SUPPLEMENTARY FILE 7

Primary cam morphology Delphi study – Dissent analysis Delphi domains 1 to 4

Although the main aim of the Delphi method is to structure a group communication process that might lead to consensus, we were also interested in panel dissent. To explore possible dissent, we applied *dissent analyses* including outlier analysis, bipolarity analysis, and stakeholder group analysis. In addition we performed a thematic analysis of panellists' comments, including tension and dissent, as described. [1,2]

Table of Contents

Outlier analysis4
Definitions – Delphi domain 14
Figure SF7-1 Outliers for statements 1 to 12 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)
Terminology – Delphi domain 2
Figure SF7-2 Outliers for statements 13 to 31 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)
Taxonomy – Delphi domain 36
Figure SF7-3 Outliers for statements 32 to 35 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)
Imaging outcomes – Delphi domain 47
Figure SF7-4 Outliers for statements 32 to 35 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)
Bipolarity analysis
Definitions – Delphi domain 18
Figure SF7-5 Histograms of Likert Scale score frequencies for statements 1 to 129
Terminology – Delphi domain 210
Figure SF7-6 Histograms of Likert Scale score frequencies for statements 13 to 3113
Taxonomy – Delphi domain 3
Figure SF7-7 Histograms of Likert Scale score frequencies for statements 32 to 3514
Imaging outcomes – Delphi domain 415
Figure SF7-8 Histograms of Likert Scale score frequencies for statements 36 to 4716
Stakeholder Group analysis
Definitions – Delphi domain 117

Table SF7-1 Kruskal-Wallis test to compare Orthopaedic Surgeons vs other stakeholder groups (p-values)
Table SF7-2 Kruskal-Wallis test to compare Patient & Public Involvement Group (PPI) vs other stakeholder groups (p-values) 19
Table SF7-3 Kruskal-Wallis test to compare Physical Therapists vs other stakeholder groups (p-values) 22
Table SF7-4 Kruskal-Wallis test to compare Physicians vs other stakeholder groups (p-values) 24
Table SF7-5 Kruskal-Wallis test to compare Radiologists vs other stakeholder groups (p-values)
Table SF7-6 Kruskal-Wallis test to compare Researchers vs other stakeholder groups (p-values)
Terminology – Delphi domain 2
Table SF7-7 Kruskal-Wallis test to compare Orthopaedic Surgeons vs other stakeholder groups (p-values)
Table SF7-8 Kruskal-Wallis test to compare Patient & Public Involvement Group (PPI) vs other stakeholder groups (p-values) 34
Table SF7-9 Kruskal-Wallis test to compare Physical Therapists vs other stakeholder groups37
Table SF7-10 Kruskal-Wallis test to compare Physicians vs other stakeholder groups (p-values)
Table SF7-11 Kruskal-Wallis test to compare Radiologists vs other stakeholder groups (p- values) 43
Table SF7-12 Kruskal-Wallis test to compare Researchers vs other stakeholder groups (p-values) values) 46
Taxonomy - Delphi domain 3
Table SF7-13 Kruskal-Wallis test to compare Orthopaedic Surgeons vs other stakeholder groups (p-values) 50
Table SF7-14 Kruskal Wallis test to compare Patient & Public Involvement Group (PPI) vs other stakeholder groups 50
Table SF7-15 Kruskal-Wallis test to compare Physical Therapists vs other stakeholder groups (p-values) 51
Table SF7-16 Kruskal-Wallis test to compare Physicians vs other stakeholder groups (p-values) 52
Table SF7-17 Kruskal-Wallis test to compare Radiologists vs other stakeholder groups (p-values) values) 52
Table SF7-18 Kruskal-Wallis test to compare Researchers vs other stakeholder groups (p-values) values) 53
Imaging outcomes – Delphi domain 4
Table SF7-19 Kruskal-Wallis test to compare Orthopaedic Surgeons vs other stakeholder groups (p-values) 54

Table SF7-20 Kruskal-Wallis test to compare Patient & Public Involvement Group (PPI) vs other stakeholder groups 57
Table SF7-21 Kruskal-Wallis test to compare Physical Therapists vs other stakeholder groups (- values) 60
Table SF7-22 Kruskal-Wallis test to compare Physicians vs other stakeholder groups (p-values)
Table SF7-23 Kruskal-Wallis test to compare Radiologists vs other stakeholder groups (p-values) values) 66
Table SF7-24 Kruskal-Wallis test to compare Researchers vs other stakeholder groups (p-values) values) 70
References

Outlier analysis

Outliers can have a substantial effect on variables (e.g., Interquartile range), and statistical consensus. The existence of outliers is therefore an important potential explanation for dissent. We identified low outliers as data points that fall more than 1.5 times the Interquartile range below the first quartile, and high outliers as data points that fall more than 1.5 times the Interquartile range above the third quartile. In addition, we visually inspected histograms of Round 2 stakeholder group scoring for outliers. We re-analysed consensus after eliminating outliers for all statements with marginal non-consensus to test if these had an impact on the group's consensus.

Definitions - Delphi domain 1

Outliers for ten of twelve definition statements in round 2, had no statistical effect on group consensus or non-consensus. (Figure 1) None of the outliers provided qualitative comments. One physical therapist chose "Unable to score" for most of the definition statements in round 1 and 2 as they '*did not agree that the concept of primary and secondary CAM is commonly agreed and established*'.

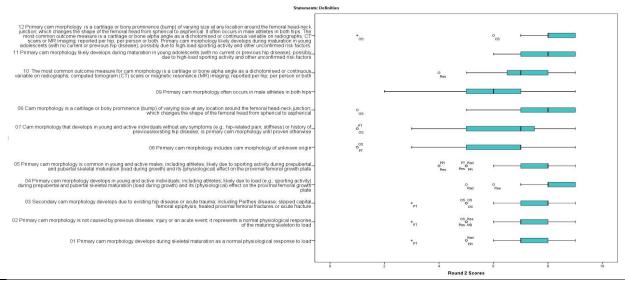
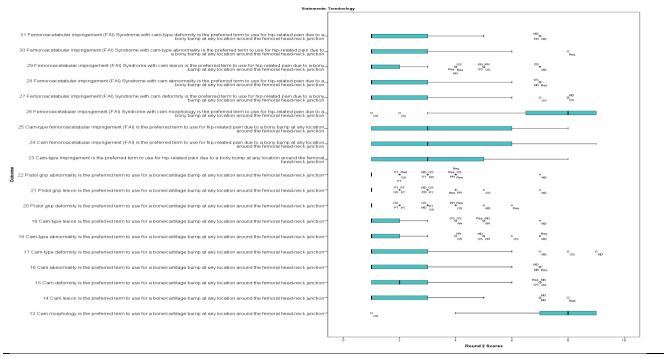



Figure SF7-1 Outliers for statements 1 to 12 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)

Terminology – Delphi domain 2

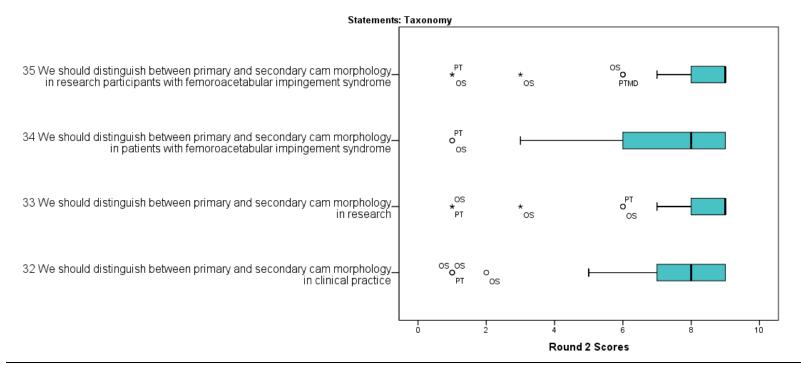
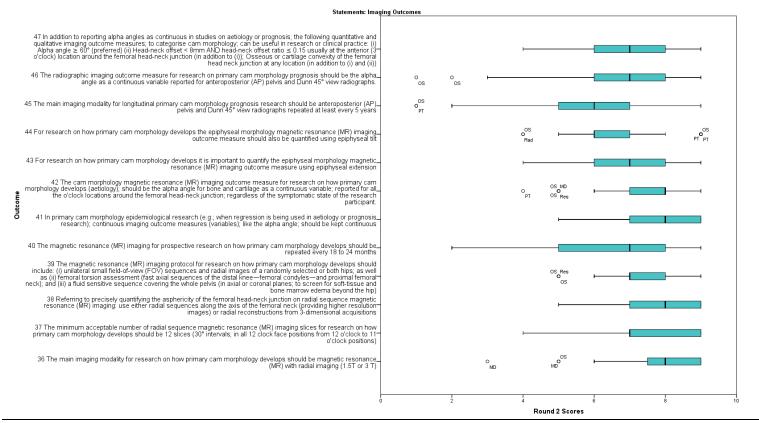

Outliers for 16 of the 19 terminology statements in round 2, had no statistical effect on group consensus or non-consensus. (Figure 2) The orthopaedic surgeon outlier for statements 13 and 26 did not agree that primary cam morphology refers to a bump "at any location" around the femoral head-neck junction. One physician chose "Unable to score" for most of the terminology statements in round 1 as they misinterpreted the statement wording. Feedback after round 1 clarified the misunderstanding.

Figure SF7-2 Outliers for statements 13 to 31 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)

Taxonomy – Delphi domain 3


Although strong consensus was achieved for statements 32, 33 and 35, few outliers (mainly orthopaedic surgeons and a physical therapist) were not convinced (Figure 3). After removing two outliers for statement 34, the Delphi panel reached consensus on the importance of distinguishing between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome.

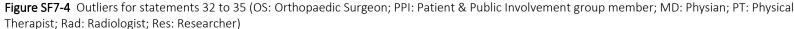
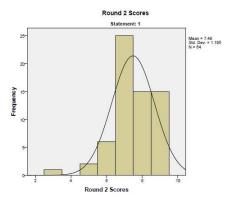


Figure SF7-3 Outliers for statements 32 to 35 (OS: Orthopaedic Surgeon; PPI: Patient & Public Involvement group member; MD: Physian; PT: Physical Therapist; Rad: Radiologist; Res: Researcher)

Imaging outcomes – Delphi domain 4

Six of 12 imaging outcomes statements (Statements 36, 39, 42, 44, 45, and 46) had outliers. (Figure 4). After eliminating the two orthopaedic surgeon outliers for marginally non-consensus statement 46, the Delphi panel reached consensus that the alpha angle as a continuous variable, reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs, should be the radiographic imaging outcome measure for research on primary cam morphology prognosis.



