Supplementary Material

Biocontainment strategies for *in vivo* applications of *Saccharomyces boulardii*

Karl Alex Hedin, Vibeke Kruse, Ruben Vazquez-Uribe*, Morten Otto Alexander Sommer*

*Corresponding authors Morten Otto Alexander Sommer (<u>msom@bio.dtu.dk</u>) Ruben Vazquez-Uribe (<u>ruvas@biosustain.dtu.dk</u>)

Supplementary Figures and Tables Supplementary Figures

Supplementary Figure S1. Growth characterisation of different auxotrophic strains of *S. boulardii*. (A) Bar plot of the mean doubling time (h^{-1}) in pH 3, 4, 5 and 6 at aerobic cultivation. (B) Bar plot of the mean doubling time (h^{-1}) under anaerobic (0 %) and microaerobic (0.1 % and 1 %) at pH 6. Data presented as mean + SEM (n = 3). One-way ANOVA, Dunnett's post hoc test with Sb *URA3*^{S81X} as reference.

Figure S2. Growth characterisation of double and triple gene disruptions *S. boulardii*. Bar plot of mean OD_{600} after 120 hours with and without the required nutrition supplemented. Limit of detection (LOD). Data presented as mean + SEM (n = 3). * p < 0.05, ** p < 0.01 and *** p < 0.001. One-way ANOVA, Dunnett's post hoc test for each strain with fully supplemented media as reference.

Supplementary Figure S3. Escape rate assay of the *thi6* Δ *S. boulardii* strain. (A) Graphical illustration of the experimental design. The *S. boulardii* strains were cultivated for 120 hours in SC with (400 µg/mL) and without thiamine at 37°C. The cultures we spun down and resuspended in 500 µL and spotted on SC plates with and without thiamine. All plates were incubated for 72 hours at 37°C. (B) The serial dilution and re-streak of SbU⁻ and SbU⁻ + *thi6* Δ cultivated in SC with 400 µg/mL thiamine. (C) The serial dilution and re-streak of SbU⁻ and SbU⁻ + *thi6* Δ cultivated in SC without thiamine. Grown biomass from the undiluted samples were spread out on fresh selection plates to verify potential escapers. (D) The log₁₀ CFU/mL from the serial dilution spotting. Data presented as mean + SEM (n = 3). Two-way ANOVA, Tukey post hoc test. The different letters (a, b, and c) above the bars indicate statistically different groups (significance level at p < 0.05)

Supplementary Figure S4. Growth performance of the cold-sensitive strains at different temperature. The mean OD_{600} over time at different temperature (15 °C, 20 °C and 37 °C). Data presented as mean \pm SEM (n =3). Each point represents a biological replicate.

Supplementary Figure S5. Growth characterisation of the cold-sensitive strains at different oxygen concentration. (A) Bar plot of the mean doubling time (h⁻¹) under anaerobic (0 %) and microaerobic (0.1 % and 1 %) at pH 6. Data presented as mean + SEM (n = 3). Two-way ANOVA, Tukey post hoc test. The different letters (a, b, and c) above the bars indicate statistically different groups (significance level at p < 0.05)

Supplementary Figure S6. Characterisation of the combined biocontainment strain. Bar plot of the mean OD_{600} after 48 hours with (+) and without (-) thiamine supplemented at 37°C. Data presented as mean + SEM (n = 3). * p < 0.05, ** p < 0.01 and *** p < 0.001. One-way ANOVA, Dunnett's post hoc test with SbU⁻ as reference.

Supplementary Figure S7. Growth characterisation of the combined biocontainment strain in mono-culture and co-culture at different condition. (A) Graphical illustration of the experimental design. SbU⁻ and SbU⁻ + $bts1\Delta + thi6\Delta$ were inoculated 1:1 in a culture. (B) Log₁₀ cells/mL of SbU⁻ and SbU⁻ + $bts1\Delta + thi6\Delta$ in a mono-culture and co-culture with each other in media with and without thiamine. The culture was diluted 1:100 every 48th hour for a total period of 96 hours (n = 3). (C) Log₁₀ cells/mL of SbU⁻ and SbU⁻ + $bts1\Delta + thi6\Delta$ in a mono-culture and co-culture with each other at 15°C, 20°C, and 37°C. The culture was diluted 1:100 every 24th hour for a total period of 120 hours for cultures at 20°C and 37°C, and 48th hour for a total period of 144 hours for cultures at 15°C (n = 5). Data presented as mean ± SEM.

