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Geographic definition of Europe  
In this first Lancet Countdown in Europe indicator report, we include all 38 European Environment Agency (EEA) 

member states and cooperating countries (see table 1), plus the United Kingdom, where possible. Over time, we 

aim to expand the coverage to the entire World Health Organisation (WHO) European region (see table 2). As 

data availability varies across indicators, we provide a description of the geographic coverage of Europe used for 

each individual indicator in the relevant appendix sections. Table 3 and table 4 provide an overview of the 

member countries that are part of the European Union (EU) and the European Trade Association (EFTA).   

 

Table 1 European Environment Agency (EEA) member and cooperating countries1  

Member countries 

Austria Belgium Bulgaria  Croatia 

Cyprus Czechia Denmark Estonia 

Finland France Germany Greece 

Hungary Iceland Ireland  Italy 

Latvia Liechtenstein Lithuania Luxembourg 

Malta  Netherlands Norway Poland 

Portugal Romania Slovakia Slovenia 

Spain Sweden Switzerland Türkiye 

Cooperating countries  

Albania Bosnia and Herzegovina Kosovo (UNSCR 1244) Montenegro 

North Macedonia Serbia    

 

 

Table 2 World Health Organisation (WHO) European region member countries2   

Albania Andorra Armenia Austria Azerbaijan 

Belarus Belgium Bosnia and Herzegovina Bulgaria Croatia 

Cyprus Czechia Denmark Estonia Finland 

France Georgia Germany Greece Hungary 

Iceland Ireland Israel Italy Kazakhstan 

Kyrgyzstan Latvia Lithuania Luxembourg Malta 

Monaco Montenegro Netherlands North Macedonia  Norway  

Poland Portugal Republic of Moldova Romania Russian Federation 

San Marino Serbia Slovakia Slovenia Spain 

Sweden Switzerland Tajikistan Türkiye Turkmenistan 

Ukraine United Kingdom 
of Great Britain 

and Northern 

Ireland 

Uzbekistan   
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Table 3 European Union (EU) member and candidate countries3,4   

Member countries 

Austria Belgium Bulgaria Croatia 

Cyprus Czech Republic Denmark Estonia 

Finland France Germany Greece 

Hungary Ireland Italy Latvia 

Lithuania Luxembourg Malta Netherlands 

Poland Portugal Romania Slovakia 

Slovenia Spain Sweden  

Candidate countries   

Albania North Macedonia Montenegro Serbia 

Türkiye    

Potential candidate countries 

Bosnia and Herzegovina Kosovo (UNSCR 1244) Iceland  

 

 

 

Table 4 European Free Trade Association (EFTA) countries5  

Member countries 

Iceland Liechtenstein Norway Switzerland 
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Summary of data inputs for each indicator  
Table 5 Data inputs for each indicator  
Indicator Data inputs 
1. Climate change impacts, exposures, and vulnerabilities 
1.1 Heat and health  
1.1.1 Vulnerability to heat exposure - Population estimates, GBD 2019  

- DALYs and deaths, GBD 2019  
- Urban population, UNDP Urbanization Prospects 2018 

1.1.2 Exposure of vulnerable populations to heatwaves - Climatic data, ERA5-Land reanalysis  
- Population data, NASA SEDAC GPWv4 & Eurostat demographic census 
data  

1.1.3 Physical activity related heat stress risk - Climatic data, ERA5-Land reanalysis  
- Population data, Eurostat GEOSTAT  

1.1.4 Heat-related mortality - Climatic data, ERA5-Land reanalysis 
- Population data, Eurostat  
- Mortality data, Eurostat  

1.2 Extreme events and Health 
1.2.1 Wildfire smoke - Population data, Eurostat GEOSTAT  

- Geographic data, Eurostat GISCO  
- Mortality, Eurostat  
- Fire smoke dispersion forecasts, IS4FIRES & SILAM models based on 
Thermal Anomalies and Fire MOD14/MYD14 
- Fire weather index 

1.2.2 Drought - Climatic data, ERA5-Land reanalysis 
1.3 Climate-sensitive infectious diseases  
1.3.1 Climate suitability non-cholerae Vibrio - Population data, Eurostat GEOSTAT  

- Sea surface temperature data, GHRSST Level 4 MUR Global Foundation 
Sea Surface Temperature Analysis (v4.1) 
- Sea surface salinity data, Ocean Physical Reanalysis and Analysis EU 
Copernicus Marine Service  