Bipolarity analysis

Opposing groups of experts with an important and insoluble cleft of opinion, might result in nonconsensus. Bipolar data distribution is therefore a possible explanation for dissent. To test for bipolarity, we investigated potential bimodal distribution (two or more answer options had the same mode frequency) and visually inspected histograms for round 2 scores of each statement. [1]

Definitions – Delphi domain 1

There were no bimodal distribution in the overall scoring of definition statements in round 2. (Figure 5)

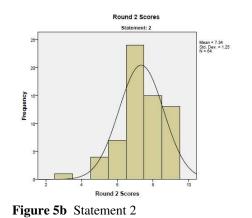


Figure 5a Statement 1

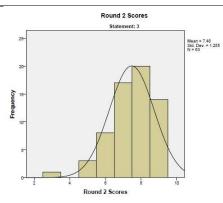
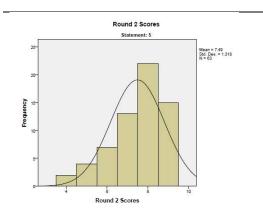
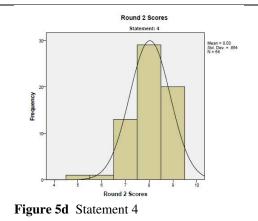




Figure 5c Statement 3

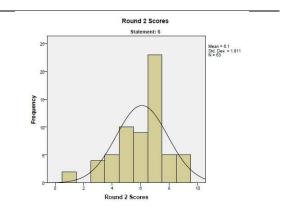
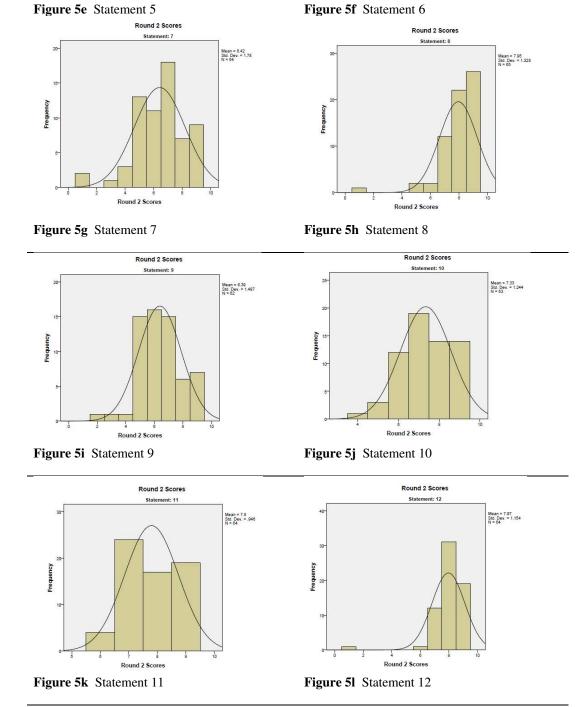




Figure 5e Statement 5

Terminology – Delphi domain 2

There were no bimodal distribution in the overall scoring of terminology statements in round 2. (Figure 6)

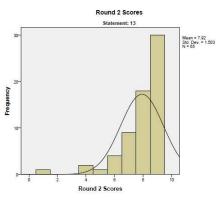
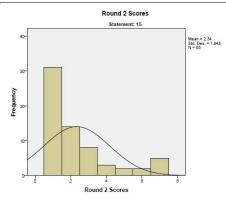



Figure 6a Statement 13

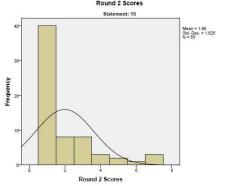


Figure 6c Statement 15

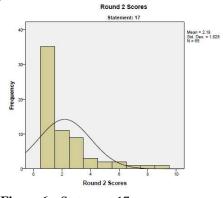


Figure 6e Statement 17

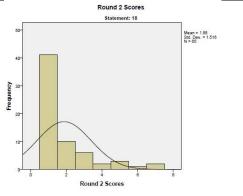
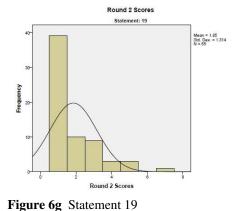
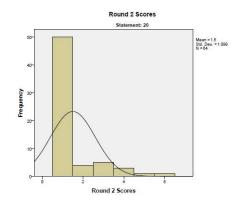
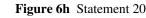
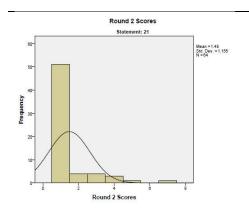






Figure 6f Statement 18

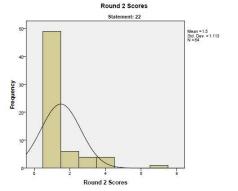


Figure 6i Statement 21

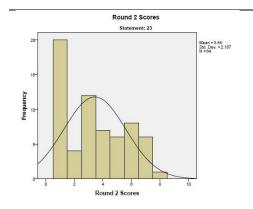


Figure 6k Statement 23

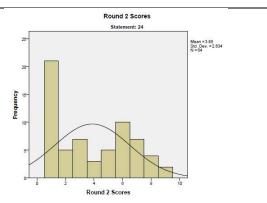
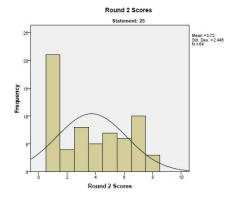
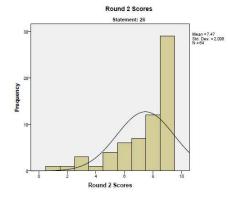
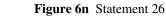
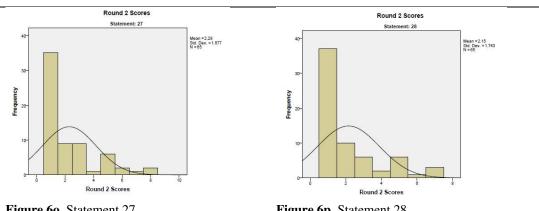






Figure 61 Statement 24

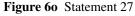


Figure 6m Statement 25

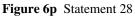



Figure 6q Statement 29

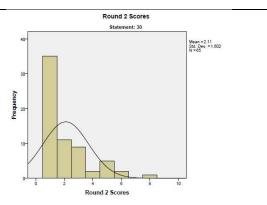


Figure 6r Statement 30

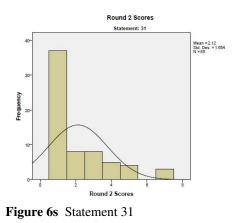
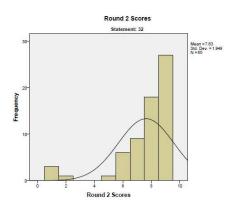



Figure SF7-6 Histograms of Likert Scale score frequencies for statements 13 to 31

Taxonomy – Delphi domain 3

There were no bimodal distribution in the overall scoring of taxonomy statements in round 2. (Figure 7)

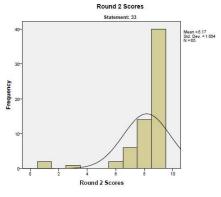
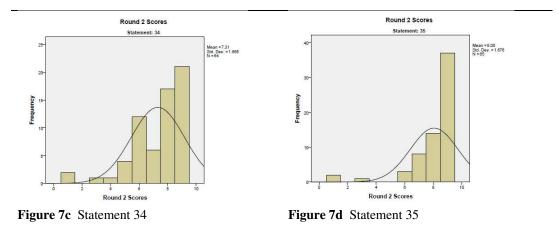
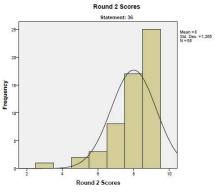
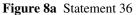
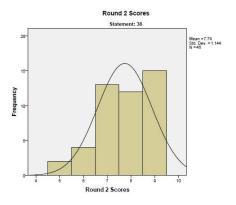


Figure 7a Statement 32


Figure SF7-7 Histograms of Likert Scale score frequencies for statements 32 to 35

Imaging outcomes – Delphi domain 4

There were no bimodal distribution in the overall scoring of imaging outcomes statements in round 2. (Figure 8)

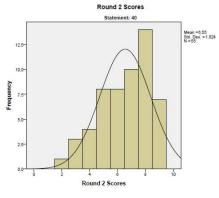


Figure 8e Statement 40

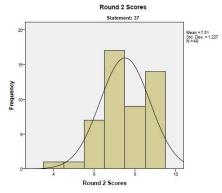
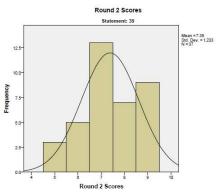
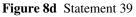




Figure 8b Statement 37

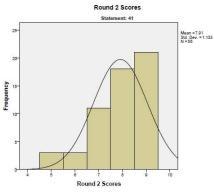
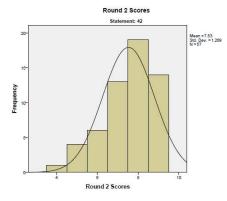
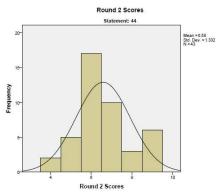




Figure 8f Statement 41

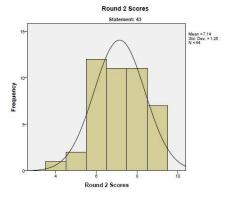


Figure 8h Statement 43

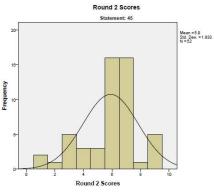
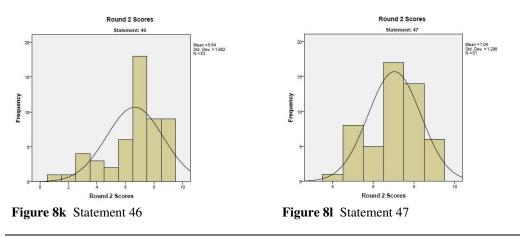
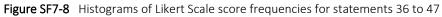




Figure 8i Statement 44

Stakeholder Group analysis

Stakeholder group analysis: Stakeholder group analysis, a classical dissent analysis, is important to identify opposing views. To compare the scores from Round 2 between the six stakeholder groups, we performed non-parametric Kruskal-Wallis test (not assuming a normal distribution of the underlying data). To account for multiple post hoc comparisons, we adjusted the statistical significance threshold p-value to 0.003 according to Bonferroni method. However, agreeing with the general view that "a declaration of 'statistical significance' has today become meaningless", [3] substantial stakeholder group differences (p<0.0033) prompted us to further scrutinise individual- and group opinions for the specific statement.

