Supporting Information

Lanpepsy is a novel lanthanide-binding protein involved in the lanthanide response of the obligate methylotroph *Methylobacillus flagellatus*

Jethro L. Hemmann, Philipp Keller, Lucas Hemmerle, Thomas Vonderach, Andrea M. Ochsner, Miriam Bortfeld-Miller, Detlef Günther, Julia A. Vorholt

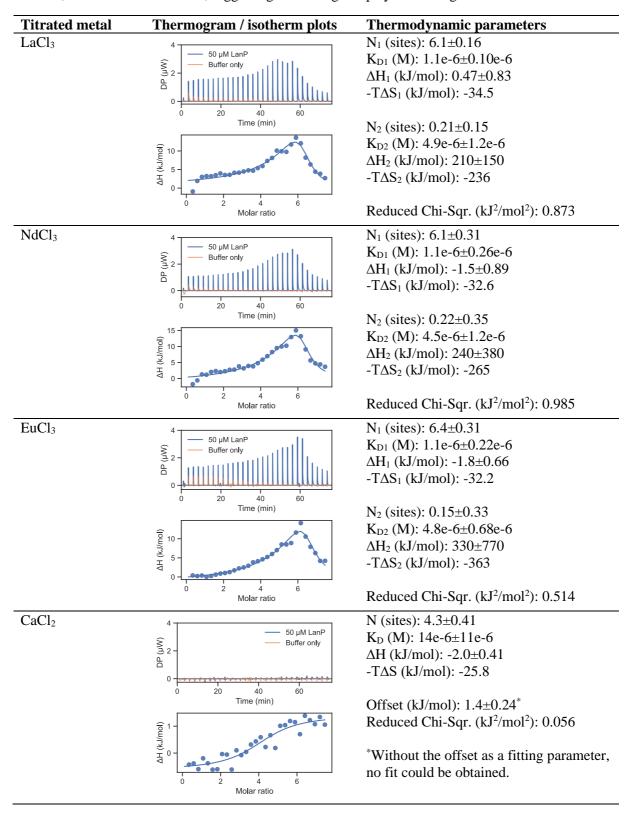
Contents:

- Tables S1–S4
- Figures S1–S4

Supporting Tables

Table S1. List of proteins induced in the presence of 20 μ M lanthanum. A q-value cutoff of <0.05 and a fold-change cutoff of >4 was applied and at least two unique peptides needed to be detected for each protein.

Locus tag	Description	Fold-change	q-value
Mfla_0344	XoxF (La ³⁺ -dependent methanol dehydrogenase)	13.7	1.6E-07
Mfla_2314	XoxF (La ³⁺ -dependent methanol dehydrogenase)	9.6	2.3E-05
Mfla_1632	Acriflavin resistance protein	9.0	1.2E-04
Mfla_2312	XoxG (cytochrome <i>c</i>)	8.5	8.8E-06
Mfla_1253	TonB-dependent receptor	8.0	8.8E-06
Mfla_0908, Mfla_1052*	LanP (Propeptide, PepSY and peptidase M4)	5.6	2.8E-03
Mfla_1254	Two component, sigma54 specific, transcriptional regulator, Fis family	5.3	1.9E-03
Mfla_0343	GAF modulated sigma54 specific transcriptional regulator, Fis family	4.5	1.6E-03


^{*} The genome of *M. flagellatus* KT has been described to contain a large (potentially phage-related) duplication (22), thus both locus tags Mfla_0908 and Mfla_1052 refer to an identical protein sequence.

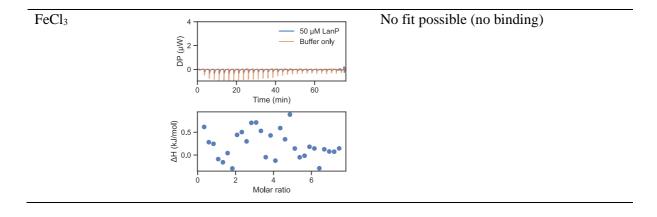
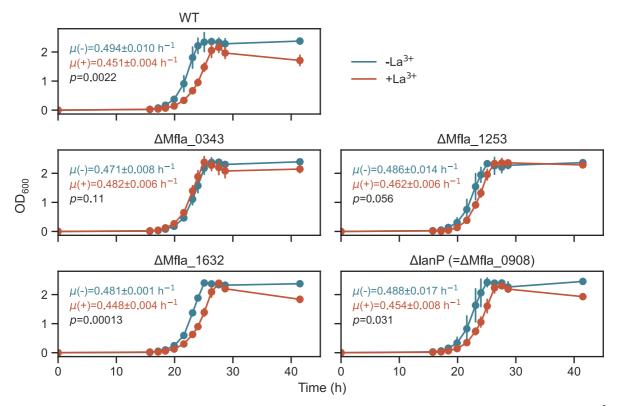
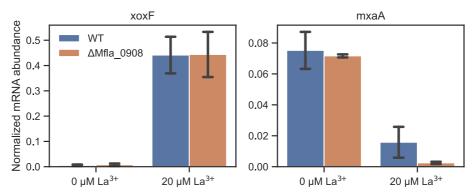

