Supplementary Information

Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader

Kailong Zhao¹, Yuhao Xia¹, Fujin Zhang¹, Xiaogen Zhou¹, Stan Z. Li^{2*}, and Guijun Zhang^{1*}

¹ College of Information Engineering, Zhejiang University of Technology, HangZhou 310023, China; ² AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China.

*Correspondence should be addressed to Guijun Zhang (zgj@zjut.edu.cn) and Stan Z. Li (Stan.ZQ.Li@westlake.edu.cn).

Supplementary Note

Note S1. Structure clustering in master structure database construction.

We used a greedy incremental clustering method similar to CD-HIT¹ to construct the master structure database. The clustering algorithm sorts the structures according to the sequence length from long to short, and processes them in the order from longest to shortest. The first structure is used as the first cluster representative structure. Each structure of the remaining structures is then compared to a previously found representative structures, and is classified as redundant or representative based on whether it is similar to one of the existing representative structures. After the structure is grouped into representative, it does not need to be compared with other representatives. The similarity of the two structures is measured by the TM-score calculated by TM-align. When the reference structures are different, two scores are calculated for the similarity of the two structures. Both scores are above 0.8 to be classified as one group. Therefore, the lengths of structures in the same cluster are all in the range [0.8*L, 1.25*L], where L is the length of the representative structure.

Supplementary Figures

Figure S1. Monomeric templates (blue) detected by PAthreader for complexes 1AB9 and 1GRN.

PAthreader (w/o AlphaFold DB) TM-score=0.56

Template: 3SF4_A Sequence identity=8.47%

PAthreader TM-score=0.84 Template: AF-Q9HYI5-F1 Sequence identity =18.31%

native alignment Aligned length=211 TM-score=0.83

PAthreader TM-score=0.89 Template: AF-Q32FS8-F1 Sequence identity=29.98%

PAthreader alignment Aligned length=212 TM-score=0.81

PAthreader (alignScore) TM-score=0.66 Template: AF-X8F395-F1 Sequence identity=25.71%

HHsearch alignment Aligned length=181 TM-score=0.55

PAthreader (pDMScore) TM-score=0.64 Template: AF-A0A0H3GWU0-F1 Sequence identity=21.58%

Figure S2. a An illustrative example from 1HZ4_A, showing the structure superposition of the PAthreader template (yellow) and PAthreader (w/o AlphaFold DB) template (pink) with the native structure (blue). **b** An illustrative example from 2CUL_A shows that PAthreader and HHsearch provide different alignment results for the same structure. 3CES_A (blue) is identified as the best template structure for the query target using both PAthreader and HHsearch. The native alignment (orange) represents the result obtained by comparing the identified structure with the native structure through TM-align. The PAthreader alignment (yellow) is obtained by threading the sequences into the identified structures based on the sequence alignment provided by the three-track alignment, and the HHsearch alignment (pink) is generated by Hidden Markov-constructed profiles comparison. **c** An illustrative example from 2PIA_A, showing the structure superposition of the PAthreader (gllow), PAthreader (alignScore) template (orange) and PAthreader (pDMscore) template (pink) with native structure (blue).

Figure S3. The running time of PAthreader and LOMETS3 to search templates. The x-axis is the length of protein and the y-axis is the running time in hours. The running time of LOMETS3 are taken from the supporting information of LOMETS3³, and that of PAthreader is linearly fitted according to the actual running time on 551 test proteins.

Figure S4. a, b The relationship between model accuracy and template quality of AlphaFold2 on 551 test proteins and 186 cameo proteins, respectively. In the modeling of AlphaFold2, templates with \geq 30% sequence identity were removed. We selected the first template of HHsearch to compare with AlphaFold2's first model. The first template is obtained by ranking Sum_probs values of HHsearch templates. Sum_probs is the sum over the posterior probabilities of all aligned pairs of match states, which usually correspond to the template with the highest accuracy².

Figure S5. An illustrative example from Papain-like proteinase of SARS-CoV-2 virus, showing the structure superposition of the PAthreader model (blue) and AlphaFold2 model (red) with the native structure (yellow).