Definitions – Delphi domain 1

There was no statistically significant difference in how stakeholder groups scored the definition statements in round 1 and 2.

	Orthopaed surgeons		Orthopaedi vs physical	0	Orthopaedi vs physiciar	0	Orthopaedi vs radiologi	0	Orthopaed vs research	lic surgeons hers
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
01_Primary cam morphology develops during skeletal maturation as a normal physiological response to load	.694	.310	.837	.857	.629	.807	.379	.155	.103	.094
02_ Primary cam morphology is not caused by previous disease, injury or an acute event; it represents a normal physiological response of the maturing skeleton to load	.666	.611	.400	.108	.678	.511	.953	.296	.285	.380
03_Secondary cam morphology develops due to existing hip disease or acute trauma; including Perthes disease; slipped capital femoral epiphysis, healed proximal femoral fractures or acute fracture	.528	.128	.396	.048	.767	.085	.708	.189	.331	.508
04_ Primary cam morphology develops in young and active individuals, including athletes, likely due to load (e.g., sporting activity) during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.572	.258	.453	.746	.265	.691	.522	.219	.016	.021

Table SE7-1	Kruskal-Wallis test to compare Orthopaedic Surgeons vs other stakeholder groups (p-values)	
	Ridskar Wallis test to compare of thopacate surgeons vs other stakeholder groups (p values)	

05_ Primary cam morphology is common in young and active males, including athletes, likely due to sporting activity during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.364	.134	.624	.622	.254	.513	.019	.011	.045	.024
06_Primary cam morphology includes cam morphology of unknown origin	.072	.290	.024	.766	.170	.158	.763	.782	.112	1.000
07_Cam morphology that develops in young and active individuals without any symptoms (e.g., hip-related pain; stiffness) or history of previous/existing hip disease, is primary cam morphology until proven otherwise	.527	.121	.212	.110	.229	.012	.471	.825	.901	.578
08_ Cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical	.131	.028	.409	.015	.652	.028	.293	.042	.741	.832
09_Primary cam morphology often occurs in male athletes in both hips	.891	.900	.936	.807	.899	.700	.437	.398	.162	.047
10_The most common outcome measure for cam morphology is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, computed tomogram (CT) scans or magnetic resonance (MR) imaging, reported per hip, per person or both	.719	.913	.593	.981	.882	.719	.435	.155	.167	.059
11_ Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors	.631	.329	.514	.636	.505	.830	.231	.832	.109	.163

12_A comprehensive definition for	.221	.205	.409	.117	.481	.308	.268	.154	.671	.926
primary cam morphology would be:										
Primary cam morphology is a cartilage or										
bony prominence (bump) of varying size										
at any location around the femoral head-										
neck junction, which changes the shape of										
the femoral head from spherical to										
aspherical. It often occurs in male athletes										
in both hips. The most common outcome										
measure is a cartilage or bone alpha angle										
as a dichotomised or continuous variable										
on radiographs, CT scans or MR imaging,										
reported per hip, per person or both.										
Primary cam morphology likely develops										
during maturation in young adolescents										
(with no current or previous hip disease),										
possibly due to high-load sporting activity										
and other unconfirmed risk factors.										

	PPI vs Orth surgeons	nopaedic	PPI vs physi therapists	cal	PPI vs physicians		PPI vs radiologists		PPI vs researchers	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
01_Primary cam morphology develops during skeletal maturation as a normal physiological response to load	.694	.310	.767	.385	.387	.288	.193	.868	.128	.925
02_ Primary cam morphology is not caused by previous disease, injury or an acute event; it represents a normal physiological response of the maturing skeleton to load	.666	.611	.677	.284	.561	.898	.533	.574	.353	.215
03_Secondary cam morphology develops due to existing hip disease or acute trauma; including Perthes disease; slipped	.528	.128	.952	.680	.368	.869	.756	1.000	.165	.314

capital femoral epiphysis, healed proximal femoral fractures or acute fracture										
04_ Primary cam morphology develops in young and active individuals, including athletes, likely due to load (e.g., sporting activity) during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.572	.258	.234	.112	.615	.211	.759	.725	.098	.087
05_ Primary cam morphology is common in young and active males, including athletes, likely due to sporting activity during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.364	.134	.502	.243	.655	.161	.646	.435	.722	.494
06_Primary cam morphology includes cam morphology of unknown origin	.072	.290	.931	.328	.563	.653	.245	.134	.583	.262
07_Cam morphology that develops in young and active individuals without any symptoms (e.g., hip-related pain; stiffness) or history of previous/existing hip disease, is primary cam morphology until proven otherwise	.527	.121	.419	.918	.540	.254	.231	.122	.468	.291
08_ Cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical	.131	.028	.363	.955	.175	.679	.687	.855	.037	.022
09_Primary cam morphology often occurs in male athletes in both hips	.891	.900	.877	.885	.912	.835	.738	.498	.185	.062
10_The most common outcome measure for cam morphology is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs,	.719	.913	.353	.755	.769	.389	.305	.039	.266	.016

computed tomogram (CT) scans or magnetic resonance (MR) imaging, reported per hip, per person or both										
11_ Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors	.631	.329	.836	.606	.944	.184	.431	.242	.226	.326
12_A comprehensive definition for primary cam morphology would be: Primary cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical. It often occurs in male athletes in both hips. The most common outcome measure is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, CT scans or MR imaging, reported per hip, per person or both. Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors.	.221	.205	.592	.865	.465	.689	.953	.811	.123	.167

	Physical Tl Orthopaed surgeons	herapists vs dic	Physical the PPI	erapists vs	Physical The physicians	erapists vs	Physical The radiologists	•	Physical Th researchers	•
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
01_Primary cam morphology develops during skeletal maturation as a normal physiological response to load	.837	.857	.767	.385	.487	.982	.343	.234	.087	.152
02_ Primary cam morphology is not caused by previous disease, injury or an acute event; it represents a normal physiological response of the maturing skeleton to load	.400	.108	.677	.284	.186	.225	.550	.485	.050	.008
03_Secondary cam morphology develops due to existing hip disease or acute trauma; including Perthes disease; slipped capital femoral epiphysis, healed proximal femoral fractures or acute fracture	.396	.048	.952	.680	.371	.663	.787	.490	.097	.213
04_ Primary cam morphology develops in young and active individuals, including athletes, likely due to load (e.g., sporting activity) during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.453	.746	.234	.112	.055	.371	.231	.112	.006	.007
05_ Primary cam morphology is common in young and active males, including athletes, likely due to sporting activity during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.624	.622	.502	.243	.855	.926	.101	.031	.142	.048
06_Primary cam morphology includes cam morphology of unknown origin	.024	.766	.931	.328	.583	.192	.293	.366	.545	.800
07_Cam morphology that develops in young and active individuals without any	.212	.110	.419	.918	.804	.324	.093	.080	.198	.280

symptoms (e.g., hip-related pain; stiffness) or history of previous/existing hip disease, is primary cam morphology until proven otherwise										
08_ Cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical	.409	.015	.363	.955	.690	.647	.647	.906	.243	.021
09_Primary cam morphology often occurs in male athletes in both hips	.936	.807	.877	.885	.964	.680	.475	.404	.214	.038
10_The most common outcome measure for cam morphology is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, computed tomogram (CT) scans or magnetic resonance (MR) imaging, reported per hip, per person or both	.593	.981	.353	.755	.400	.863	.562	.120	.041	.032
11_ Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors	.514	.636	.836	.606	.928	.595	.568	.669	.386	.211
12_A comprehensive definition for primary cam morphology would be: Primary cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical. It often occurs in male athletes in both hips. The most common outcome measure is a cartilage or bone alpha angle as a dichotomised or continuous variable	.409	.117	.592	.865	.889	.525	.609	.936	.249	.095

on radiographs	, CT scans or MR imaging,
reported per hi	ip, per person or both.
Primary cam m	orphology likely develops
during maturat	ion in young adolescents
(with no currer	it or previous hip disease),
possibly due to	high-load sporting activity
and other unco	nfirmed risk factors.

	Physicians Orthopaec surgeons		Physicians vs PPI		Physicians vs Physical Therapists		Physicians vs radiologists		Physicians researcher:	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
01_Primary cam morphology develops during skeletal maturation as a normal physiological response to load	.629	.807	.387	.288	.487	.982	.716	.186	.196	.069
02_ Primary cam morphology is not caused by previous disease, injury or an acute event; it represents a normal physiological response of the maturing skeleton to load	.678	.511	.561	.898	.186	.225	.412	.574	.318	.059
03_Secondary cam morphology develops due to existing hip disease or acute trauma; including Perthes disease; slipped capital femoral epiphysis, healed proximal femoral fractures or acute fracture	.767	.085	.368	.869	.371	.663	.340	.924	.251	.216
04_ Primary cam morphology develops in young and active individuals, including athletes, likely due to load (e.g., sporting activity) during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.265	.691	.615	.211	.055	.371	.775	.181	.174	.005
05_ Primary cam morphology is common n young and active males, including	.254	.513	.655	.161	.855	.926	.039	.004	.064	.015

athletes, likely due to sporting activity during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate										
06_Primary cam morphology includes cam morphology of unknown origin	.170	.158	.563	.653	.583	.192	.740	.140	.869	.151
07_Cam morphology that develops in young and active individuals without any symptoms (e.g., hip-related pain; stiffness) or history of previous/existing hip disease, is primary cam morphology until proven otherwise	.229	.012	.540	.254	.804	.324	.074	.031	.175	.049
08_ Cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical	.652	.028	.175	.679	.690	.647	.378	.552	.194	.019
09_Primary cam morphology often occurs in male athletes in both hips	.899	.700	.912	.835	.964	.680	.422	.311	.149	.016
10_The most common outcome measure for cam morphology is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, computed tomogram (CT) scans or magnetic resonance (MR) imaging, reported per hip, per person or both	.882	.719	.769	.389	.400	.863	.235	.079	.101	.006
11_ Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors	.505	.830	.944	.184	.928	.595	.465	1.000	.174	.081
12_A comprehensive definition for primary cam morphology would be:	.481	.308	.465	.689	.889	.525	.480	.498	.254	.291

Primary cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral headneck junction, which changes the shape of the femoral head from spherical to aspherical. It often occurs in male athletes in both hips. The most common outcome measure is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, CT scans or MR imaging, reported per hip, per person or both. Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors.