1.3.2 Climate suitability West Nile Virus - Climatic data, ERA5-Land reanalysis 
- WNV infections data, ECDC  

1.3.3 Climate suitability Dengue - Climatic data, ERA5-Land reanalysis & C3S  
- Population data, Hybrid gridded data combining NASA SEDAC GPWv4 
with ISIMIP Histsoc and World Population Prospects demographic 
modelling data 

1.3.4 Climate suitability Malaria - Climatic data, ERA5-Land reanalysis  
- Land cover, CORINE  
- Altitude data, JISAO 

1.4 Allergens  
1.4.1 Allergenic trees - Climatic data, ERA5-Land reanalysis  

- Land cover data, ECOCLIMAP, EFI and GLC-SHARE  
- Pollen data, European Aeroallergen Network   

2. Adaptation, planning and resilience for health 
2.1 Adaptation planning and assessment  
2.1.1 National assessments of climate change impacts, vulnerability 
and adaptation for health  

- Questionnaire data, WHO Health and Climate Change Survey  

2.1.2 National adaptation plans for health  - Questionnaire data, WHO Health and Climate Change Survey 
2.2. Enabling conditions, adaptation delivery and implementation  
2.2.1 Climate information services for health  - Questionnaire data, WHO Health and Climate Change Survey 
2.2.2 Green space  - Population data, Eurostat  

- NVDI data, MOD14Q1 from Terra MODIS  
- Land cover data, High Resolution Layer TCD, Urban Atlas Land use/Land 
- Cover data & Urban Atlas Street Tree layer 

2.2.3 Air conditioning benefits and harms - Airconditioning data, IEA  
Section 3. Mitigation actions and health co-benefits 
3.1. Energy system and health 
3.1.1 Carbon intensity of the energy system   - CO2 Emission from Fuel Combustion dataset, IEA  
3.1.2 Coal phase-out  - World Extended Energy Balances dataset, IEA 
3.1.3 Renewable and zero-carbon emission electricity  - World Extended Energy Balances dataset, IEA 
3.2 Premature mortality attributable to ambient fine particles   - Energy consumption, Eurostat & IEA  

- Agricultural activity, FAOSTAT 
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- Fertiliser use, IFASTAT 
- Municipal waste, GAINS internal calculations  
- Mortality data, Eurostat & UN World Population Prospects  

3.3 Sustainable and healthy transport  - Fuel use, World Extended Energy Balances dataset, IEA 
- Population data, UN World Population Prospects  
- Model split of passenger transport, Eurostat  

3.4. Food, agriculture and health 
3.4.1 Life cycle emissions from food demand   - Food demand, FAO’s Food Balance Sheets  

- Life-cycle emissions, Poore & Nemecek 2018 
3.4.2 Sustainable diets  - Population data, GBD 2019 

- Mortality data, GBD 2019  
- Food consumption, FAO’s Food Balance Sheets  
- Health estimates, meta-analysis of prospective cohort studies  

Section 4: Economics and finance 
4.1. The health linked economic impacts of climate change and its mitigation 
4.1.1 Economic losses due to climate-related extreme events  - Swiss Re Institute sigma catastrophe database  

- IMF World Economic Outlook  
4.1.2 Change in labour supply - Climatic data, ERA5-Land reanalysis 

- Labour data, Eurostat Regional Database from the EU Labour Force 
Survey 

4.1.3 Impact of heat on economic activity - Climatic data, ERA5-Land reanalysis 
- GDP growth data, Eurostat Regional Database from the EU Labour Force 
Survey 

4.1.4 Monetised value of unhealthy diets  - Values of statistical life, OECD 
- Diet-related health impacts from indicator 3.4.2  

4.2. The economics of the transition to zero-carbon economies 
4.2.1 Net value of fossil fuel subsidies and carbon prices - Fossil fuel subsidies, IEA, OECD  

- Carbon pricing, World Bank Carbon Pricing Dashboard  
- CO2 emissions from fuel, IEA 
- Health expenditure, WHO,  
- US Dollar GDP deflator index, IMF World Economic Outlook database 

Section 5: Politics and governance 
5.1 Coverage of health and climate change in scientific journals  - Scientific databases, Scopus, Medline, Web of Science Core Collection 
5.2 Individual engagement with health and climate change on 
social media  

- Twitter Developer API for the Academic purposes  

5.3 Political engagement with health and climate change  - EU parliament debates transcripts  
5.4 Corporate sector engagement with health and climate change  - UN GCCOP reports  