Figure S6. The second experimental pathway of horse heart cytochrome c is determined by hydrogen exchange (HX) pulse labeling and nuclear magnetic resonance (NMR). The literature show that cytochrome c unfolds by stepping uphill through a ladder form. First, the grey bottom loop of cytochrome c unfolded alone, then grey + red unfolded, then these two + yellow unfolded, then these three + green, and finally N- and C-terminal blue helical segments unfolded^{4,5}. It contains 4 folding intermediates, I₁, I₂, I₃ and I₄.

Figure S7. Crystal structure of a domain-swapped dimer of yeast iso-1-cytochrome c with omega-undecylenyl-beta-D-maltopyranoside (PDB ID: 5KLU). The solid line box is the partial superposition of 5KLU and structure of horse heart cytochrome c (grey).

Figure S8. The folding pathways of 30 human proteins were determined by PAthreader. The residue frequency distributions are shown on the left, the folding intermediate are shown in the middle, and the folding order are shown on the right. The folding order is blue and then red.

Figure S9. a 3D structure of oxidized horse heart cytochrome c. **b** Multi-peak distance distribution of flexible regions protein predicted by DeepMDisPre. The yellow dotted line is the true distance corresponding to the 3D structure. The figure presents 12 predicted cytochrome c residue pairs with multiple local maxima that were significantly visible, which distributed in the flexible region except three helices.

Figure S10. Schematic of the construction of the master structure database. PAcluster80 is constructed with 56,805 clusters consisting of 106,275 PDB structures and 100,912 AlphaFold DB structures. The structural profiles are extracted from the structural classes.

Figure S11. Schematic of the construction of structure profiles from structure classes in the master structure database PAcluster80. The member structures of the clusters are globally aligned with the center structure by TM-align. The distance range (2-20 Å) was then divided into 36 bins with a size of 0.5 Å, plus one bin for residue pair distances \geq 20 Å. The number of times of falling into the bin divided by the total was taken as the probability. The residues pairs with gaps are not included in the total.

Supplementary Tables

Table S1. Summary of the results of the ablation experiment	s. The results are obtained by	computing the TM-score of the
first template.		

	(0.9, 1.0]	(0.7, 0.9]	(0.5, 0.7]	(0.0, 0.5]	All	
0	Contribution o	f AlphaFold I	DB			
PAthreader	0.899	0.787	0.568	0.424	0.725	
PAthreader (w/o AlphaFold DB)	0.898	0.775	0.521	0.324	0.702	
HHsearch	0.840	0.718	0.476	0.272	0.646	
LOMETS3	0.868	0.754	0.534	0.342	0.689	
	Contribution of pDMScore					
PAthreader	0.899	0.787	0.568	0.424	0.725	
PAthreader (alignScore)	0.896	0.781	0.562	0.408	0.718	
PAthreader (pDMScore)	0.878	0.774	0.557	0.422	0.712	

Table S2. TM-score of template recognition on 551 tested proteins. Tested proteins were divided into four subsets (0-0.5, 0.5-0.7, 0.7-0.9 and 0.9-1) based on TM-score of the best template of targets in PDB. Bold text highlights the best result in each category.

	(0.9, 1.0]	(0.7, 0.9]	(0.5, 0.7]	(0.0, 0.5]	All
	num (58)	num (321)	num (149)	num (23)	num (551)
PAthreader	0.899	0.787	0.568	0.424	0.725
HHsearch	0.840	0.718	0.476	0.272	0.646
LOMETS3	0.868	0.754	0.534	0.342	0.689
SPARKS-X	0.851	0.736	0.505	0.326	0.669
MUSTER	0.854	0.737	0.500	0.327	0.668
CEthreader	0.859	0.740	0.507	0.322	0.672
EigenTHREADER	0.841	0.727	0.488	0.324	0.656

 Table S3.
 Summary of the results of top 10 public servers on the three-month CAMEO blind test

 (https://www.cameo3d.org/modeling/3-months/difficulty/all/?to_date=2022-07-09).