Table SF7-5 Kruskal-Wallis test to compare Radiologists vs other stakeholder groups (p-values)										
	Radiologis	ts vs	Radiologists	s vs PPI	Radiologists vs Physical		Radiologists vs		Radiologists vs	
	Orthopaed	dic				Therapists		Physicians		ſS
	surgeons									
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
01_Primary cam morphology develops during skeletal maturation as a normal physiological response to load	.379	.155	.193	.868	.343	.234	.716	.186	.499	.763
02_ Primary cam morphology is not caused by previous disease, injury or an acute event; it represents a normal physiological response of the maturing skeleton to load	.953	.296	.533	.574	.550	.485	.412	.574	.071	.009
03_Secondary cam morphology develops due to existing hip disease or acute trauma; including Perthes disease; slipped capital femoral epiphysis, healed proximal femoral fractures or acute fracture	.708	.189	.756	1.000	.787	.490	.340	.924	.101	.361

04_ Primary cam morphology develops in young and active individuals, including athletes, likely due to load (e.g., sporting activity) during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.522	.219	.759	.725	.231	.112	.775	.181	.463	.376
05_ Primary cam morphology is common in young and active males, including athletes, likely due to sporting activity during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.019	.011	.646	.435	.101	.031	.039	.004	.881	1.000
06_Primary cam morphology includes cam morphology of unknown origin	.763	.782	.245	.134	.293	.366	.740	.140	.709	.690
07_Cam morphology that develops in young and active individuals without any symptoms (e.g., hip-related pain; stiffness) or history of previous/existing hip disease, is primary cam morphology until proven otherwise	.471	.825	.231	.122	.093	.080	.074	.031	.458	.202
08_ Cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical	.293	.042	.687	.855	.647	.906	.378	.552	.065	.026
09_Primary cam morphology often occurs in male athletes in both hips	.437	.398	.738	.498	.475	.404	.422	.311	.683	.367
10_The most common outcome measure for cam morphology is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, computed tomogram (CT) scans or	.435	.155	.305	.039	.562	.120	.235	.079	.059	.006

magnetic resonance (MR) imaging, reported per hip, per person or both										
11_ Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors	.231	.832	.431	.242	.568	.669	.465	1.000	.715	.139
12_A comprehensive definition for primary cam morphology would be: Primary cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical. It often occurs in male athletes in both hips. The most common outcome measure is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, CT scans or MR imaging, reported per hip, per person or both. Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors.	.268	.154	.953	.811	.609	.936	.480	.498	.154	.052

Table SF7-6 Kruskal-Wallis test to compare Researchers vs other stakeholder groups (p-values)												
	Orthopaedic		Researche			,		Researchers vs Physicians		rs vs ts		
	surgeons											
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2		
01_Primary cam morphology develops during skeletal maturation as a normal physiological response to load	.103	.094	.128	.925	.087	.152	.196	.069	.499	.763		

02_ Primary cam morphology is not caused by previous disease, injury or an acute event; it represents a normal physiological response of the maturing skeleton to load	.285	.380	.353	.215	.050	.008	.318	.059	.071	.009
03_Secondary cam morphology develops due to existing hip disease or acute trauma; including Perthes disease; slipped capital femoral epiphysis, healed proximal femoral fractures or acute fracture	.331	.508	.165	.314	.097	.213	.251	.216	.101	.361
04_ Primary cam morphology develops in young and active individuals, including athletes, likely due to load (e.g., sporting activity) during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.016	.021	.098	.087	.006	.007	.174	.005	.463	.376
05_ Primary cam morphology is common in young and active males, including athletes, likely due to sporting activity during prepubertal and pubertal skeletal maturation (load during growth) and its (physiological) effect on the proximal femoral growth plate	.045	.024	.722	.494	.142	.048	.064	.015	.881	1.000
06_Primary cam morphology includes cam morphology of unknown origin	.112	1.000	.583	.262	.545	.800	.869	.151	.709	.690
07_Cam morphology that develops in young and active individuals without any symptoms (e.g., hip-related pain; stiffness) or history of previous/existing hip disease, is primary cam morphology until proven otherwise	.901	.578	.468	.291	.198	.280	.175	.049	.458	.202
08_ Cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of	.741	.832	.037	.022	.243	.021	.194	.019	.065	.026

the femoral head from spherical to aspherical										
09_Primary cam morphology often occurs in male athletes in both hips	.162	.047	.185	.062	.214	.038	.149	.016	.683	.367
10_The most common outcome measure for cam morphology is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, computed tomogram (CT) scans or magnetic resonance (MR) imaging, reported per hip, per person or both	.167	.059	.266	.016	.041	.032	.101	.006	.059	.006
11_ Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors	.109	.163	.226	.326	.386	.211	.174	.081	.715	.139
12_A comprehensive definition for primary cam morphology would be: Primary cam morphology is a cartilage or bony prominence (bump) of varying size at any location around the femoral head- neck junction, which changes the shape of the femoral head from spherical to aspherical. It often occurs in male athletes in both hips. The most common outcome measure is a cartilage or bone alpha angle as a dichotomised or continuous variable on radiographs, CT scans or MR imaging, reported per hip, per person or both. Primary cam morphology likely develops during maturation in young adolescents (with no current or previous hip disease), possibly due to high-load sporting activity and other unconfirmed risk factors.	.671	.926	.123	.167	.249	.095	.254	.291	.154	.052

Terminology – Delphi domain 2

The average scores for some of the terminology statements were statistically significant different for the physical therapist stakeholder group compared to the researcher stakeholder group (Statement 23, round 1, p<0.0033; Statement 24, round 1, p<0.001 and round 2, p<0.002), and for the radiologist stakeholder group compared to the researcher stakeholder group (Statement 24, round 2, p<0.0033).

	Orthopaec surgeons v		Orthopaedic vs physical t	-	Orthopaedi vs physiciar	0	Orthopaedic surgeons vs radiologists		Orthopaed vs research	ic surgeons ers
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
13_Cam morphology is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.022	.004	.005	.001	.025	.004	.044	.014	.117	.065
14_Cam lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head- neck junction	.969	.797	.030	.014	.287	.291	.271	.190	.925	.637
15_Cam deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.248	.350	.003	.028	.042	.119	.100	.009	.337	.967
16_Cam abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.401	.388	.110	.059	.327	.228	.064	.018	.853	.764
17_Cam-type deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.576	.512	.216	.099	.464	.195	.301	.018	.781	.832
18_Cam-type abnormality is the preferred term to use for a bone/cartilage bump at any location	.515	.369	.434	.035	.695	.205	.383	.018	.814	.698

around the femoral head-neck junction										
19_Cam-type lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.496	.399	.069	.007	.253	.119	.057	.008	.926	.437
20_Pistol grip deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.858	.507	.957	.329	.913	.321	.533	.105	.156	.957
21_Pistol grip lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.929	.741	.830	.687	.971	.568	.906	.174	.141	.863
22_Pistol grip abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.858	.536	.915	.239	.726	.341	.768	.348	.156	.641
23_Cam-type impingement is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.106	.369	.006	.022	.247	.217	.058	.033	.713	.646
24_Cam femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.416	.353	.463	.611	.610	.953	.675	.081	.019	.081
25_Cam-type femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to	.638	.665	.789	.628	.545	.658	.959	.276	.613	.890

a bony bump at any location around the femoral head-neck junction										
26_Femoroacetabular impingement (FAI) Syndrome with cam morphology is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.276	.077	.250	.009	.028	.003	.063	.021	.271	.119
27_Femoroacetabular impingement (FAI) Syndrome with cam deformity is the preferred term to use for hip- related pain due	.183	.227	.018	.010	.255	.155	.174	.009	.270	.129
28_Femoroacetabular impingement (FAI) Syndrome with cam abnormality is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.386	.268	.081	.030	.704	.275	.295	.009	.889	.522
29_Femoroacetabular impingement (FAI) Syndrome with cam lesion is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.667	.512	.052	.006	.658	.159	.295	.009	.963	.445
30_Femoroacetabular impingement (FAI) Syndrome with cam-type abnormality is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.756	.913	.129	.022	.705	.312	.296	.009	.963	.639
31_Femoroacetabular impingement (FAI) Syndrome with cam-type deformity is the preferred term to use	.507	.660	.041	.006	.468	.312	.210	.009	.614	.525

for hip-related pain due to a bony bump at any location around the

femoral head-neck junction

	PPI vs Orthopaedic surgeons		PPI vs physical therapists		PPI vs physicians		PPI vs radiologists		PPI vs researchers	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
13_Cam morphology is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.022	.004	.507	.673	.835	.514	1.000	.853	.342	.037
14_Cam lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head- neck junction	.969	.797	.126	.022	.538	.347	.480	.230	.869	.539
15_Cam deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.248	.350	.161	.093	.345	.246	.418	.011	.665	.290
16_Cam abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.401	.388	.616	.472	.937	.770	.231	.087	.372	.317
17_Cam-type deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.576	.512	.449	.208	.787	.408	.561	.024	.224	.610
18_Cam-type abnormality is the preferred term to use for a bone/cartilage bump at any location	.515	.369	.837	.352	.817	.743	.738	.087	.537	.732

around the femoral head-neck junction										
19_Cam-type lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.496	.399	.416	.170	.723	.503	.205	.048	.441	.962
20_Pistol grip deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.858	.507	.829	.972	1.000	.814	.462	.258	.159	.555
21_Pistol grip lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.929	.741	.829	.972	.966	.814	.833	.258	.158	.598
22_Pistol grip abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.858	.536	.781	.739	.597	.814	.888	.750	.158	.331
23_Cam-type impingement is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.106	.369	.091	.171	.512	.706	.326	.104	.046	.459
24_Cam femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.416	.353	.029	.019	.242	.376	.206	.017	.052	.236
25_Cam-type femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to	.638	.665	.302	.243	.185	.241	.507	.178	.667	.428

a bony bump at any location around the femoral head-neck junction										
26_Femoroacetabular impingement (FAI) Syndrome with cam morphology is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.276	.077	.934	.592	.133	.168	.261	.382	.626	.879
27_Femoroacetabular impingement (FAI) Syndrome with cam deformity is the preferred term to use for hip- related pain due	.183	.227	.175	.192	.940	.762	.477	.047	.869	.674
28_Femoroacetabular impingement (FAI) Syndrome with cam abnormality is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.386	.268	.509	.486	.623	.837	.739	.086	.542	.695
29_Femoroacetabular impingement (FAI) Syndrome with cam lesion is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.667	.512	.125	.081	.882	.537	.480	.047	.829	.888
30_Femoroacetabular impingement (FAI) Syndrome with cam-type abnormality is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.756	.913	.236	.040	.971	.373	.418	.012	.871	.712
31_Femoroacetabular impingement (FAI) Syndrome with cam-type deformity is the preferred term to use	.507	.660	.186	.092	.911	.655	.442	.048	.957	1.000

for hip-related pain due to a bony bump at any location around the femoral head-neck junction

