = 74) {a + (L = D)} = (U2 = IV) Ay(Xs = 73) {As + (L = 1)73}
(ITU =TW + U? = IV) {\g + (L = 1)} = (U2 = IV) {Ag + (L — 1)73}

varlCC(&) =

)

and varbom(sl) < varfcc(él) for any set of valid design parameters.

Proof:

var™(§) _ UT[(LN))7y (s + (L = 1)73)(Aa + (L = 1)74)
varlCC(§))  (UTU =TW +U? = IV)(Ay + (L — 1)7y) = (U2 = IV) (A3 + (L — 1)73)
(ITU =TW + U* = 1V) (A = 74) = (U* = IV) (A3 = 73)
(IT/N)Uiz
(ITU = TW + U® = IV) {0y + (L= 1)y} = (U° = IV) g + (L = 1)73}
XUTU —TW + U2 = IV) A = 72) D + (L = D} = (U2 = IV) (s — 73) g + (L — 173}
(1/L)(As + (L= 1)) (Mg + (L= D7) (ITU = TW + U* = IV) (A = 70) = (U* = IV) (A3 = 73))
(ITU =TW + U2 = IV) As(Aa = 72) {0 + (L= D)1} = (U2 = IV) AN — 73) {As + (L — 1)73}

X

Again using # = ITU = TW + U> = IV, y = U> = IV, a3 = A3 — T3, ag = Ay — 74, by = A3 + (L — 1)73, and
by = Ay + (L — 1)74. This gives us

_ (1/L)b3bs (way — yas)
x/\3a4b4 - y/\4a3b3

(xasbs)bs — (yasbs)bs

= (/0 (zasby)As — (yasbs) A\

_ (zasby){As + (L = 1)73} = (yagbs){\s + (L — 1)74}

= (/L) (zasbs)As — (yagbs) A

- (/1) (zasby) s = (yagbs) Ay + (L = 1)(wasby) s — (L — 1)(yasbs)1y

(zasby) s — (yasbs) Ay
D{(zasbs)ms — (90353)74})
($a4b4)/\3 - (ya3b3))\4

= (1/L)(1 L=

We are interested in determining when this ratio is less than 1 which is when

(L = 1){(wasby)Ts - (ya3b3)7'4}) <1

(1/L) (1 + (;I;a4b4)>\3 - (ya3b3))‘4
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(xa4b4)7'3 -

(ya3b3)7-4

(zasbs)Ag —

(yasbs) A4

< 1.

We know that 73 < A3 and 74 < A4 by definition and we already showed that x > 0 and y < 0 under a SW-CRT,

therefore the numerator is always less than the denominator which means the variance ratio is always less than 1.

Web Appendix J: Web Tables

Table 1: Estimated required number of clusters I, subjects per cluster-period N, periods 7', empirical type I
error when setting both effects to zero e, empirical power v, and predicted power ¢ obtained from power formula

for given effect size 6l/ 0s1, within-period and between-period endpoint-specific ICCs (pé, pll), within-period and

between-period between-endpoint ICCs (pg ,plll ), and intra-subject ICC (plzl) assuming a CAC of 0.5 with L = 2
co-primary endpoints.

P%Q (P(l)a Pb (va Pl) (Po ) Pl ) (61/051, 6af052) I N T e Y Y
0.2 (0.02,0.01) (0.02,0.01) (0.01, 0.005) (0.43, 0.43) 20 13 3 0.3 845 8&3.0
(0.10, 0.05) (0.01,0.005)  (0.40,0.38) 12 25 5 0.2 852 86.7
(0.20, 0.10)  (0.01,0.005)  (0.39,0.56) 12 25 4 0.3 83.6 86.2
(0.10, 0.05)  (0.02, 0. 01) (0.01, 0.005) (0.38, 0. 33) 12 25 5 0.2 826 85.0
(0.1, 0.05)  (0.05,0.025)  (0.49,0.98) 12 15 4 0.6 85.6 88.1
(0.20, 0.10) (0.05, 0.025)  (0.59,0.99) 12 20 3 0.7 842 847
(0.20, 0.10)  (0.02, 0. 01) (O 01, 0.005) (0.47, 0. 22) 20 18 5 0.7 822 823
(0.10, 0.05) (0.05,0.025)  (0.92,0.92) 10 12 3 0.3 84.1 848
(0.20, 0. 10) (O 10 0. 05) (0.54, 0. 81) 12 25 4 0.7 839 858
05 (0.02,0.01) (0.02,0.01) (0.0, 0.005)  (0.30,0.28) 30 10 4 0.7 84.4 841
(0.10, 0.05) (0.01,0.005)  (0.34,0.88) 16 22 3 0.6 824 813
(0.20, 0.10) (0.01,0.005)  (0.42,0.83) & 20 5 0.2 86.3 86.2
(0.10, 0.05) (0.02,0.01) (0.01, 0.005)  (0.38,0.55) 21 10 4 1.1 84.0 847
(0.10, 0.05) (0.05,0.025)  (0.52,0.68) & 25 5 0.5 84.8 88.7
(0.20, 0.10) (0.05,0.025)  (0.62,0.62) 22 8 3 0.8 839 83.9
(0.20, 0.10) (0.02, 0.01) (0.01, 0.005) (0.84, 0.29) 26 18 3 0.8 84.7 86.8
(0.10, 0. 05) (O 05, 0.025) (0.60, 0. 60) 12 16 4 1.3 85.0 858
(0.20, 0.10)  (0.10,0.05)  (0.32,0.84) 24 24 5 14 857 86.4
0.8 (0.02,0.01) (0.02,0.0I) (0.0L, 0.005)  (0.31,0.55) 12 16 5 15 844 826
(0.10, 0.05) (0.0, 0.005)  (0.29,0.57) 30 14 3 1.7 83.1 846
(0.20, 0.10)  (0.01, 0.005)  (0.20,0.84) 30 17 4 1.3 814 80.2
(0.10, 0.05) (0.02, 0.01) (0.01, 0.005) (0.31, 0.62) 20 13 5 09 84.2 835
(0.10, 0.05) (0.05,0.025)  (0.82,0.92) 8 22 3 0.6 852 874
(0.20, 0.10)  (0.05,0.025)  (0.45,0.45) 18 18 4 1.0 83.7 854
(0.20, 0.10) (0.02,0.01) (0.01,0.005)  (0.99,0.25) 28 25 3 1.3 85.6 84.9
(0.10, 0.05) (0.05,0.025)  (0.63,0.31) 24 17 4 1.0 841 84.6
(0.20,0.10)  (0.10,0.05)  (0.82,0.82) & 10 5 1.1 86.1 89.4
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