Company and a	Tar	gets	Average LDDT		
Server name	All	#Modeled	All	#Modeled	
PAthreader	189	189	84.4	84.4	
SADA	189	189	83.9	83.9	
ZJUT-DeepAssembly	189	183	81.4	84.0	
MultiDFold	189	189	81.2	81.2	
AIRFold	189	181	80.2	83.8	
MEGA-EvoGen	189	175	78.0	84.3	
ManiFold	189	172	74.9	82.3	
IntFOLD7	189	169	72.3	80.8	
RoseTTAFold	189	175	68.2	73.6	
pureAF2_notemp	189	142	63.2	84.2	

> 3 months - (2022-04-15 - 2022-07-09) - "All targets" dataset

			Targets				Average KDDT O	
Common Subset - Start Comparison		Aug response time O (titrum ss) =	#Submitted 0	#Modeled	#Submitted Oligo <mark>0</mark> -	Modeled Olige 0	Al.	Modeled
PAthreader	99	56:47:48	189	109	58	0	84.4	84.4
SADA		65.06.46	189	189	58	0	83.9	83.9
ZJUT-DeepAssembly		69-44-45	109	183	58	0	81.4	84.0
MuttDFold		76.56.34	109	189	58	0	81.2	81.2
AIRFold		29.22.30	189	181	58	0	80.2	83.8
MEGA-ExoGen		64.33.26	189	175	58	0	78.0	84.3
ManiFold		69:23:44	189	172	58	0	74.9	82.3
IntFOLD7		31 36 32	189	169	55		72.3	80.8
RoseTTAFold		19:17:58	189	175	58	0	68.2	73.6
BestSingleStructuralTempla	ste 📃 🖸	04.11.21	189	171	58	0	64.4	71.2
pureAF2_notemp		24:12:41	189	142	58	0	63.2	64.2

	Structure	modelling	Template re	ecognition
	PAthreader	AlphaFold2	PAthreader	HHsearch
Helicase	0.968	0.969	0.945	0.945
Proteinase 3CL-PRO	0.981	0.964	0.993	0.985
nucleocapsid protein	0.962	0.917	0.961	0.749
Non-structural protein 7	0.953	0.861	0.952	0.573
Uridylate-specific endoribonuclease	0.989	0.967	0.975	0.081
ORF7a	0.943	0.943	0.924	0.924
Non-structural protein 9	0.877	0.873	0.841	0.789
Papain-like proteinase	0.995	0.991	0.995	0.954
Non-structural protein 10	0.171	0.176	0.191	0.170
Papain-like proteinase	0.987	0.825	0.985	0.861
ORF3a	0.812	0.800	0.355	0.186
nucleocapsid protein	0.974	0.955	0.836	0.836
Non-structural protein 8	0.580	0.390	0.419	0.575
ORF8	0.410	0.749	0.270	0.208
Envelope Protein Transmembrane Domain	0.607	0.602	0.599	0.610
NSP1	0.947	0.947	0.356	0.896
Papain-like proteinase	0.874	0.870	0.731	0.732
Average TM-score	0.825	0.812	0.725	0.651

Table S4. Summary of the results of 17 proteins of SARS-CoV-2 virus.

Table S5. Summary of the results of protein folding pathway exploration. 30 human proteins whose native structures have not been determined by biological experiments were labeled with their UniProt accession. The first template is labelled by PDB ID or AlphaFold DB ID. The last column represents the proportion of templates used to identify intermediates in the different pfam families (only the top three families with the highest proportions are listed), where templates from the PDB were used for the statistics (most of the structures from the AlphaFold DB were not assigned to pfam family).