Supplementary Figure S8. Survival assay of the combined biocontainment strain. Log_{10} CFU/mL of SbU⁻ and SbU⁻ + $bts1\Delta$ + $thi6\Delta$ from a 120 hour co-culture at 37°C that was plated and incubated at 15°C, 20°C, and 37°C for 144, 96 and 48 hours, respectively. Data presented as mean + SEM (n = 5). * p < 0.05, ** p < 0.01 *** p < 0.001. Data was analysed with dependent sample t-test with Bonferroni adjustment for multiple comparisons.

Supplementary Figure S9. Growth characterisation of the multi-layered biocontainment strain. (A) Bar plot of the mean doubling time (h⁻¹) in pH 3, 4, 5 and 6 at aerobic cultivation. (B) Bar plot of the mean doubling time (h⁻¹) under anaerobic (0 %) and microaerobic (0.1 % and 1 %) at pH 6. Data presented as mean + SEM (n = 3). * p < 0.05, ** p < 0.01 *** p < 0.001. All samples analysed with dependent sample t-test.

Supplementary Figure S10. Growth characterisation of the multi-layered biocontainment strain at different thiamine concentration. (A) Bar plot of mean OD_{600} after 48 hours under different concentrations of thiamine. Limit of detection (LOD). Data presented as mean + SEM (n = 3). * p < 0.05, ** p < 0.01 *** p < 0.001. All samples are analysed by One-way ANOVA, Dunnett's post hoc test with SbU⁻ as reference.

Primer	Sequence	Reference	
pCfB2312-gRNA_fw	atacgaagttatattaagggttg	This study	
pCfB2312-gRNA_rv	taggcgtatcacgagat	This study	
pCfB2312_fw	aagetteagetgaegegat	This study	
pCfB2312-rv	tgcaggtcgacaaccettaa	This study	
LID A 2 ropair fu	tccatggagggcacagttaagccgctaaaggcattataagccaagt	(Zhang et al.,	
	acaattttttactc	2014)	
LIR A 3 repair ry	accaatgtcagcaaattttctgtcttcgaagagtaaaaaattgtacttg	(Zhang et al.,	
	gcttataatgc	2014)	
HIS3renair fw	gtaaagcgtattacaaatgaaaccaagattcagattgcgatctcttta	(Zhang et al.,	
	aagggttaaccc	2014)	
HIS3renair ry	ttctgggaagatcgagtgctctatcgctaggggttaaccctttaaaga	(Zhang et al.,	
	gategeaatetg	2014)	
TRP1repair fw	tccgatgctgacttgctgggtattatatgtgtgtaaaatagaaagaga	(Zhang et al.,	
	acaattgacccg	2014)	
TRP1repair rv	tacaagacttgaaattttccttgcaataaccgggtcaattgttctctttct	(Zhang et al.,	
	attttacac	2014)	
URA3dg-fw	cttgcatgacaattctgcta	This study	
URA3dg-rv	ttettaacceaactgeacag	This study	
HIS3dg-fw	aaagatctaccaccgctctg	This study	
HIS3dg-rv	gcgattggcattatcacata	This study	
TRP1dg-fw	gccgattaagaattcggtcg	This study	
TRP1dg-rv	gcactgagtagtatgttgcag	This study	
BTS1dg_fw	aaatcgcgaatttaccggcg	This study	
BTS1dg_rv	gccgccatetetacteacte	This study	
	tcattttcaaagaagctactaatagaaagagaacaaagcgtttacga	This study	
BTS1repair_fw	gtctggaaaatcaaataaattgatcaatcaaattagtggaggaagat		
	agtcagaaataaagcetteteteete		
	gaggagagaggctttatttctgactatcttcctccactaatttgattga		
BTS1repair_rv	tcaatttatttgattttccagactcgtaaacgctttgttctctttctattagt	This study	
	agcttctttgaaaatga		
REI1dg_fw	ttgattcgctgcctgttcg	This study	
REI1dg_rv	cccgatattccccgtgactc	This study	
	tacaggttatgagatgcttctcattagaagtcaagaagagagcatatc		
REI1repair_fw	agtaacaatacgttctttttgcactactttttttagtattttgtcgcatatat	This study	
	actgetteaceatttgtae		