 
ABBREVIATIONS:  
CORINE; Copernicus Land Monitoring Service, C3S; Copernicus Climate Change Service, DALY; Disability-Adjusted Life 
Years, ECDC; European Centre for Disease Prevention and Control, EFI; European Forest Institute, EU; European Union, 
Eurostat; European Statistical Office, FAO; Food and Agriculture Organization, FAOSTAT; Food and Agriculture 
Organization Corporate Statistical Database, GAINS; Greenhouse Gas-Air Pollution Interactions and Synergies, GBD; Global 
Burden of Disease, GCCOP; Global Compact Communication Progress; GDP; Gross Domestic Product, GISCO; 
Geographical Information System, GLC; Global Land Cover, GPW; Gridded Population of the World, GHRSST; Group for 
High Resolution Sea Surface Temperature, IEA; International Energy Agency, IFASTAT; International Fertilizer Association 
Statistics, IMF; International Monetary Fund, ISIMIP; Inter-Sectoral Impact Model Intercomparison Project, IS4FIRES; 
Integrated Monitoring and Modelling System for Wildland Fires, JISAO; Joint Institute for The Study of Atmosphere and 
Ocean, MODIS; Moderate Resolution Imaging Spectroradiometer, MUR: Multiscale Ultrahigh Resolution, NASA; National 
Aeronautics and Space Administration; NVDI; Normalised Vegetation Index, OECD; Organisation for Economic Co-
operation and Development, SEDAC; Socioeconomic Data and Applications Center, SILAM; System for Integrated 
Modelling of Atmospheric Composition, TCD; Tree Cover Density, UN; United Nations, UNDP; United Nations 
Development Programme, WNV; West-Nile Virus, WHO; World Health Organization 
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Overview with headline findings  
In the following section we provide an overview with headline findings for each individual indicator included in 

the 2022 Lancet Countdown in Europe report.  

 

Section 1: Climate change impacts, exposures, and vulnerabilities 
1.1 Heat and health  
1.1.1 Vulnerability to heat exposure 

Vulnerability to heat exposure has risen steadily across all European regions, with an increase of 4% from 1990 

to 2019. Older people in Northern Europe are more vulnerable to heat exposure. The highest increase over time 

has been observed in Central and Southern Europe. 

1.1.2 Exposure of vulnerable populations to change in heatwaves 

Between the first and second decades of the 21st century (2000-2009 vs 2010-2019) heatwave exposures increased 

57% on average with local increases of more than 250%. 

1.1.3 Physical activity and heat stress risk 

Heat stress risk during physical activity has increased across Europe since 1990; particularly in Southern Europe, 

where risky hours per person reached 429 hours for medium intensity activities and 627 hours for strenuous 

activities in 2020. 

1.1.4 Heat related mortality 

Heat related mortality has increased by 15 annual deaths per million inhabitants per decade between 2000-

2020.  

1.2 Extreme events and Health 
1.2.1 Wildfire smoke 

Exposure to wildfire smoke showed small but uncertain negative trends in all European regions, possibly due to 

increased effectiveness of fire prevention and suppression measures.  

1.2.2 Drought 

55% (184/334) of NUTS2 regions have faced extreme to exceptional summer drought events between 2011-2020, 

in which one-third has experienced more than 40% of the drought events recorded over 7 decades (1950-2020) 

in the last decade (2011-2020). 

1.3 Climate-sensitive infectious diseases  
1.3.1 Climate suitability non-cholerae Vibrio 

Suitable ecological conditions for pathogenic Vibrio is increasing across Europe over recent years both in terms 

season length and percentage of coastline with favourable conditions for Vibrio.  

1.3.2 Climate suitability West Nile Virus 

An accelerating trend of WNV outbreak risk was observed between 1951-2020, with the highest increases in 

Southern Europe (149%), and Central and Eastern Europe (163%), from 1951-1985 to 1986-2020.  
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1.3.3 Climate suitability Dengue 

The basic reproduction 𝑅! and length of transmission season (LTS) for dengue has increased in all European 

regions,  from 1951-1985 to 1986-2020, with an overall increase in 𝑅! of 17.3%.  
1.3.4 Climate suitability Malaria 

There has been a steady increase in the number of months suitable for Plasmodium vivax transmission in all 

European regions. The highest change occurred in Northern and Western Europe, with 21.6% and 25.2% 

increases in suitability, from 1951-1985 to 1986-2020. 