	Protein	First template	Residue range of folding intermediate	pfam family		
	7 proteins (crystal structures and folding pathways determined by biological experiments)					
1	1I5T	AF-P99999-F1	3-13, 61-67, 88-101	Cytochrom_C (49.7%) S1-P1_nuclease (5.7%) H_PPase (4.5%)		
2	1BE9	5HF4_A	12-29, 36-92	PDZ (69.2%) FAD_binding_3 (4.6%) Amino_oxidase (4.6%)		
3	2LZM	3FI5_A	1-13, 65-164	Phage_lysozyme (80.8%) 7tm_1 (11.1%) Pesticin (2.0%)		
4	1DKT	AF-B0G102-F1	3-25, 51-68	Pkinase (63.5%) PK_Tyr_Ser-Thr (18.6%) Ribosomal_S24e (4.6%)		
5	1MBC	5YCI_A	4-43, 59-76, 101-118, 125-148	Globin (100%)		
6	1NTI	AF-Q9D258-F1	1-14, 21-41, 62-86	COX1 (15.9%) ACBP (11.1%) H_PPase (8.7%)		
7	1ҮҮЈ	6G70_A	3-42, 56-79	Cytochrom_B562 (21.4%) 7tm_1 (16.6%) Vinculin (5.9%)		
	30 human protein	ns (crystal structures	and folding paths not determined by	y biological experiments)		
1	A0A1W2PQ64	AF-U7PWC0-F1	8-12, 18-37, 107-110, 134-139	adh_short_C2 (19.6%) Pantoate_ligase(13.5%) DLH (9.5%)		
2	A0A5A2	AF-A0A5A2-F1	23-69, 83-113	V-set (50.7%) C1-set (38.8%) DUF1968 (10.4%)		
3	A1L167	AF-A1L167-F1	1-9, 23-46, 52-116	UQ_con (77.1%) TPR_8 (6.8%) SHMT (5.1%)		
4	A6NCE7	AF-Q9GZQ8-F1	13-37, 51-70, 79-83, 88-102, 109-115	ATG8 (31.1%) PI3_PI4_kinase (17.4%) Sel1 (5.4%)		
5	A6NFH5	AF-A6NFH5-F1	7-15, 40-55, 80-131	Lipocalin (48.8%) FGF (23.2%) Lipoprotein_1 (8.4%)		
6	A6NIZ1	AF-Q6TEN1-F1	2-25, 37-58, 75-104, 111-120, 128-151,154-168	Ras (100%)		

				RNA_pol_Rpb2_6 (38.5%)
7	A6NKH3	AF-P54051-F1	20-34, 66-91	TPR_8 (8.3%)
				Sel1 (4.5%)
				RRM_1 (63.9%)
8	A6PVI3	AF-Q93594-F1	16-69, 76-120	GTP_EFTU_D2 (4.1%)
				Acyl_transf_1 (4.1%)
				Cystatin (17.8%)
9	P01037	AF-P21460-F1	62-94, 106-124, 129-139	SnoaL_4 (5.9%)
				Ring_hydroxyl_B (5.9%)
				Globin (95.7%)
10	P09105	1ABW_A	5-36, 54-72, 93-137	Phycobilisome (3.8%)
				Protoglobin (0.2%)
				EF-hand_7 (59.0%)
11	P0CE71	AF-Q9I8V0-F1	34-108	EF-hand_5 (8.6%)
				EF-hand_1 (4.5%)
				C1-set (50.9%)
12	POCF74	AF-P01843-F1	7-14, 23-43, 65-73, 84-99	V-set (49.1%)
				Arm (25.2%)
13	P0CL84	CL84 AF-P0CL84-F1	19-35, 43-117	Arm_3 (17.5%)
				HEAT_EZ (12.6%)
		DDI81 AF-Q9CQP2-F1	5-22, 60-110, 124-137	Peptidase_M4 (15.8%)
14	P0DI81			RVT_1 (10.3%)
				Clat_adaptor_s (9.7%)
		AF-Q9M9N1-F1	16-38, 51-99, 112-135, 153-181	Ras (66.0%)
15	P36405			Arf (28.2%)
				MMR_HSR1 (2.9%)
		AF-Q9WVF6-F1	20-32, 44-75, 97-125	Phospholip_A2_1 (59.9%)
16	P39877			COX1 (7.2%)
				ABC_tran (6.3%)
		254849 AF-P54849-F1		Acyl-CoA_dh_N (28.0%)
17	P54849		2-24, 59-88, 95-120, 132-153	Vinculin (10.0%)
				PMP22_Claudin (10.0%)
				Profilin (14.9%)
18	P60673	AF-P60673-F1	4-39, 85-112, 118-134	GAF (10.4%)
				Robl_LC7 (9.4%)
-				Pyridoxal_deC (17.4%)
19	P61457	AF-P61459-F1	34-77, 87-103	Aminotran_5 (13.0%)
				Aminotran_1_2 (13.0%)
				CRM1_repeat (17.4%)
20	20 Q2M238	AF-Q2M238-F1	3-16, 22-38, 44-65, 75-99	Arm (10.5%)
				HEAT_EZ (8.7%)
				LRR_8 (68.6%)
21	Q4LDG9	AF-Q4LDG9-F1	19-41, 47-129, 139-150, 175-176	LRR_adjacent (8.8%)
				LRR_5 (3.8%)
				UQ_con (99.3%)
22	Q5JXB2	AF-Q5JXB2-F1	34-87, 93-114, 134-148	zf-C3HC4_2 (0.7%)