Supplementary Tables Supplementary Table S1. Primers used in this study

REI1repair_rv	gtacaaatggtgaagcagtatatatgcgacaaaatactaaaaaaagt agtgcaaaaagaacgtattgttactgatatgctctcttcttgacttctaa tgagaagcatctcataacctgta	This study
SNZ1dg_fw	agctttaccctggaagcacc	This study
SNZ1dg_rv	ggacgctgagagctatggac	This study
SNZ1repair_fw	agaaacctttaggaacgactagcaaatatacacagtactaatattca gttaattatcacgtttctttgaacaggtattttgagcattataacacttttt cccccctcaactttgtattac	This study
SNZ1repair_rv	gtaatacaaagttgaggggggaaaaagtgttataatgctcaaaatac ctgttcaaagaaacgtgataattaactgaatattagtactgtgtatattt gctagtcgttcctaaaggtttct	This study
SNO1dg_fw	ccttacccttgtcggctgag	This study
SNO1dg_rv	aagggcctgcggaagatcac	This study
SNO1repair_fw	aggtttttttttcttattatttcatttcgttaaatagaaagaa	This study
SNO1repair_rv	tcgatgtgaaaaaatctctcaggttttggtaatataaaaatgtggaaa accggcggtattactttaagatatggtttttctttctatttaacgaaatga aataataagaaaaaaaaacct	This study
THI2repair_fw	ttttcatttcatttcaccacgtatatatatagcctatatata	This study
THI2repair_rv	tccaagcaaagcttttggcttttttttttttttgaaatgagtgaagggaag gctcaataagcttggttctagtgcggatatatatataggctatatata	This study
THI2_dg fw	tacaatggcagccctcttgg	This study
THI2_dg rv	ccctggcagataggaaaccc	This study
THI6repair_fw	aaccatggtteteaagaccaaateaetetgaagetaaattatttaaate aaacageggaaaetatttaeaaegtaatgattttataaaetgattaaat aaggaagaaageeccaaaaaatt	This study
THI6repair_rv	aattttttgggctttcttccttatttaatcagtttataaaatcattacgttgt aaatagtttccgctgtttgatttaaataatttagcttcagagtgatttggt cttgagaaccatggtt	This study
THI6_dg fw	tccgtttctagctgcaggtc	This study
THI6_dg rv	agtttgttcctcctggggtg	This study
pCfB3050_fw	cttcgctattacgccagctg	This study
pCfB3050_rv	ccgattcattaatgcagctg	This study

Plasmid name	Genotype	Marker (<i>E. coli / S. boulardii</i>)	Reference	
pCfB2312	pCfB2312 CEN6_ARS4 Amp P _{TEF1} - Amp / KanMX		(Jessop-Fabre	
pen2512	Cas9-t _{CYC1} kanMX		et al., 2016)	
pCfB2312-	pCfB2312; P _{SNR52} -	Amn / KanMX	This study	
URA3	gRNA(URA3)-t _{SUP4}		This study	
pCfB2312-	pCfB2312; P _{SNR52} -	Amn / KonMV	This study	
HIS3	gRNA(HIS3)-t _{SUP4}	Amp / KamviA	This study	
pCfB2312-	pCfB2312; P _{SNR52} -	Amn / VonMV	This study	
TRP1	gRNA(TRP1)-t _{SUP4}	Amp / KamviA	This study	
pCfB2909-	pCfD2000; D	Amn	(Hedin et al.,	
Exe4	pC1B2909. PTDH3-EXC4-tDTT**	Amp	2022)	
pCfB2909-	CfD2000, Der or CED, to an	Ame	This study	
GFP	pC1B2909: PTDH3-GFP- LADH1	Amp		
pCfB2909-	pCfB2909: P _{TDH3} -mKate-	Amn	This study	
mKate	t _{ADH1}	Amp	This study	
pCfB3050	pESC; P _{SNR52} -gRNA(XII-5)-	Λ mp / $IIP / 3$	This study	
(URA3)	t _{SUP4}	Amp / OKAS	This study	
pCfB3050-	pESC; P _{SNR52} -gRNA(<i>THI2</i>)-	Λ mp / $IIP A3$	This study	
THI2	t _{SUP4}	Amp / UKAS	This study	
pCfB3050-	pESC; P _{SNR52} -gRNA(<i>THI6</i>)-	Λ mp / $IIP A3$	This study	
THI6	t _{SUP4}	Allp / OKA5	This study	
pCfB3050-	pESC; P _{SNR52} -gRNA(SNO1)-	Λ mp / $IIR A3$	This study	
SNO1	t _{SUP4}	Amp / OKAS	This study	
pCfB3050-	pESC; P _{SNR52} -gRNA(SNZ1)-	Λ mp / $IIP 43$	This study	
SNZ1	t _{SUP4}	Amp / UKAS	This study	
pCfB3050-	pESC; P _{SNR52} -gRNA(<i>BTS1</i>)-	Λ mp / $IIP 43$	This study	
BTS1	t _{SUP4}	Amp / OKA3	This study	
pCfB3050-	pESC; P _{SNR52} -gRNA(<i>REI1</i>)-	Amp / LIP 13	This study	
REI1	t _{SUP4}	Amp / UNAS	TIII5 Study	