	Physical Th Orthopaec surgeons	ierapists vs lic	Physical therapists vs PPI		Physical Therapists vs physicians		Physical Therapists vs radiologists		Physical Th researchers	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
13_Cam morphology is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.005	.001	.507	.673	.339	.251	.450	.532	.075	.012
14_Cam lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head- neck junction	.030	.014	.126	.022	.619	.277	.968	.884	.013	.000
15_Cam deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.003	.028	.161	.093	.770	.849	.907	.069	.045	.010
16_Cam abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.110	.059	.616	.472	.789	.737	.263	.145	.113	.070
17_Cam-type deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.216	.099	.449	.208	.789	.981	.907	.069	.027	.065
18_Cam-type abnormality is the preferred term to use for a	.434	.035	.837	.352	.666	.679	.756	.144	.265	.172

bone/cartilage bump at any location										
around the femoral head-neck										
junction										
19_Cam-type lesion is the preferred	.069	.007	.416	.170	.673	.679	.320	.144	.028	.172
term to use for a bone/cartilage bump										
at any location around the femoral head-neck junction										
20_Pistol grip deformity is the	.957	.329	.829	.972	.899	.742	.436	.203	.069	.558
preferred term to use for a		.010							1000	
bone/cartilage bump at any location										
around the femoral head-neck										
junction										
21_Pistol grip lesion is the preferred term to use for a bone/cartilage bump	.830	.687	.829	.972	.899	.742	.968	.203	.074	.558
at any location around the femoral										
head-neck junction										
22_Pistol grip abnormality is the	.915	.239	.781	.739	.728	1.000	.689	.915	.103	.143
preferred term to use for a										
bone/cartilage bump at any location										
around the femoral head-neck junction										
23_Cam-type impingement is the	.006	.022	.091	.171	.089	.331	.759	.389	.003	.033
preferred term to use for hip-related										
pain due to a bony bump at any										
location around the femoral head-										
neck junction	460	644	020	010	400	402	025	100	000	001
24_Cam femoroacetabular impingement (FAI) is the preferred	.463	.611	.029	.019	.489	.183	.825	.109	.000	.001
term to use for hip-related pain due to										
a bony bump at any location around										
the femoral head-neck junction										
25_Cam-type femoroacetabular	.789	.628	.302	.243	.853	.730	.913	.441	.191	.672
impingement (FAI) is the preferred										

term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction										
26_Femoroacetabular impingement (FAI) Syndrome with cam morphology is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.250	.009	.934	.592	.104	.328	.124	.569	.974	.349
27_Femoroacetabular impingement (FAI) Syndrome with cam deformity is the preferred term to use for hip- related pain due	.018	.010	.175	.192	.180	.308	.968	.101	.138	.217
28_Femoroacetabular impingement (FAI) Syndrome with cam abnormality is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.081	.030	.509	.486	.180	.433	.968	.102	.183	.306
29_Femoroacetabular impingement (FAI) Syndrome with cam lesion is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.052	.006	.125	.081	.144	.378	.901	.142	.048	.045
30_Femoroacetabular impingement (FAI) Syndrome with cam-type abnormality is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.129	.022	.236	.040	.261	.451	.905	.101	.232	.261
31_Femoroacetabular impingement (FAI) Syndrome with cam-type	.041	.006	.186	.092	.196	.282	.968	.144	.064	.054

deformity is the preferred term to use for hip-related pain due to a bony bump at any location around the

femoral head-neck junction

	Physicians Orthopaed surgeons		Physicians v	/s PPI	Physicians vs Physical Therapists		Physicians vs radiologists		Physicians researcher	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
13_Cam morphology is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.025	.004	.835	.514	.339	.251	.884	.663	.413	.089
14_Cam lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head- neck junction	.287	.291	.538	.347	.619	.277	.873	.523	.231	.045
15_Cam deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.042	.119	.345	.246	.770	.849	.873	.089	.171	.062
16_Cam abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.327	.228	.937	.770	.789	.737	.264	.140	.282	.227
17_Cam-type deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.464	.195	.787	.408	.789	.981	.709	.140	.200	.207

18_Cam-type abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.695	.205	.817	.743	.666	.679	.571	.140	.564	.455
19_Cam-type lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.253	.119	.723	.503	.673	.679	.264	.140	.158	.506
20_Pistol grip deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.913	.321	1.000	.814	.899	.742	.455	.324	.110	.428
21_Pistol grip lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.971	.568	.966	.814	.899	.742	.867	.324	.148	.496
22_Pistol grip abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.726	.341	.597	.814	.728	1.000	.522	.945	.366	.231
23_Cam-type impingement is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.247	.217	.512	.706	.089	.331	.265	.156	.213	.351
24_Cam femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.610	.953	.242	.376	.489	.183	.731	.036	.003	.023

Br J Sports Med

25_Cam-type femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.545	.658	.185	.241	.853	.730	.961	.366	.275	.777
26_Femoroacetabular impingement (FAI) Syndrome with cam morphology is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.028	.003	.133	.168	.104	.328	.883	.760	.179	.098
27_Femoroacetabular impingement (FAI) Syndrome with cam deformity is the preferred term to use for hip- related pain due	.255	.155	.940	.762	.180	.308	.451	.055	1.000	.908
28_Femoroacetabular impingement (FAI) Syndrome with cam abnormality is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.704	.275	.623	.837	.180	.433	.482	.055	.862	.783
29_Femoroacetabular impingement (FAI) Syndrome with cam lesion is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.658	.159	.882	.537	.144	.378	.452	.089	.729	.409
30_Femoroacetabular impingement (FAI) Syndrome with cam-type abnormality is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.705	.312	.971	.373	.261	.451	.482	.088	.828	.658

31_Femoroacetabular impingement	.468	.312	.911	.655	.196	.282	.421	.089	.729	.555
(FAI) Syndrome with cam-type										
deformity is the preferred term to use										
for hip-related pain due to a bony										
bump at any location around the										
femoral head-neck junction										

	Radiologis Orthopaec surgeons		Radiologists	s vs PPI	Radiologists vs Physical Therapists		Radiologists vs Physicians		Radiologists vs Researchers	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
13_Cam morphology is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.044	.014	1.000	.853	.450	.532	.884	.663	.335	.059
14_Cam lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head- neck junction	.271	.190	.480	.230	.968	.884	.873	.523	.172	.058
15_Cam deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.100	.009	.418	.011	.907	.069	.873	.089	.236	.004
16_Cam abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.064	.018	.231	.087	.263	.145	.264	.140	.061	.024
17_Cam-type deformity is the preferred term to use for a bone/cartilage bump at any location	.301	.018	.561	.024	.907	.069	.709	.140	.157	.010

around the femoral head-neck junction										
18_Cam-type abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.383	.018	.738	.087	.756	.144	.571	.140	.321	.052
19_Cam-type lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.057	.008	.205	.048	.320	.144	.264	.140	.022	.052
20_Pistol grip deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.533	.105	.462	.258	.436	.203	.455	.324	.451	.173
21_Pistol grip lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.906	.174	.833	.258	.968	.203	.867	.324	.345	.171
22_Pistol grip abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.768	.348	.888	.750	.689	.915	.522	.945	.103	.255
23_Cam-type impingement is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.058	.033	.326	.104	.759	.389	.265	.156	.029	.038
24_Cam femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to	.675	.081	.206	.017	.825	.109	.731	.036	.011	.003

a bony bump at any location around the femoral head-neck junction										
25_Cam-type femoroacetabular impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.959	.276	.507	.178	.913	.441	.961	.366	.385	.162
26_Femoroacetabular impingement (FAI) Syndrome with cam morphology is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.063	.021	.261	.382	.124	.569	.883	.760	.067	.173
27_Femoroacetabular impingement (FAI) Syndrome with cam deformity is the preferred term to use for hip- related pain due	.174	.009	.477	.047	.968	.101	.451	.055	.298	.023
28_Femoroacetabular impingement (FAI) Syndrome with cam abnormality is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	.295	.009	.739	.086	.968	.102	.482	.055	.365	.052
29_Femoroacetabular impingement (FAI) Syndrome with cam lesion is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.295	.009	.480	.047	.901	.142	.452	.089	.208	.024
30_Femoroacetabular impingement (FAI) Syndrome with cam-type abnormality is the preferred term to use for hip-related pain due to a bony	.296	.009	.418	.012	.905	.101	.482	.088	.327	.052

bump at any location around the femoral head-neck junction										
31_Femoroacetabular impingement (FAI) Syndrome with cam-type deformity is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.210	.009	.442	.048	.968	.144	.421	.089	.208	.023