				Ammonium_transp (26.9%)
23	Q5U5X0	AF-Q688I0-F1	2-42, 50-68	Fe-ADH (10.6%)
				ANAPC1 (6.7%)
24	OFROVO	1420 4	4 25 02 112 110 127	Globin (90.6%)
24	QODUR9	IA30_A	4-55, 92-112, 119-157	Phycobilisome (9.4%)
				2014/3/3 (22.5%)
25	Q6IPR1	AF-Q6IPR1-F1	3-24,49-83	HEAT_EZ (9.8%)
				TPR_8 (5.9%)
26	Q6ZSU1	AF-Q9DBX6-F1	2-15, 24-29, 38-69, 76-115	p450 (100%)
	27 Q8N0U8	Q8N0U8 AF-Q8N0U8-F1	107-171	ABC_tran (17.8%)
27				FCH (13.8%)
				COX1 (10.5%)
20	09N4C2	A = O N A C 2 E 1	12-35, 47-68, 79-96, 114-132,	Ras (69.2%)
20	Q811402	AF-Q8N402-F1	151-191	Arf (30.8%)
				Profilin (17.0%)
29	Q8NHR9	AF-Q5IRJ7-F1	3-41, 80-126	GAF (12.5%)
				Robl_LC7 (10.8%)
				1-cysPrx_C (40.2%)
30	Q8TBF2	AF-Q8TBF2-F1	13-10, 28-100, 147-103,	AhpC-TSA (19.1%)
			1/3-185	Redoxin (16.6%)

 Table S6. The parameter descriptions in PAthreader.

Number of structure classes used in the second three-track alignment stage	$N_{ m clu}$	500
Number of templates to predict pDMScore	$N_{\rm pDM}$	50
Number of templates used to identify intermediate	$N_{ m t}$	500
Threshold of ResFscore used to identify intermediate	Icut	0.4
Weight of pDMScore in loss function	W	10
Infinitely small quantity in pDMScore	ε	0.001
Number of maxima of the distance profile	k_a	3
Number of maxima of the structure profile in the two	l-	first stage: 3
three-track alignment stages	κ_b	
Threshold of inter recidue distance	2	first stage: 10Å
	λ	second stage: 20Å

 Table S7. Physical and geometric features extracted from templates.

		L×20	One-hot encoded amino acids.
	Amino acid properties	L×24	Blosum62 scores.
		L×7	Per amino-acid feature sets from Meiler.
	Secondary structures L×4		Three state secondary structures given by DSSP
Physical			solver.
features		I×4	One-body terms: p_aa_pp, rama_prepro, omega,
		LAT	fa_dun.
	Rosetta energy		Two-body terms: fa_atr, fa_rep, fa_sol,
		L×L×9	lk_ball_wtd, fa_elec, hbond_bb_sc, hbond_sc,
			hbond_sr_bb, hbond_lr_bb.
		L×L×5	Inter-residue C_{β} to C_{β} distance map.
	Multi-distances		C_{α} to tip-atom distance map.
			Tip-atom to C_{α} distance map.
			Tip-atom to tip-atom distance map.
			Sequence separation map.
	Orientations	L×L×6	cosine and sine of dihedral and planar angles
Geometric			defined by trRosetta.
features	Backbone angles	Туć	Phi, Psi, and Omega angles.
	and lengths	L^0	Standardized length between backbone atoms.
		1.004004	Voxelized each residue individually in the
	Voxelization	L×24×24	corresponding local coordinate frame defined by
		×24×167	the backbone C , C_{α} , and N atoms.
	Ultrafast Shape	T.v.2	The first moment calculation of the distance sets at
	Recognition	L×3	the three reference positions.

Supplementary References

- Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. *Bioinformatics* 28, 3150-3152 (2012).
- 2. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. *BMC Bioinformatics* **20** (2019).
- 3. Zheng, W. et al. LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation. *Nucleic Acids Res* **50**, W454-W464 (2022).
- 4. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: Native-state hydrogen exchange. *Science* 269, 192-197 (1995).
- Englander, S.W. & Mayne, L. The case for defined protein folding pathways. *Proc. Natl Acad. Sci. USA* 114, 8253-8258 (2017).