Supplementary Table S2. Plasmids used in this study

Name	Sequence	Reference(s)	
	cagttcgagtttatcattatcaatactgccatttcaaagaatacgtaaataattaa		
	tagtagtgattttcctaactttatttagtcaaaaaattggccttttaattctgctgta		
	acccgtacatgcccaaaataggggggggggttacacagaatatataacatcat		
	aggtgtctgggtgaacagtttattcctggcatccactaaatataatggagccc		
	gctttttaagctggcatccagaaaaaaaaaaaaaaaatattgt		
	tttetteaceaaceateagtteataggteeattetettagegeaactaeaagaa		
P _{TDH3}	caggggcacaaacaggcaaaaacgggcacaacctcaatggagtgatgc	This study	
	aacctgcttggagtaaatgatgacacaaggcaattgacctacgcatgtatcta		
	tctcattttcttacaccttctattaccttctgctctctct		
	aaaaaaggttgaaaccagttccctgaaattattcccctatttgactaataagtat		
	ataaagacggtaggtattgattgtaattctgtaaatctatttcttaaacttcttaaa		
	tt ctacttt tatagtt agt ctttttt tagttt taa aa cactaa ga actt agt tt cga at		
	aaacacataaacaaaaaa		
	gtagatacgttgttgacacttctaaataagcgaatttcttatgatttatgattttat		
tion	tattaaataagttataaaaaaaaaaagtgtatacaaattttaaagtgactcttagg	This study	
<i>LADH1</i>	ttttaaaacgaaaattcttattcttgagtaactctttcctgtaggtcaggttgctttc	This study	
	tcaggtatagcatgaggtcgctc		
	atggtttctgaactcatcaaggaaaacatgcacatgaaactttacatggaagg		
	tactgtgaacaatcatcattttaagtgtacatccgagggtgaaggcaaacctta		
	cgaaggaactcaaactatgagaattaaagctgtagaaggtggaccattacct		
	tttgcatttgatatcttggcaacatcattcatgtatgggagcaagacattcataa		
	accatactcaaggtataccagactttttcaaacagagttttccagagggttttac		
	atgggaaagagtaacaacgtacgaggatggaggtgtattgacagccactca		
mKata	agacacatcacttcaagatgggtgtttaatctacaatgtcaagattagaggcg	This study	
mixate	tcaatttcccttctaatggtccagttatgcagaaaaagacattaggctgggaa	This study	
	gcgtcaaccgaaaccctgtaccctgctgatggtggcctagaaggcagagct		
	gacatggcccttaaactggttggtggagggcatctaatctgcaatttgaaaac		
	cacttatcgttctaaaaagccagccaaaaacctaaagatgccaggtgtttact		
	acgtcgaccgaagattagaaaggattaaagaggctgataaagagacttatgt		
	tgaacaacacgaagtggcagtggctagatactgtgatttgccatctaagttgg		
	gacacagataa		
	atgtctaaaggtgaagaattattcactggtgttgtcccaattttggttgaattaga		
yEGFP	tggtgatgttaatggtcacaaattttctgtctccggtgaaggtgaaggtgatgc	This study	
	tacttacggtaaattgaccttaaaatttatttgtactactggtaaattgccagttcc		
	atggccaaccttagtcactactttcggttatggtgttcaatgttttgcgagatac		
	ccagatcatatgaaacaacatgactttttcaagtctgccatgccagaaggttat		
	gttcaagaaagaactatttttttcaaagatgacggtaactacaagaccagagc		
	tgaagtcaagtttgaaggtgataccttagttaatagaatcgaattaaaaggtatt		
	gattttaaagaagatggtaacattttaggtcacaaattggaatacaactataact		
	ctcacaatgtttacatcatggctgacaaacaaaagaatggtatcaaagttaact		
	t caa a attaga ca caa cattga a gatggtt ctgtt caattag ctga ccattat ca		