1.4 Allergens   
1.4.1 Allergenic trees 

Warming climate during last 41 years has resulted in a 10 – 20 days earlier start of flowering season of major 

European allergy-relevant trees: birch, alder, and olive. The most-significant changes occurred in mountains 

(e.g., Alps, Balkans, Scandinavian ridge), where the season now starts more than one month earlier than in the 

1980s. 

 

Section 2: Adaptation, planning and resilience for health 
2.1 Adaptation planning and assessment  
2.2.1 National assessments of climate change impacts, vulnerability, and adaptation for health 

In 2021, 10 (45%) of 22 countries reported having undertaken a climate change and health vulnerability and 

adaptation assessment. 14 (64%) of 22 countries reported having a multi-stakeholder mechanism on health and 

climate change that is currently operational. 

2.2.2 National adaptation plans for health 

In 2021, 15 (68%) of 22 assessed European countries reported having national health and climate change 

strategies or plans in place. 

2.2.3 City-level climate change risk assessments  

Out of 197 European cities in 2021, 150 (76%) reported having conducted a climate assessment. 59.9% (118/197) 

of cities reported that climate change threatened health services or public health, with heat-related illnesses most 

prominently identified as a climate related health hazard (identified by 87 cities). 

2.2 Adaptation delivery and implementation  
2.2.1 Climate information for health 

In 2021, 45% (10/22) of countries in the WHO European region reported having climate-informed health 

surveillance systems for heat-related illnesses, 36% (8/22) for injury and mortality related to extreme climatic 

events, 27% (6/22) for vector-borne diseases, and 18% (4/22) for water-borne diseases.  

2.2.2 Green space  

Populated weighted greenness increased somewhat from 2000 to 2020 in most European countries with the 

largest increases observed in Southern Europe (13% mean increase) and the smallest in Western Europe (3% 

mean increase). The mean urban tree coverage in European cities in 2018 was 28.5% (EEA39) and 35.8% 

(EEA38) of the city (including commuting zones).  
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2.2.3 Air conditioning benefits and harms 

For most European countries assessed, the proportion of households using air conditioning has increased 

steadily. Of the countries with individual-level country data, the highest increase was observed in Finland (162%) 

and Germany (122%). The downside of air conditioning use is that it contributes to greenhouse gas emissions, 

air pollution, peak electricity demand, and urban heat islands.    

 

Section 3: Mitigation actions and health co-benefits 
3.1 Energy system and health 
3.1.1 Carbon intensity of the energy system  

Between 2005 and 2019 emissions from fuel in Europe fell by 14% to 3.5GtCO2 per year. The COVID pandemic 

had the effect of temporarily reducing Europe’s emissions by 8% in 2020. 

3.1.2 Coal phase-out  

Coal remains a substantial fuel in the European energy mix at 12% of total energy supply in 2020. Current rates 

of reduction are incompatible with reaching net-zero by 2050.  

3.1.3 Renewable and zero-carbon emission electricity 

Share of zero-carbon total energy supply in Europe is only 21% and share of renewables in electricity is 17% in 

2020, despite rapid growth in electricity generation from wind in Denmark, Ireland and the UK, and solar in 

Germany, Greece and Italy. 

3.2 Premature mortality attributable to ambient fine particles   
Air pollution related deaths from combustion of fossil fuels have decreased by 60% between 2005 and 2020, but 

still almost 120,000 deaths annually are attributable to these sources.  

3.3 Sustainable and healthy transport  
Per capita fossil fuel use in road transport peaked at 23GJ per person in 2007; electric vehicles are growing, but 

remain a small fraction of energy use for road transport.  

3.4 Food, agriculture and health  
3.4.1 Life cycle emissions from food demand   

Between 2010 to 2019, there was little progress in reducing emissions associated with European food demand, 

which in 2019 amounted to 1.85 GtCO2-eq. Animal source foods continue to be responsible for over two thirds 

(77%) of those emissions. 

3.4.2 Deaths attributable to dietary risks 

About 2.2 million deaths in Europe were attributable to imbalanced diets in 2019, representing more than a 

quarter (26%) of all deaths amongst adults. Between 2010 and 2019, the proportion of diet-related deaths 

decreased by 2%. 