Table SF7-12 Kruskal-Wallis test to a						,				
	Researche Orthopaeo surgeons		Researchers	s vs PPI	Researchers Therapists	vs Physical	Researchers Physicians	S VS	Researchei Radiologist	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
13_Cam morphology is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.117	.065	.342	.037	.075	.012	.413	.089	.335	.059
14_Cam lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head- neck junction	.925	.637	.869	.539	.013	.000	.231	.045	.172	.058
15_Cam deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.337	.967	.665	.290	.045	.010	.171	.062	.236	.004
16_Cam abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.853	.764	.372	.317	.113	.070	.282	.227	.061	.024
17_Cam-type deformity is the preferred term to use for a	.781	.832	.224	.610	.027	.065	.200	.207	.157	.010

bone/cartilage bump at any location around the femoral head-neck junction										
18_Cam-type abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.814	.698	.537	.732	.265	.172	.564	.455	.321	.052
19_Cam-type lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.926	.437	.441	.962	.028	.172	.158	.506	.022	.052
20_Pistol grip deformity is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.156	.957	.159	.555	.069	.558	.110	.428	.451	.173
21_Pistol grip lesion is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.141	.863	.158	.598	.074	.558	.148	.496	.345	.171
22_Pistol grip abnormality is the preferred term to use for a bone/cartilage bump at any location around the femoral head-neck junction	.156	.641	.158	.331	.103	.143	.366	.231	.103	.255
23_Cam-type impingement is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.713	.646	.046	.459	.003	.033	.213	.351	.029	.038
24_Cam femoroacetabular impingement (FAI) is the preferred	.019	.081	.052	.236	.000	.001	.003	.023	.011	.003

term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction 25_Cam-type femoroacetabular .613 .890 .667 .428 .191 .672 .275 .777 .385 impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.162
impingement (FAI) is the preferred term to use for hip-related pain due to a bony bump at any location around	-
	.173
26_Femoroacetabular impingement .271 .119 .626 .879 .974 .349 .179 .098 .067 (FAI) Syndrome with cam morphology is the preferred term to use for hip- related pain due to a bony bump at any location around the femoral head- neck junction	
27_Femoroacetabular impingement .270 .129 .869 .674 .138 .217 1.000 .908 .298 (FAI) Syndrome with cam deformity is the preferred term to use for hip-related pain due	.023
28_Femoroacetabular impingement .889 .522 .542 .695 .183 .306 .862 .783 .365 (FAI) Syndrome with cam abnormality is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.052
29_Femoroacetabular impingement .963 .445 .829 .888 .048 .045 .729 .409 .208 (FAI) Syndrome with cam lesion is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head- neck junction	.024
30_Femoroacetabular impingement.963.639.871.712.232.261.828.658.327(FAI) Syndrome with cam-typeabnormality is the preferred term to	.052

use for hip-related pain due to a bony bump at any location around the femoral head-neck junction										
31_Femoroacetabular impingement (FAI) Syndrome with cam-type deformity is the preferred term to use for hip-related pain due to a bony bump at any location around the femoral head-neck junction	.614	.525	.957	1.000	.064	.054	.729	.555	.208	.023

Taxonomy - Delphi domain 3

Stakeholder group analysis indicated the average scores for taxonomy statement 32 were statistically significant different for PPI group compared to the: (1) Orthopaedic Surgeon stakeholder group (round 2, p<0.005); (2) Physical Therapist stakeholder group (round 1 and 2, p<0.002); (3) Radiologist stakeholder group (round 1, p<0.003; round 2, p<0.002), and (4) Researcher stakeholder group (round 2, p<0.002). The difference in how the PPI stakeholder group compared to the Physical Therapist stakeholder group scored statement 34, was statistically significant (round 1, p<0.005; round 2, p<0.003).

T-bla CC7 12 Konstal MARINA to the second of Onthe second in Comparison of the second state balance second (second second s

	Orthopaed	lic	Orthopaedi	c surgeons	Orthopaedic	surgeons	Orthopaedic surgeons		Orthopaed	ic surgeons
	surgeons v	vs PPI	vs physical t	herapists	vs physician	s	vs radiologis	sts	vs research	ners
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
32_We should distinguish between primary and secondary cam morphology in clinical practice	.011	.003	.847	.772	.526	.293	.918	.469	.564	.326
33_We should distinguish between primary and secondary cam morphology in research	.637	.144	.509	.590	.346	1.000	.516	1.000	.325	.473
34_We should distinguish between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome	.030	.007	.829	.631	.324	.222	.325	.227	.721	.854
35_We should distinguish between primary and secondary cam morphology in research participants with femoroacetabular impingement syndrome	.178	.032	.810	.250	.922	.351	.955	.336	.450	.698

Table SF7-14 Kruskal Wallis test to compare Patient & Public Involvement Group (PPI) vs other stakeholder groups											
	PPI vs Ortl	nopaedic	aedic PPI vs physical		PPI vs physicians		PPI vs radiologists		PPI vs resea	archers	
	surgeons		therapists								
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	
32_We should distinguish between primary and secondary cam morphology in clinical practice	.011	.003	.001	.001	.005	.003	.002	.001	.006	.001	

33_We should distinguish between primary and secondary cam morphology in research	.637	.144	.279	.255	.156	.084	.290	.133	.219	.017
34_We should distinguish between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome	.030	.007	.003	.002	.031	.012	.122	.017	.024	.004
35_We should distinguish between primary and secondary cam morphology in research participants with femoroacetabular impingement syndrome	.178	.032	.114	.161	.089	.086	.150	.133	.025	.016

Table SF7-15 Kruskal-Wallis test to a	compare P	hysical The	erapists vs o	ther stakel	nolder grou	ps (p-value	es)			
	Physical T Orthopaed surgeons	herapists vs dic	Physical therapists vs PPI		Physical Therapists vs physicians		Physical Therapists vs radiologists		Physical Th researcher	nerapists vs s
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
32_We should distinguish between primary and secondary cam morphology in clinical practice	.847	.772	.001	.001	.175	.299	.695	.446	.123	.275
33_We should distinguish between primary and secondary cam morphology in research	.509	.590	.279	.255	.714	.451	.938	.619	.899	.150
34_We should distinguish between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome	.829	.631	.003	.002	.070	.242	.070	.084	.286	.948
35_We should distinguish between primary and secondary cam morphology in research participants with femoroacetabular impingement syndrome	.810	.250	.114	.161	.981	.722	.907	.904	.553	.279

	Physicians Orthopaed surgeons		Physicians	/s PPI	Physicians v Therapists	vs Physical	Physicians v radiologists		Physicians researcher	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
32_We should distinguish between primary and secondary cam morphology in clinical practice	.526	.293	.005	.003	.175	.299	.496	.852	.646	.908
33_We should distinguish between primary and secondary cam morphology in research	.346	1.000	.156	.084	.714	.451	.814	.665	.668	.815
34_We should distinguish between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome	.324	.222	.031	.012	.070	.242	.580	.510	.651	.349
35_We should distinguish between primary and secondary cam morphology in research participants with femoroacetabular impingement syndrome	.922	.351	.089	.086	.981	.722	.774	.772	.729	.508

Table SF7-17 Kruskal-Wallis test to	compare R	adiologists	s vs other st	akeholder	groups (p-v	alues)				
	Radiologis Orthopae		Radiologists	s vs PPI	Radiologists vs Physical Therapists		Radiologists vs Physicians		Radiologists vs Researchers	
	surgeons									
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
32_We should distinguish between primary and secondary cam morphology in clinical practice	.918	.469	.002	.001	.695	.446	.496	.852	.343	.705
33_We should distinguish between primary and secondary cam morphology in research	.516	1.000	.290	.133	.938	.619	.814	.665	.942	.352
34_We should distinguish between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome	.325	.227	.122	.017	.070	.084	.580	.510	.315	.102

5_We should distinguish between	.955	.336	.150	.133	.907	.904	.774	.772	.524	.270
rimary and secondary cam morphology										
n research participants with										
emoroacetabular impingement syndrome										

	Orthopaed	Researchers vs PPI Orthopaedic surgeons			Researchers Therapists	s vs Physical	Researchers vs Physicians		Researcher Radiologist	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
32_We should distinguish between primary and secondary cam morphology in clinical practice	.564	.326	.006	.001	.123	.275	.646	.908	.343	.705
33_We should distinguish between primary and secondary cam morphology in research	.325	.473	.219	.017	.899	.150	.668	.815	.942	.352
34_We should distinguish between primary and secondary cam morphology in patients with femoroacetabular impingement syndrome	.721	.854	.024	.004	.286	.948	.651	.349	.315	.102
35_We should distinguish between primary and secondary cam morphology in research participants with femoroacetabular impingement syndrome	.450	.698	.025	.016	.553	.279	.729	.508	.524	.270

Imaging outcomes – Delphi domain 4

There was no statistically significant difference in how stakeholder groups scored the imaging outcomes statements in round 1 and 2 (stakeholder group analysis).

Table SF7-19 Kruskal-Wallis test to a	compare C	rthopaedi	c Surgeons v	vs other st	akeholder g	roups (p-va	alues)			
	Orthopaed	dic	Orthopaedio	c surgeons	Orthopaedi	c surgeons	Orthopaedi	c surgeons	Orthopaed	c surgeons
	surgeons v		vs physical t		vs physician		vs radiologists		vs researchers	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
36_The main imaging modality for research on how primary cam morphology develops should be magnetic resonance (MR) with radial imaging (1.5T or 3 T)	.958	.553	1.000	.502	.787	.305	.713	1.000	.490	.883
37_The minimum acceptable number of radial sequence magnetic resonance (MR) imaging slices for research on how primary cam morphology develops should be 12 slices (30° intervals, in all 12 clock face positions from 12 o'clock to 11 o'clock positions)	.755	.390	.656	.426	.749	.174	.437	.177	.381	.208
38_Referring to precisely quantifying the asphericity of the femoral head- neck junction on radial sequence magnetic resonance (MR) imaging: use either radial sequences along the axis of the femoral neck (providing higher resolution images) or radial reconstructions from 3-dimensional acquisitions	.705	.944	.133	.251	.441	.272	.034	.026	.117	.142
39_ The magnetic resonance (MR) imaging protocol for research on how primary cam morphology develops	.388	.536	.256	.232	.546	.394	.082	.171	.731	.849

should include: (i) unilateral small field-of-view (FOV) sequences and radial images of a randomly selected or both hips, as well as (ii) femoral torsion assessment (fast axial sequences of the distal knee—femoral condyles—and proximal femoral neck), and (iii) a fluid sensitive sequence covering the whole pelvis (in axial or coronal planes, to screen for soft-tissue and bone marrow edema beyond the hip)										
40_The magnetic resonance (MR) imaging for prospective research on how primary cam morphology develops should be repeated every 18 to 24 months	.222	.270	.228	.382	.172	.215	.719	.620	.434	.780
41_In primary cam morphology epidemiological research (e.g.; when regression is being used in aetiology or prognosis research), continuous imaging outcome measures (variables), like the alpha angle, should be kept continuous	.759	.639	.170	.098	.971	.912	.809	.900	.248	.146
42_The cam morphology magnetic resonance (MR) imaging outcome measure for research on how primary cam morphology develops (aetiology), should be the alpha angle for bone and cartilage as a continuous variable, reported for all the o'clock locations around the femoral head-neck junction, regardless of the	.909	.960	1.000	.773	.679	.865	.956	1.000	.543	.920

symptomatic state of the research participant										
43_For research on how primary cam morphology develops it is important to quantify the epiphyseal morphology magnetic resonance (MR) imaging outcome measure using epiphyseal extension	.950	.803	.464	.424	.672	.900	.251	.490	.797	.342
44_ For research on how primary cam morphology develops the epiphyseal morphology magnetic resonance (MR) imaging outcome measure should also be quantified using epiphyseal tilt	.613	.559	.801	.538	.317	.843	.219	.173	.304	.208
45_The main imaging modality for longitudinal primary cam morphology prognosis research should be anteroposterior (AP) pelvis and Dunn 45° view radiographs repeated at least every 5 years	.104	.086	.314	.268	.189	.129	.150	.150	.202	.202
46_The radiographic imaging outcome measure for research on primary cam morphology prognosis should be the alpha angle as a continuous variable reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs.	.130	.076	.170	.053	.588	.474	.093	.102	.216	.173
47_In addition to reporting alpha angles as continuous in studies on aetiology or prognosis, the following quantitative and qualitative imaging outcome measures, to categorise cam morphology, can be useful in research or clinical practice: (i) Alpha angle ≥ 60° (preferred) (ii) Head-neck offset <	.236	.332	.439	.816	.681	.723	.118	.248	.150	.102