Supplementary Table S3. Construct sequences used in this study

	acaaaatactccaattggtgatggtccagtcttgttaccagacaaccattactt	
	atccactcaatctgccttatccaaagatccaaacgaaaagagagaccacatg	
	gtcttgttagaatttgttactgctgctggtattacccatggtatggatgaattgta	
	caaatga	
	tctaccaacggaatgcgtgcgatcgcgtgcattccgagtttatcattatcaata	
	ctgccatttcaaagaatacgtaaataattaatagtagtgattttcctaactttattt	
	agtcaaaaaattagccttttaattctgctgtaacccgtacatgcccaaaatagg	
	gggcgggttacacagaatatataacatcgtaggtgtctgggtgaacagtttat	
	tcctggcatccactaaatataatggagcccgctttttaagctggcatccagaa	
	aaaaaaagaatcccagcaccaaaatattgttttcttcaccaacca	
	aggtccattctcttagcgcaactacagagaacaggggcacaaacaggcaa	
	aaaacgggcacaacctcaatggagtgatgcaacctgcctg	
	gacacaaggcaattgacccacgcatgtatctatctcattttcttacaccttctatt	
	accttctgctctctctgatttggaaaaaagctgaaaaaaaa	
	ccctgaaattattcccctacttgactaataagtatataaagacggtaggta	
	ttgtaattctgtaaatctatttcttaaacttcttaaattctacttttatagttagt	(Hadin at al
Exendin-4	tttagttttaaaacaccaagaacttagtttcgaataaacacacataaacaaac	(1100111011a1., 2022)
	aaaacaaaatgagatttccatctatttttactgctgttttgtttg	2022)
	tttggctgctccagttaatactactactgaagatgaaactgctcaaattccagct	
	gaagctgttattggttattctgatttggagggtgactttgatgttgctgttttgcca	
	ttttctaactctactaacaacggtttgctattcatcaacactactatcgcttctatc	
	gctgctaaagaagaaggtgtttctttggataaaagagaagaaggtgaaccaa	
	aacatggtgaaggcacattcacatctgatctgtccaaacaaa	
	aagcggtacgtttatttattgaatggttaaaaaacggggggacctagctccggc	
	gcgcccccccgagctaataaagtaagagcgctacattggtctacctttttctt	
	ttacttaaacattagttagttcgttttctttttcttttttatgtttccccccaaagttc	
	tgattttataatattttatttcacacaattccatttaacagagggggaatagattct	
	ttagettagaaaattagtgatcaatatatatttgeetttetttteatetttteagtgat	
	attaatggtttcgagacactgcaatggccctactagtgctgaggcattaat	

Supplementary Table S4. gRNA used in this study

gRNA	Sequence	Reference
		(Zhang et al.,
URA3	gagtaaaaaattgtacttgg	2014)
		(Zhang et al.,
HIS3	ccctttaaagagatcgcaat	2014)
		(Zhang et al.,
TRP1	gtcaattgttctctttctat	2014)
THI2	actacaattatctccatgtt	This study
THI6	ttaaataaccataaaatgaa	This study
SNO1	gacgcettaattatteecgg	This study
SNZ1	acccaactgcattaacaatg	This study