 

Section 4: Economics and finance  
4.1 The health-linked economic impacts and mitigation of climate change 
4.1.1 Economic losses due to climate-related extreme events  
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Over the past decade, the highest economic losses due to climate-related extreme events were observed in 2021, 

with an absolute economic loss totalling €47,962 million. The vast majority of economic losses were experienced 

by Germany; €30,280 million (63% of total European losses).  

4.1.2 Change in labour supply 

Labour supply in high-exposure sectors was 0.98% (just under 16 hours per worker) lower in 2016-2019 than in 

1965-1994 due to temperature change. In comparison, in 1995-2000 the reduction in labour supply was only 

0.23% (just under 4 hours per worker).  

4.1.3 Impact of heat on economic activity 

In 2019, relative to 1981-2000 temperatures, GDP per capita growth in Southern Europe was 0.90% (95% CI: -

0.87, -0.91) lower due to temperature anomalies and 0.106% (95% CI: -0.100, -0.111) lower in 2001 

4.1.4 Monetised value of unhealthy diets  

The value of imbalanced diets in Europe amounted to USD 9.4 trillion in 2019, representing 32% of GDP. The 

value of imbalanced diets was highest in Eastern Europe, where it amounted to over half (56%) of regional GDP. 

4.2 The economics of the transition to zero-carbon economies 
4.2.1 Net value of fossil fuel subsidies and carbon prices 

28 (52.8%) of the 53 countries reviewed had a net-negative carbon price in 2019. Fifteen countries provided net 

subsidies to fossil fuels exceeding one billion euros each year.  

 

Section 5: Politics and governance  
5.1 Coverage of health and climate change in scientific journals  

Growth in scientific papers investigating the intersection between health and climate change in Europe continued 

in 2021. 366 relevant papers were published mentioning locations in Europe, a 9% increase compared to 2020. 

While research on health implications of climate change impacts continues to dominate the evidence base, 

increasing attention has been given to climate solutions over the last 10 years. 

5.2 Individual engagement with health and climate change on social media  

Engagement with the health and climate change on Twitter in Europe is low, with a very small proportion of 

tweets on climate change mentioning health. There was a spike in engagement towards the end of 2021, linked to 

the COP26 summit and the publication of the Lancet Countdown annual report.  

5.3 Political engagement with health and climate change  

Engagement with health and climate change by legislators in the European Parliament remains low in 2021. The 

highest engagement with climate change and health comes from the Progressive Alliance of Socialists and 

Democrats (S&D) and from German legislators.    

5.4 Corporate sector engagement with health and climate change  

Engagement with health and climate change among European companies signed up to the UN Global Compact 

increased to their highest level in 2021, with 35% of corporations referencing health and climate change in their 

annual report.  
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Section 1: Climate change impacts, exposures, and vulnerability 
1.1: Heat and health  
Indicator 1.1.1: Vulnerability to extremes of heat  
Methods  

This indicator displays an index derived by taking the mean of proportion of the population over 65 years (1);6 

the prevalence of cardiovascular, diabetes and chronic respiratory diseases among the population over 65 years 

from the GBD study 2019 estimates (2)7 and the proportion of the population living in urban areas (3)8 as a 

measure of exposure to urban heat islands. The index ranges from 0 to 100 and is a measure of potential 

vulnerability of a country to heat exposure.  Aggregated trends by European regions are presented for the period 

1990 to 2019. Percentage change in vulnerability was also computed taking 1990 as the baseline year.  

 

Geographic coverage of Europe 

For this indicator, European Environment Agency (EEA) member and cooperating countries plus the United 

Kingdom were included. 

 

Data  

1. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) 

Population Estimates 1950-2019. Seattle, United States: Institute for Health Metrics and Evaluation 

(IHME), 2020. 

2. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) 

Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2020.Available from 

http://ghdx.healthdata.org/gbd-results-tool. 

3. Urban population (% of total) The United Nations Population Division's World Urbanization Prospects. 

2018 Revision. 

Caveats  

There is no consistent and universally accepted standard for distinguishing urban from rural areas, in part because 

of the wide variety of situations across countries. Most countries use an urban classification related to the size or 

characteristics of settlements. This indicator does not include the existence of heat early warning systems, or 

prevalence of cooling devices. Neither does it include the prevalence of green areas in cities. 

 

Future form of the indicator 

GBD and urbanization estimates now are revised annually; the indicator will be updated every year. 