Locus tag	Description	Fold-change	q-value
Mfla_1724	DUF3828 domain-containing protein	14.8	8.76E-05
Mfla_2037	MxaC, protein involved in Ca2+ insertion into methanol dehydrogenase	11.7	1.26E-02
Mfla_0817	Signal transduction histidine kinase, glucose-6-phosphate specific	10.8	3.46E-04
Mfla_2035	MxaL protein, putative	10.2	1.82E-03
Mfla_0816	Two component transcriptional regulator, LuxR family	10.0	2.24E-03
Mfla_1185	Thioredoxin	9.5	8.83E-06
Mfla_2039	MxaS, protein involved in methanol oxidation	9.4	4.95E-02
Mfla_2038	MxaA, protein involved in Ca2+ insertion into methanol dehydrogenase	9.1	1.61E-03
Mfla_2041	MxaI (Methanol dehydrogenase [cytochrome c] subunit 2)	8.7	4.78E-02
Mfla_2042	MxaG (cytochrome c, class I)	8.7	4.32E-02
Mfla_2043	MxaJ (Amino acid ABC transporter substrate-binding protein, PAAT family)	7.2	3.39E-02
Mfla_2034	MxaD protein, putative	6.1	1.39E-02
Mfla_2040	MxaR (ATPase associated with various cellular activities, AAA_3)	4.8	4.10E-03
Mfla_0898, Mfla_1042*	Uncharacterized protein	4.3	7.25E-04

Table S2. List of proteins that showed decreased abundance in the presence of 20 μ M lanthanum. A q-value cutoff of <0.05 and a fold-change cutoff of >4 was applied and at least two unique peptides needed to be detected for each protein.

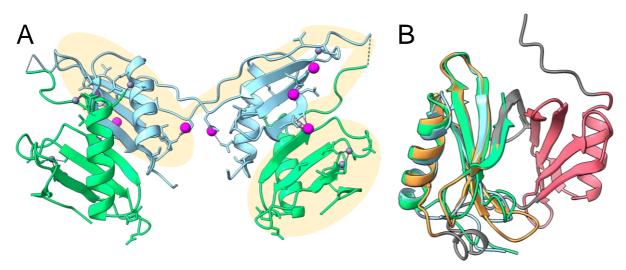
* The genome of *M. flagellatus* KT has been described to contain a large (potentially phage-related) duplication (22), thus both locus tags Mfla_0898 and Mfla_1042 refer to an identical protein sequence.

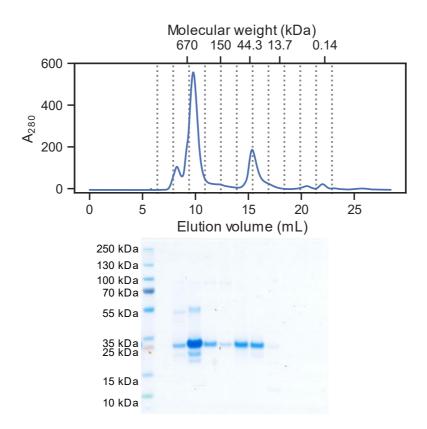
Table S3. Characterization of LanP using isothermal titration calorimetry (ITC). The ITC cell contained 50 μ M LanP (Mfla_0908) and the syringe 5 mM of the metal ligand; both were dissolved in 25 mM MOPS and 150 mM NaCl at pH 7.2. A control for the heat of dilution (injection of metal into buffer) was performed and subtracted from the measurement with protein. A model with two sets of sites was used to fit the isotherms of La³⁺, Nd³⁺, and Eu³⁺, while a model with one set of sites was fitted for Ca²⁺. For Fe³⁺, no fit could be obtained, suggesting no binding. Displayed thermograms are baseline corrected.

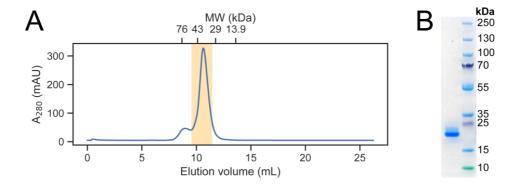



Table S4	List of	primers	used in	this	work.
----------	---------	---------	---------	------	-------