BTS1	ttgctgaggacattacagag	This study
REI1	gaagatgactgggaagacgt	This study

Table S5. Strains used in this study

Strain	Genotype	Marker	Parental strain	Reference
Sb		N/A	SB-ATCC- 796	This study
SbU ⁻	Sb URA3 ^{S81X}	N/A	Sb	This study
SbH-	Sb <i>HIS3^{G26X}</i>	N/A	Sb	This study
SbT ⁻	Sb TRP1 ^{P12X}	N/A	Sb	This study
$SbU^{-} + HIS3^{G26X}$	Sb URA3 ^{S81X} + HIS3 ^{G26X}	N/A	SbU⁻	This study
$SbH^- + TRP1^{P12X}$	Sb $HIS3^{G26X} + TRP1^{P12X}$	N/A	SbH-	This study
$SbU^{-} + HIS3^{G26X} + TRP1^{P12X}$	Sb URA3 ^{S81X} + HIS3 ^{G26X}	N/A	SbU ⁻ + HIS3 ^{G26X}	This study
SbU ⁻ + $thi6\Delta$	Sb $URA3^{S81X} + thi6\Delta$	N/A	SbU ⁻	This study
$SbU^{-} + thi2\Delta$	Sb $URA3^{S81X} + thi2\Delta$	N/A	SbU ⁻	This study
SbU ⁻ + sno1 Δ	Sb $URA3^{S81X} + snol\Delta$	N/A	SbU ⁻	This study
SbU ⁻ + $snz1\Delta$	Sb $URA3^{S81X} + snz1\Delta$	N/A	SbU ⁻	This study
$SbU^{-} + snol\Delta + snzl\Delta$	Sb $URA3^{S81X} + sno1\Delta$ + $snz1\Delta$	N/A	SbU ⁻⁺ sno1 Δ	This study
SbU ⁻ + $reil\Delta$	Sb $URA3^{S81X} + rei1\Delta$	N/A	SbU ⁻	This study
SbU ⁻ + $btsl\Delta$	Sb $URA3^{S81X} + bts1\Delta$	N/A	SbU ⁻	This study
SbU ⁻ + $bts1\Delta$ + $thi6\Delta$	Sb $URA3^{S81X} + bts1\Delta + thi6\Delta$	N/A	SbU ⁻⁺ $bts1\Delta$	This study
(SbU ⁻)-Exe4	SbU ⁻ + XII-5 P _{TDH3} - Exe4-t _{DIT1} **	N/A	SbU ⁻	(Hedin et al., 2022)
$(SbU^{-}+thi6\Delta)$ -Exe4	SbU ⁻ + $thi6\Delta$ + XII-5 P _{TDH3} -Exe4-t _{DIT1} **	N/A	SbU ⁻ + $thi6\Delta$	This study
$(SbU^{-}+bts1\Delta)$ -Exe4	SbU ⁻ + $bts1\Delta$ + XII-5 P _{TDH3} -Exe4-t _{DIT1**}	N/A	SbU ⁻⁺ $btsI\Delta$	This study
$(SbU^{-} + bts1\Delta + thi6\Delta)$ - Exe4	SbU ⁻ + $bts1\Delta$ + $thi6\Delta$ + XII-5 P _{TDH3} -Exe4- t_{DIT1**}	N/A	$SbU^{-} + bts1\Delta + thi6\Delta$	This study
(SbU ⁻)-GFP	SbU ⁻ + XII-5 P _{TDH3} - yEGFP-t _{ADH1}	N/A	SbU	This study
$(SbU^{-} + bts1\Delta + thi6\Delta)$ - mKate	SbU ⁻ + $bts1\Delta$ + $thi6\Delta$ + XII-5 P _{TDH3} -mKate- t _{ADH1}	N/A	$SbU^{-} + bts I\Delta $ + $thi6\Delta$	This study

Reference

- Hedin, K. A., Zhang, H., Kruse, V., Rees, V. E., Bäckhed, F., Greiner, T. U., Vazquez-Uribe, R., & Sommer, M. O. A. (2022). Oral delivery of GLP-1R agonist by an engineered probiotic yeast strain has anti-obesity effects in mice. *BioRxiv*, [Preprint]. https://doi.org/10.1101/2022.12.21.521368
- Jessop-Fabre, M. M., Jakočiūnas, T., Stovicek, V., Dai, Z., Jensen, M. K., Keasling, J. D., & Borodina, I. (2016). EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9. *Biotechnology Journal*, *11*(8), 1110–1117. https://doi.org/10.1002/BIOT.201600147
- Zhang, G. C., Kong, I. I., Kim, H., Liu, J. J., Cate, J. H. D., & Jin, Y. S. (2014). Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. *Applied and Environmental Microbiology*, 80(24), 7694–7701. https://doi.org/10.1128/AEM.02310-14/SUPPL FILE/ZAM999105872SO1.PDF