 

Additional analysis 

Figure 1.1 shows the vulnerability to heat in Europe between 1990-2019 across European regions. Figure 1.2 

displays a map contrasting the heat vulnerability between 1990-2019 for European countries. Figure 1.3 displays 

the trends in cardiovascular disease prevalence, proportion of the population in urban areas and the proportion of 

the population over 65 years old, which is used to calculate the heat vulnerability index  
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Figure 1.1. Vulnerability to heat in Europe between 1990-2019 across European regions.  
 

 
 

 

 

Figure 1.2 Map showing the heat vulnerability index at the country level in Europe in 
(a) 1990 and (b) 2019 
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Figure 1.3 Trends in cardiovascular diseases prevalence, proportion of population in urban areas and proportion 

of the population 65 years and above used to calculate the heat vulnerability index between 1990-2019. 
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Indicator 1.1.2: Exposure of vulnerable populations to heatwaves 
Methods  

Heatwaves are defined as periods of 2 or more days where both the minimum and maximum temperatures are 

above the 95th percentile of the local climatology (defined using a 1986-2005 baseline period).  

The vulnerable population is defined as those above the age of 65 and infants between 0 and 1 years old. Previous 

research has identified these groups as being particularly vulnerable to heatwave impacts on health.  

Exposures were calculated by multiplying the number of heatwave days by vulnerable population count, 

producing an indicator of ‘person-days’ that reflects both the changes in frequency and duration of heatwaves.9 

 

Geographic coverage of Europe 

For this indicator we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom. 

 

Data  

For climate data, ERA5-Land reanalysis data at 0.1˚ resolution was used. For each grid cell, the number of days 

with heatwaves per year was calculated. 

To derive vulnerable population counts, spatiotemporal demographic data was derived from NASA SEDAC 

GPWv4 and Eurostat data. The spatial distribution of demographic age bands for 2010 was obtained from GPWv4. 

Eurostat demographic census data for NUTS2 regions (2016 definition) was projected onto the grid and used to 

adjust demographic fractions per grid cell for the years 2000-2021 relative to the 2010 baseline. The number of 

infants was estimated as the difference between total births and infant mortality rate. Missing values for 

demographic, birth, and infant death rate data obtained from Eurostat were filling using the most recent available 

year, preceding year, or the next available year (forward fill first then back fill). 

 

Caveats  

In order to estimate the time evolution of demographics, data from diverse sources was combined in order to 

obtain estimates of both the spatial and temporal characteristics. This has been subject to limited validation.  

 

Future form of the indicator 

Future versions of the indicator aim to also use Eurostat gridded population data. However, this data is only 

available for a selection of years, therefore it was decided for this first version to use this hybrid dataset in order 

to show the time series change and decade changes. 

 

Additional analysis 

Figure 1.4 shows the percentage change in heatwave exposure between the decade 2000-2009 and 2010-2019. 

These increases are broadly distributed across the region with particular hot spots in central and eastern Spain and 

in central Europe. Figure 1.5 shows the exposure to change in heatwaves (relative to a 1986-2005 baseline period) 

for infants and over 65s.  
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Figure 1.4 Decadal change in heatwave exposures of vulnerable people. (A) over 65 and infants combined, (B) 

infants, (C) over-65s, comparing the mean exposure by grid cell in 2010-2019 to 2000-2009 

 

 

 
Figure 1.5 Exposure to change in heatwaves (relative to 1986-2005 baseline) for infants and over 65s. 

 

 

 

 

 

 

C 
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Indicator 1.1.3: Physical activity-related heat stress risk 
Methods  

This indicator shows heat stress risk during physical activity as “risky hours per person per year”, based on the 

Sports Medicine Australia (SMA) Extreme Heat Policy.10,11  An “hour at risk” is defined as an hour during which 

“heat” – represented by a combination of average 2-meter temperature and relative humidity during that hour – 

renders physical activity of a given intensity “risky”. In the SMA Policy,10 risk is stratified into four levels (low, 

moderate, high and extreme) for each of five categories of physical activity, which are grouped according to 

intensity and accounting for typical clothing and equipment. Risk levels are defined in terms of actions required 

to avoid heat stress as follows; low risk: maintain hydration and wear light-weight clothing if needed; moderate 

risk: increase frequency and duration of rest breaks; high risk: use active cooling during rest breaks and/or before 

and after activity (e.g., drinking cold liquids; water dousing with a sponge or spray bottle); extreme risk: stop 

activity and seek shelter. (For reporting purposes in this indicator, moderate, high, and extreme risk were 

aggregated, except in figure 1.9). The indicator focuses on two categories of activity: category 3, which includes 

medium intensity activities such as cycling, football and tennis; and, category 5, which includes strenuous 

activities with specific clothing and equipment such as field hockey and mountain biking. For the indicator, these 

are referred to as “medium intensity activities” and “strenuous activities”, respectively.   