8mm AND head	d-neck offset ratio ≤
0.15 usually at t	the anterior (3 o'clock)
location around	d the femoral head-
neck junction (in	in addition to (i));
Osseous or cart	tilage convexity of the
femoral head ne	eck junction at any
location (in add	lition to (i) and (ii))

	PPI vs Orth surgeons	nopaedic	PPI vs physi therapists	cal	PPI vs physicians		PPI vs radiologists		PPI vs researchers	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
36_The main imaging modality for research on how primary cam morphology develops should be magnetic resonance (MR) with radial imaging (1.5T or 3 T)	.958	.553	.733	.625	.557	.503	.652	.447	.489	.916
37_The minimum acceptable number of radial sequence magnetic resonance (MR) imaging slices for research on how primary cam morphology develops should be 12 slices (30° intervals, in all 12 clock face positions from 12 o'clock to 11 o'clock positions)	.755	.390	1.000	.820	.940	.588	.456	.407	.439	.502
38_Referring to precisely quantifying the asphericity of the femoral head- neck junction on radial sequence magnetic resonance (MR) imaging: use either radial sequences along the axis of the femoral neck (providing higher resolution images) or radial	.705	.944	.443	.256	.714	.318	.081	.020	.139	.105

reconstructions from 3-dimensional

acquisitions										
39_The magnetic resonance (MR) imaging protocol for research on how primary cam morphology develops should include: (i) unilateral small field-of-view (FOV) sequences and radial images of a randomly selected or both hips, as well as (ii) femoral torsion assessment (fast axial sequences of the distal knee—femoral condyles—and proximal femoral neck), and (iii) a fluid sensitive sequence covering the whole pelvis (in axial or coronal planes, to screen for soft-tissue and bone marrow edema beyond the hip)	.388	.536	.725	.614	.508	.877	.433	.443	.637	.539
40_The magnetic resonance (MR) imaging for prospective research on how primary cam morphology develops should be repeated every 18 to 24 months	.222	.270	.905	.311	.848	.794	.371	.351	.801	.545
41_In primary cam morphology epidemiological research (e.g.; when regression is being used in aetiology or prognosis research), continuous imaging outcome measures (variables), like the alpha angle, should be kept continuous	.759	.639	.285	.196	.772	.379	.675	.622	.332	.207
42_The cam morphology magnetic resonance (MR) imaging outcome measure for research on how primary cam morphology develops (aetiology),	.909	.960	.966	.605	.366	.792	1.000	1.000	.405	.842

should be the alpha angle for bone and cartilage as a continuous variable, reported for all the o'clock locations around the femoral head-neck junction, regardless of the symptomatic state of the research participant										
43_For research on how primary cam morphology develops it is important to quantify the epiphyseal morphology magnetic resonance (MR) imaging outcome measure using epiphyseal extension	.950	.803	.453	.779	.608	.357	.135	.153	.879	.582
44_ For research on how primary cam morphology develops the epiphyseal morphology magnetic resonance (MR) imaging outcome measure should also be quantified using epiphyseal tilt	.613	.559	.493	.235	.595	.742	.209	.329	.279	.373
45_The main imaging modality for longitudinal primary cam morphology prognosis research should be anteroposterior (AP) pelvis and Dunn 45° view radiographs repeated at least every 5 years	.104	.086	.479	.313	.586	.533	1.000	.868	.667	.562
46_The radiographic imaging outcome measure for research on primary cam morphology prognosis should be the alpha angle as a continuous variable reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs.	.130	.076	.776	.831	.455	.179	.707	.869	.636	.566
47_In addition to reporting alpha angles as continuous in studies on aetiology or prognosis, the following	.236	.332	.120	.114	.330	.170	.735	.788	.041	.031

juantitative and qualitative imaging
outcome measures, to categorise cam
norphology, can be useful in research
or clinical practice: (i) Alpha angle ≥
i0° (preferred) (ii) Head-neck offset <
mm AND head-neck offset ratio ≤
0.15 usually at the anterior (3 o'clock)
ocation around the femoral head-
eck junction (in addition to (i));
Dsseous or cartilage convexity of the
emoral head neck junction at any
ocation (in addition to (i) and (ii))

	Physical Therapists vs Orthopaedic surgeons		Physical therapists vs PPI		Physical Therapists vs physicians		Physical Therapists vs radiologists		Physical Th researchers	•
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
36_The main imaging modality for research on how primary cam morphology develops should be magnetic resonance (MR) with radial imaging (1.5T or 3 T)	1.000	.502	.733	.625	.841	.630	.522	.319	.348	.672
37_The minimum acceptable number of radial sequence magnetic resonance (MR) imaging slices for research on how primary cam morphology develops should be 12 slices (30° intervals, in all 12 clock face positions from 12 o'clock to 11 o'clock positions)	.656	.426	1.000	.820	.940	.365	.784	.258	.360	.364

 Table SF7-21
 Kruskal-Wallis test to compare Physical Therapists vs other stakeholder groups (-values)

38_Referring to precisely quantifying the asphericity of the femoral head- neck junction on radial sequence magnetic resonance (MR) imaging: use either radial sequences along the axis of the femoral neck (providing higher resolution images) or radial reconstructions from 3-dimensional acquisitions	.133	.251	.443	.256	.711	.975	.289	.210	.423	.419
39_ The magnetic resonance (MR) imaging protocol for research on how primary cam morphology develops should include: (i) unilateral small field-of-view (FOV) sequences and radial images of a randomly selected or both hips, as well as (ii) femoral torsion assessment (fast axial sequences of the distal knee—femoral condyles—and proximal femoral neck), and (iii) a fluid sensitive sequence covering the whole pelvis (in axial or coronal planes, to screen for soft-tissue and bone marrow edema beyond the hip)	.256	.232	.725	.614	.513	.671	.446	.609	.486	.292
40_The magnetic resonance (MR) imaging for prospective research on how primary cam morphology develops should be repeated every 18 to 24 months	.228	.382	.905	.311	.862	.372	.543	.823	.752	.968
41_In primary cam morphology epidemiological research (e.g.; when regression is being used in aetiology or prognosis research), continuous	.170	.098	.285	.196	.187	.117	.177	.181	.908	.936

imaging outcome measures (variables), like the alpha angle, should be kept continuous										
42_The cam morphology magnetic resonance (MR) imaging outcome measure for research on how primary cam morphology develops (aetiology), should be the alpha angle for bone and cartilage as a continuous variable, reported for all the o'clock locations around the femoral head-neck junction, regardless of the symptomatic state of the research participant	1.000	.773	.966	.605	.471	.448	.966	.682	.490	.854
43_For research on how primary cam morphology develops it is important to quantify the epiphyseal morphology magnetic resonance (MR) imaging outcome measure using epiphyseal extension	.464	.424	.453	.779	.160	.386	.061	.130	.795	.713
44_ For research on how primary cam morphology develops the epiphyseal morphology magnetic resonance (MR) imaging outcome measure should also be quantified using epiphyseal tilt	.801	.538	.493	.235	.220	.301	.116	.051	.221	.066
45_The main imaging modality for longitudinal primary cam morphology prognosis research should be anteroposterior (AP) pelvis and Dunn 45° view radiographs repeated at least every 5 years	.314	.268	.479	.313	.760	.715	.420	.395	.801	.734
46_The radiographic imaging outcome measure for research on primary cam	.170	.053	.776	.831	.540	.185	.525	.735	.833	.701

morphology prognosis should be the alpha angle as a continuous variable reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs.										
47_In addition to reporting alpha angles as continuous in studies on aetiology or prognosis, the following quantitative and qualitative imaging outcome measures, to categorise cam morphology, can be useful in research or clinical practice: (i) Alpha angle ≥ 60° (preferred) (ii) Head-neck offset < 8mm AND head-neck offset ratio ≤	.439	.816	.120	.114	.197	.370	.054	.074	.584	.066
0.15 usually at the anterior (3 o'clock) location around the femoral head-										
neck junction (in addition to (i));										
Osseous or cartilage convexity of the										
femoral head neck junction at any										
location (in addition to (i) and (ii))										

	Physicians Orthopaed surgeons		Physicians vs PPI Physicians vs Physical Therapists			Physicians radiologists		Physicians vs researchers		
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
36_The main imaging modality for research on how primary cam morphology develops should be magnetic resonance (MR) with radial imaging (1.5T or 3 T)	.787	.305	.557	.503	.841	.630	.391	.266	.290	.515
37_The minimum acceptable number of radial sequence magnetic	.749	.174	.940	.588	.940	.365	.642	.726	.386	.817

resonance (MR) imaging slices for research on how primary cam morphology develops should be 12 slices (30° intervals, in all 12 clock face positions from 12 o'clock to 11 o'clock positions)										
38_Referring to precisely quantifying the asphericity of the femoral head- neck junction on radial sequence magnetic resonance (MR) imaging: use either radial sequences along the axis of the femoral neck (providing higher resolution images) or radial reconstructions from 3-dimensional acquisitions	.441	.272	.714	.318	.711	.975	.129	.335	.213	.530
39_The magnetic resonance (MR) imaging protocol for research on how primary cam morphology develops should include: (i) unilateral small field-of-view (FOV) sequences and radial images of a randomly selected or both hips, as well as (ii) femoral torsion assessment (fast axial sequences of the distal knee—femoral condyles—and proximal femoral neck), and (iii) a fluid sensitive sequence covering the whole pelvis (in axial or coronal planes, to screen for soft-tissue and bone marrow edema beyond the hip)	.546	.394	.508	.877	.513	.671	.186	.484	.896	.451
40_The magnetic resonance (MR) imaging for prospective research on how primary cam morphology	.172	.215	.848	.794	.862	.372	.424	.554	.634	.443