Purpose	Sequence
PCR of homologous region upstream of Mfla_0343	Fwd: TCATCTAGAAATCAGGCAGTCATTCCACTGTGGTC Rev: CATGAAGCTCCTAGCCTAAAGACCAGGCACCCCTC
PCR of homologous region downstream of Mfla_0343	Fwd: TTTAGGCTAGGAGCTTCATGGTTGATCGTAGGAAC Rev: AACAAGCTTGCAGCAAAGCAATGCCTGTACG
PCR of homologous region upstream of Mfla_0908	Fwd: CAGTCTAGACTATTGTGCCCAAGTAGCTTTATTC Rev: ATCATTCCTTTCCCACCATTTATCTCCATATAATCA
PCR of homologous region downstream of Mfla_0908	Fwd: AATGGTGGGAAAGGAATGATAGCTTTTTGACTGGAC Rev: CTTCTGCAGAGTGTGGCACTATCATATCGATTC
PCR of homologous region upstream of Mfla_1253	Fwd: TTCTCTAGAGTCAGGAACAGCTCCTCAATCAG Rev: TTTAATTGGTTTTTAACATACAATCCTTCCATAGTTG
PCR of homologous region downstream of Mfla_1253	Fwd: TATGTTAAAAACCAATTAAACTGACTTATTATTGATTAC Rev: GCAAAGCTTCACAATCTACATGCACGAAAGG
PCR of homologous region upstream of Mfla_1632	Fwd: TGTTCTAGATCAACCAGCATGACCGCAATATTTC Rev: TTCAGGCCACCGACATCATGGGGGTATCAGCTCCT
PCR of homologous region downstream of Mfla_1632	Fwd: CATGATGTCGGTGGCCTGAAGGTTGGGATTCTCTG Rev: TGGAAGCTTTATTGACGGTGTCACTGTCATCCTTG
PCR of Mfla_0908 for cloning into pET-16b	Fwd: GCGCATATGGATCATCACTTTCCCAAAGGAAAGG Rev: AACGGATCCTCATTCCTTGCCAATCTGGTAAAAC
PCR for removal of His ₁₀ -tag from Mfla_0908	Fwd: TTGGGAAAGTGATGATCCATGGTATATCTCCTTCTTAAAGTTAAACA Rev: CTTTAAGAAGGAGATATACCATGGATCATCACTTTCCCAA


Supporting Figures


Figure S1. Growth curves of the wild type (WT) and deletion strains with (+) and without (-) La^{3+} addition (20 µM final concentration). The error bars show the standard deviation of three biological replicates. The growth rate μ was calculated from the best fit to the exponential growth of each replicate and reported as the mean value ± standard deviation. The *p*-value originates from a *t*-test of the growth rates in presence and absence of La^{3+} for each strain.


Figure S2. RT-qPCR analysis of *xox* and *mxa* cluster expression in *M. flagellatus* KT wild-type and Δ Mfla_0908 strains. The highly induced (judging from the proteomics data) genes *xoxF* (*Mfla_0344*) and *mxaA* (*Mfla_2038*) were used as marker genes for the expression of the corresponding gene clusters. mRNA abundances were normalized to the housekeeping (according to proteomics) gene *Mfla_0284* (50S ribosomal protein L22).

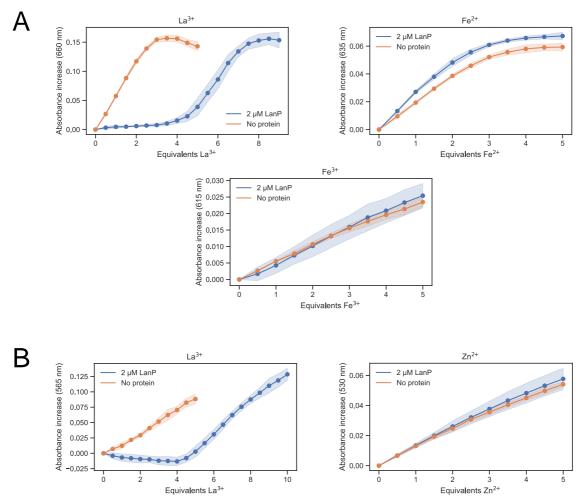

Figure S3. Structural comparison of UipA (PDB ID 7ATK) and LanP (predicted structure by AlphaFold). (A) Crystal structure of the UipA dimer. The two PepSY domains are colored green and blue. The yellow shaded regions represent a single monomer of the domain-swapped dimer. The magenta spheres depict uranium ions, while the smaller grey spheres represent zinc ions. (B) Predicted structure of LanP aligned and superimposed with the two individual PepSY domains of UipA (green and blue).

Figure S4. Size-exclusion chromatography of affinity-purified His₁₀-tagged Mfla_0908 and SDS-PAGE analysis of the resulting fractions. A Superdex 200 Increase 10/300 GL column (GE Healthcare) was used. The molecular weight axis on top was determined using standards (thyroglobulin, γ -globulins, albumin, ribonuclease A, p-aminobenzoic acid). The fractions indicated by the grey dotted lines were analyzed by SDS-PAGE as shown on the gel below.

Figure S5. Purification of untagged LanP (Mfla_0908) expressed in *E. coli*. (A) Size-exclusion chromatogram (Superdex 75 10/300 GL) after two steps of anion-exchange chromatography. The top axis represents the elution volumes of molecular weight standards. The yellow shaded area depicts the fractions that were combined to yield pure protein. (B) SDS-PAGE analysis of 1 μ g of size-exclusion purified LanP.

Figure S6. Dye competition assays performed using 2 μ M LanP (Mfla_0908) and different metal ions. The non-lanthanide metals required different dyes (10 μ M) and wavelengths for the assay to work optimally. (A) Competition assays performed using La³⁺ (control), Fe²⁺, and Fe³⁺ with arsenazo III as dye. (B) Competition assays performed using La³⁺ (control) and Zn²⁺ with xylenol orange as dye.