The indicator covers the period from 1990 to 2020 but holds population levels constant at 2018 levels over the 

entire period. Thus, it specifically assesses temporal and spatial changes in risk that are attributable to natural and 

anthropogenic climate patterns and trends.   

Risk functions of the following form, which define the thresholds between given levels of risk for a given category 

of physical activity, were derived from figures in the SMA guidelines using image processing.12  

𝑓(𝑥) = 	𝑎	 + 	𝑏𝑥	 + 	𝑐𝑥" 	+ 	𝑑𝑥# 	+ 	𝑒𝑥$ 

where 𝑥 is 2-meter temperature in a given hour, 𝑓(𝑥) is 2-meter relative humidity in a given hour, and 𝑎, 𝑏, 𝑐 and 

𝑑 are coefficients that are specific to each activity category and risk transition (e.g., moderate to high). The 

coefficients are specified in table 1.1. 

Climate data were obtained for Europe from the ERA5-Land 9km2 grid for 2-meter temperature and 2-meter dew 

point temperature for each hour for the years 1990 to 2020.13 These data were then combined to calculate hourly 

2-meter relative humidity.14 The hourly temperature and relative humidity data were used to derive the risk 

functions to calculate the level of heat stress risk during each hour for the two categories of physical activity in 

each 9km2 grid cell.  

Population data were obtained from the GEOSTAT 1km2 population estimates for 2018 (population was fixed at 

these levels for all years in the analysis).15 The total population in each ERA5-Land 9km2 grid cell was estimated 

based on the location of the centroids of the GEOSTAT 1km2 cells (See below how GEOSTAT cells falling in 

ERA5-Land cells with no climate data were dealt with).  

For each 9km2 grid cell, the annual number of person-hours at risk was calculated by summing the population 

over all hours in each year, for each level of risk, for each physical activity category. During this process, 

population grid cells that fell outside the ERA5-Land grid (which were principally on the coast) were assigned 

the risk level of the closest ERA5-Land grid cell with available climate data based on the Euclidian distance using 

the latitude and longitude coordinates. These estimates were then aggregated to NUTS 2 level and by broad 

geographic region (i.e. North, Central, West and South Europe).16,17 For NUTS 2 regions, grid cells were assigned 
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to the region with which they had the greatest overlap (this could lead to some misclassification but the 

implications for our estimates are likely to be minimal), and the values of each cell falling in each region were 

summed. NUTS 2 regions were then assigned to broad geographic regions based on their centroids.  

Next, risky hours per person per year was calculated by dividing the person-hours at risk by the population of the 

area of interest, and, total risky hours per person per year was calculated by summing risky hours for moderate, 

high, and extreme risk. Finally, the linear trends for annual change in risky hours per person per year were 

estimated by using linear regression to find the line of best fit, with uncertainty represented using 95% confidence 

intervals. 

 

Table 1.1 Risk function coefficients by activity type and risk threshold 

Coefficients by physical 

activity type 

 

Risk threshold  

Medium intensity activity Low-Moderate Moderate-High High-Extreme 

𝑎 1123·0830 1054·5207 1240·9576 

𝑏 -101·9229  -89·1276 -106·4948 

𝑐    3·7725    3·1001    3·7484 

𝑑   -0·0657   -0·0509   -0·0614 

𝑒    0·0004    0·0003    0·0004 

Strenuous activity Low-Moderate Moderate-High High-Extreme 

𝑎 1268·3137 1254·2166  846·5127 

𝑏 -117·2863 -110·5991  -59·4419 

𝑐    4·3161    3·8902    1·6317 

𝑑   -0·0733   -0·0626   -0·0194 

𝑒    0·0005    0·0004    0·0001 

“Risk threshold” refers to the line separating one level of risk from another; for instance, low-moderate refers to 

the line between low risk and moderate risk. Coefficients are rounded to four decimal places. 

 

Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom, excluding Kosovo and Bosnia & Herzegovina as data was not available for these countries.  

