Supporting Information

Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties

Tuba Tekeli^{a,b}, Suleyman Akocak^{c*}, Andrea Petreni^d, Nebih Lolak^c, Servet Çete^b, Claudiu T. Supuran^{d*}

^aVocational School of Technical Science, Department of Chemistry and Chemical Processing Technologies, Adıyaman University, 02040 Adıyaman, Türkiye

^bDepartment of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye

^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Türkiye

^dUniversità degli Studi di Firenze, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy

*Corresponding authors: Tel: +90 (416) 223 3800-2836, Fax: +90 (416) 223 3842, E-mail: <u>akocaksuleyman@gmail.com</u>, <u>sakocak@adiyaman.edu.tr</u>, (Suleyman Akocak); Tel/Fax: +39-055-4573729, E-mail: <u>claudiu.supuran@unifi.it</u> (Claudiu T. Supuran).

Figure S1: ¹H NMR spectrum of compound 8 (X1Y1) (500 MHz, in DMSO-d₆).

Figure S2: ¹³C NMR spectrum of compound 8 (X1Y1) (125 MHz, in DMSO-d₆).

Figure S3: ¹H NMR spectrum of compound 9 (X1Y2) (500 MHz, in DMSO-d₆).

Figure S4: ¹³C NMR spectrum of compound 9 (X1Y2) (125 MHz, in DMSO-d₆).

Figure S5: ¹H NMR spectrum of compound **12** (X2Y1) (500 MHz, in DMSO-d₆).

Figure S6: ¹³C NMR spectrum of compound **12** (X2Y1) (125 MHz, in DMSO-d₆).

Figure S7: ¹H NMR spectrum of compound 13 (X2Y2) (500 MHz, in DMSO-d₆).

Figure S8: ¹³C NMR spectrum of compound **13** (X2Y2) (125 MHz, in DMSO-d₆).

Figure S9: ¹H NMR spectrum of compound 14 (X2Y3) (500 MHz, in DMSO-d₆).

Figure S10: ¹³C NMR spectrum of compound 14 (X2Y3) (125 MHz, in DMSO-d₆).

Figure S11: ¹H NMR spectrum of compound 15 (X2Y4) (500 MHz, in DMSO-d₆).

Figure S12: ¹³C NMR spectrum of compound 15 (X2Y4) (125 MHz, in DMSO-d₆).

Figure S13: ¹H NMR spectrum of compound 16 (X3Y1) (500 MHz, in DMSO-d₆).

Figure S14: ¹³C NMR spectrum of compound 16 (X3Y1) (125 MHz, in DMSO-d₆).

Figure S15: ¹H NMR spectrum of compound **17** (X3Y2) (500 MHz, in DMSO-d₆).

Figure S16: ¹³C NMR spectrum of compound **17** (X3Y2) (125 MHz, in DMSO-d₆).

Figure S17: ¹H NMR spectrum of compound 18 (X3Y3) (500 MHz, in DMSO-d₆).

Figure S18: ¹³C NMR spectrum of compound 18 (X3Y3) (125 MHz, in DMSO-d₆).

Figure S19: ¹H NMR spectrum of compound 19 (X3Y4) (500 MHz, in DMSO-d₆).

Figure S20: ¹³C NMR spectrum of compound **19** (X3Y4) (125 MHz, in DMSO-d₆).