develops should be repeated every 18 to 24 months										
41_In primary cam morphology epidemiological research (e.g.; when regression is being used in aetiology or prognosis research), continuous imaging outcome measures (variables), like the alpha angle, should be kept continuous	.971	.912	.772	.379	.187	.117	.923	.589	.248	.117
42_The cam morphology magnetic resonance (MR) imaging outcome measure for research on how primary cam morphology develops (aetiology), should be the alpha angle for bone and cartilage as a continuous variable, reported for all the o'clock locations around the femoral head-neck junction, regardless of the symptomatic state of the research participant	.679	.865	.366	.792	.471	.448	.619	.885	.307	.692
43_For research on how primary cam morphology develops it is important to quantify the epiphyseal morphology magnetic resonance (MR) imaging outcome measure using epiphyseal extension	.672	.900	.608	.357	.160	.386	.179	.302	.655	.369
44_For research on how primary cam morphology develops the epiphyseal morphology magnetic resonance (MR) imaging outcome measure should also be quantified using epiphyseal tilt	.317	.843	.595	.742	.220	.301	.432	.099	.529	.144
45_The main imaging modality for longitudinal primary cam morphology	.189	.129	.586	.533	.760	.715	.809	.737	.892	.850

prognosis research should be anteroposterior (AP) pelvis and Dunn 45° view radiographs repeated at least every 5 years										
46_The radiographic imaging outcome measure for research on primary cam morphology prognosis should be the alpha angle as a continuous variable reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs.	.588	.474	.455	.179	.540	.185	.501	.414	.632	.414
47_In addition to reporting alpha angles as continuous in studies on aetiology or prognosis, the following quantitative and qualitative imaging outcome measures, to categorise cam morphology, can be useful in research or clinical practice: (i) Alpha angle ≥ 60° (preferred) (ii) Head-neck offset < 8mm AND head-neck offset ratio ≤ 0.15 usually at the anterior (3 o'clock) location around the femoral head- neck junction (in addition to (i)); Osseous or cartilage convexity of the femoral head neck junction at any location (in addition to (i) and (ii))	.681	.723	.330	.170	.197	.370	.153	.211	.054	.019

Table SF7-23 Kruskal-Wallis test to compare Radiologists vs other stakeholder groups (p-values)											
	5				Radiologist Therapists	s vs Physical	I Radiologists vs Physicians		Radiologist Researcher		
	surgeons	•									
Statement	Round 1	und 1 Round 2 Round 2 Round 1 Round 2									

36_The main imaging modality for research on how primary cam morphology develops should be magnetic resonance (MR) with radial imaging (1.5T or 3 T)	.713	1.000	.652	.447	.522	.319	.391	.266	.733	.724
37_The minimum acceptable number of radial sequence magnetic resonance (MR) imaging slices for research on how primary cam morphology develops should be 12 slices (30° intervals, in all 12 clock face positions from 12 o'clock to 11 o'clock positions)	.437	.177	.456	.407	.784	.258	.642	.726	.892	.892
38_Referring to precisely quantifying the asphericity of the femoral head- neck junction on radial sequence magnetic resonance (MR) imaging: use either radial sequences along the axis of the femoral neck (providing higher resolution images) or radial reconstructions from 3-dimensional acquisitions	.034	.026	.081	.020	.289	.210	.129	.335	.855	1.000
39_The magnetic resonance (MR) imaging protocol for research on how primary cam morphology develops should include: (i) unilateral small field-of-view (FOV) sequences and radial images of a randomly selected or both hips, as well as (ii) femoral torsion assessment (fast axial sequences of the distal knee—femoral condyles—and proximal femoral neck), and (iii) a fluid sensitive	.082	.171	.433	.443	.446	.609	.186	.484	.219	.219

sequence covering the whole pelvis (in axial or coronal planes, to screen for soft-tissue and bone marrow edema beyond the hip)										
40_The magnetic resonance (MR) imaging for prospective research on how primary cam morphology develops should be repeated every 18 to 24 months	.719	.620	.371	.351	.543	.823	.424	.554	.659	.926
41_In primary cam morphology epidemiological research (e.g.; when regression is being used in aetiology or prognosis research), continuous imaging outcome measures (variables), like the alpha angle, should be kept continuous	.809	.900	.675	.622	.177	.181	.923	.589	.208	.170
42_The cam morphology magnetic resonance (MR) imaging outcome measure for research on how primary cam morphology develops (aetiology), should be the alpha angle for bone and cartilage as a continuous variable, reported for all the o'clock locations around the femoral head-neck junction, regardless of the symptomatic state of the research participant	.956	1.000	1.000	1.000	.966	.682	.619	.885	.604	.882
43_For research on how primary cam morphology develops it is important to quantify the epiphyseal morphology magnetic resonance (MR) imaging outcome measure using epiphyseal extension	.251	.490	.135	.153	.061	.130	.179	.302	.208	.167

44_For research on how primary cam morphology develops the epiphyseal morphology magnetic resonance (MR) imaging outcome measure should also be quantified using epiphyseal tilt	.219	.173	.209	.329	.116	.051	.432	.099	.586	.899
45_The main imaging modality for longitudinal primary cam morphology prognosis research should be anteroposterior (AP) pelvis and Dunn 45° view radiographs repeated at least every 5 years	.150	.150	1.000	.868	.420	.395	.809	.737	.711	.711
46_The radiographic imaging outcome measure for research on primary cam morphology prognosis should be the alpha angle as a continuous variable reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs.	.093	.102	.707	.869	.525	.735	.501	.414	.415	.572
47_In addition to reporting alpha angles as continuous in studies on aetiology or prognosis, the following quantitative and qualitative imaging outcome measures, to categorise cam morphology, can be useful in research or clinical practice: (i) Alpha angle ≥ 60° (preferred) (ii) Head-neck offset < 8mm AND head-neck offset ratio ≤ 0.15 usually at the anterior (3 o'clock) location around the femoral head- neck junction (in addition to (i)); Osseous or cartilage convexity of the femoral head neck junction at any location (in addition to (i) and (ii))	.118	.248	.735	.788	.054	.074	.153	.211	.007	.009

	Researche Orthopaec surgeons		Researchers	s vs PPI	Researchers Therapists	s vs Physical	Researchers Physicians	vs	Researcher Radiologist	
Statement	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2	Round 1	Round 2
36_The main imaging modality for research on how primary cam morphology develops should be magnetic resonance (MR) with radial imaging (1.5T or 3 T)	.490	.883	.489	.916	.348	.672	.290	.515	.733	.724
37_The minimum acceptable number of radial sequence magnetic resonance (MR) imaging slices for research on how primary cam morphology develops should be 12 slices (30° intervals, in all 12 clock face positions from 12 o'clock to 11 o'clock positions)	.381	.208	.439	.502	.360	.364	.386	.817	.892	.892
38_Referring to precisely quantifying the asphericity of the femoral head- neck junction on radial sequence magnetic resonance (MR) imaging: use either radial sequences along the axis of the femoral neck (providing higher resolution images) or radial reconstructions from 3-dimensional acquisitions	.117	.142	.139	.105	.423	.419	.213	.530	.855	1.000
39_ The magnetic resonance (MR) imaging protocol for research on how primary cam morphology develops should include: (i) unilateral small field-of-view (FOV) sequences and radial images of a randomly selected	.731	.849	.637	.539	.486	.292	.896	.451	.219	.219

or both hips, as well as (ii) femoral torsion assessment (fast axial sequences of the distal knee—femoral condyles—and proximal femoral neck), and (iii) a fluid sensitive sequence covering the whole pelvis (in axial or coronal planes, to screen for soft-tissue and bone marrow edema beyond the hip)										
40_The magnetic resonance (MR) imaging for prospective research on how primary cam morphology develops should be repeated every 18 to 24 months	.434	.780	.801	.545	.752	.968	.634	.443	.659	.926
41_In primary cam morphology epidemiological research (e.g.; when regression is being used in aetiology or prognosis research), continuous imaging outcome measures (variables), like the alpha angle, should be kept continuous	.248	.146	.332	.207	.908	.936	.248	.117	.208	.170
42_The cam morphology magnetic resonance (MR) imaging outcome measure for research on how primary cam morphology develops (aetiology), should be the alpha angle for bone and cartilage as a continuous variable, reported for all the o'clock locations around the femoral head-neck junction, regardless of the symptomatic state of the research participant	.543	.920	.405	.842	.490	.854	.307	.692	.604	.882

43_For research on how primary cam morphology develops it is important to quantify the epiphyseal morphology magnetic resonance (MR) imaging outcome measure using epiphyseal extension	.797	.342	.879	.582	.795	.713	.655	.369	.208	.167
44_For research on how primary cam morphology develops the epiphyseal morphology magnetic resonance (MR) imaging outcome measure should also be quantified using epiphyseal tilt	.304	.208	.279	.373	.221	.066	.529	.144	.586	.899
45_The main imaging modality for longitudinal primary cam morphology prognosis research should be anteroposterior (AP) pelvis and Dunn 45° view radiographs repeated at least every 5 years	.202	.202	.667	.562	.801	.734	.892	.850	.711	.711
46_The radiographic imaging outcome measure for research on primary cam morphology prognosis should be the alpha angle as a continuous variable reported for anteroposterior (AP) pelvis and Dunn 45° view radiographs.	.216	.173	.636	.566	.833	.701	.632	.414	.415	.572
47_In addition to reporting alpha angles as continuous in studies on aetiology or prognosis, the following quantitative and qualitative imaging outcome measures, to categorise cam morphology, can be useful in research or clinical practice: (i) Alpha angle ≥ 60° (preferred) (ii) Head-neck offset < 8mm AND head-neck offset ratio ≤ 0.15 usually at the anterior (3 o'clock)	.150	.102	.041	.031	.584	.066	.054	.019	.007	.009

location around the femoral headneck junction (in addition to (i)); Osseous or cartilage convexity of the femoral head neck junction at any location (in addition to (i) and (ii))

References

- Beiderbeck D, Frevel N, von der Gracht HA, *et al.* Preparing, conducting, and analyzing Delphi surveys: Cross-disciplinary practices, new directions, and advancements. *MethodsX* 2021;8:101401. doi:10.1016/j.mex.2021.101401
- 2 Beiderbeck D, Frevel N, von der Gracht HA, *et al.* The impact of COVID-19 on the European football ecosystem A Delphi-based scenario analysis. *Technol Forecast Soc Change* 2021;**165**:120577. doi:10.1016/j.techfore.2021.120577
- 3 Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond "p < 0.05". Am Stat 2019;73:1– 19. doi:10.1080/00031305.2019.1583913