 

Data  

1. Climate data were obtained from the European Centre for Medium-Range Weather Forecasts ERA5-

Land dataset for hourly 2m temperature and hourly 2m dew point temperature, on a 9km2 grid covering 

Europe, for the period 1990 to 2020.13  

2. Population data were obtained from the Eurostat GEOSTAT data for total population estimated for the 

year 2018, on a 1km2 grid covering Europe.15  

3. Country and NUTS 2 borders were obtained from Eurostat GISCO.16  

4. Broad European geographic regions (i.e. North, Central, West and South Europe) were available from 

Eurostat.17  
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Caveats  

The first caveat is that the exposure-risk functions were originally developed for use in Australia. They were 

applied in a European-context based on the following considerations: no European-specific alternatives exist; the 

Australian guidelines were recently developed by leading scientists in the field based on the best available 

empirical evidence;10,18 and, the functions rest on human physiology which may reasonably be assumed to be 

similar across high income countries (personal communication: Professor Ollie Jay, University of Sydney, e-mail, 

Jan 7 2022). 

A second caveat is that the figures from which the risk functions were derived only consider temperatures in the 

range 26°C to 44°C (figure 1.6).10 Thus it was necessary to extrapolate them based on the following justifications. 

For temperatures above 44°C, the underlying figures show that almost all hours (with the exception, for medium 

intensity activities, of the unlikely situation where relative humidity is close to 0%) with high temperatures would 

be classified as extreme risk for both of categories of physical activity considered in the indicator; thus, 

extrapolation at high temperatures is straightforward. For temperatures below 26°C, these show most hours would 

be low risk. However, at high levels of relative humidity, and depending on the intensity of exercise, risk may be 

moderate or high, or - very rarely - extreme. This means extrapolation is less certain at the low end of temperatures. 

In this regard, it was suggested by an author of the original guideline (personal communication: Professor Ollie 

Jay, University of Sydney, e-mail, Jan 10, 2022) that below 26°C risk would generally (except at very high levels 

of exertion) be expected to be quite low irrespective of relative humidity as dry heat loss becomes increasingly 

pronounced and is less dependent on sweat evaporation. Given this, it was suggested it would be reasonable to 

extrapolate the functions down to around 23°C and then assume that risk is “low” beyond this. Our extrapolated 

functions adhere to this recommendation.  

 
Figure 1.6 Form of the risk functions for medium intensity and strenuous physical activity. 

Footnote for Figure 1.6. The vertical dashed lines indicate the temperature range covered by the figures in the 

SMA guidelines. The vertical solid lines show range outside which risk was always considered low (the line on 

the left) and extreme (the line on the right).  
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A third caveat is that population is fixed at 2018 levels when calculating the indicator for all years. This was partly 

a pragmatically based decision given the available data and resources, and 2018 was chosen as it offered the 

greatest spatial coverage of available options. The implication is that the indicator specifically assesses how risk 

has changed due to warming since 1990. This will have some influence on the spatial pattern of risk trends due to 

differences in population growth rates across regions, including those due to urbanization. Additionally, because 

of population growth since 1990, the magnitude of the change in person-hours of risk over time will tend to be 

lower than it would be if a moving population were used.  

 

Future form of the indicator 

Two main aspects of development will be considered. Firstly, the possibility of introducing a moving population 

so as to allow the assessment of how population changes are influencing risk patterns. Secondly, the incorporation 

of applicable new research that allows risk stratification by population group (e.g., age, gender).  

 

Additional analysis 

The results shown in the main text are complemented by, firstly, assessing risk patterns in more spatial detail, and, 

secondly, by looking at trends in risk of different levels at the European level.  

While the figure in the main text shows that impacts have been greatest in South Europe, figure 1.7 and figure 1.8 

show that there is significant heterogeneity within South Europe. Over the period 1990 to 2020, coastal regions 

in the Mediterranean experienced annual (absolute) rises in risky hours per person that were significantly larger - 

at times more than double - those seen in their more inland neighbours for both medium intensity and strenuous 

activities (figure 1.7). Likewise, the number of risky hours per person in the year 2020 was also considerably 

greater - again, often more than double - in coastal Mediterranean regions compared to adjacent inland regions 

(figure 1.8). That is, in Mediterranean coastal regions, physical activity-related heat stress risks are considerably 

higher and increasing (in absolute terms) considerably faster than in the rest of Europe.    

Figure 1 in the main text aggregates risk by summing moderate, high and extreme risk. figure 1.9 shows these 

levels of risk separately over 1990 to 2020 for Europe as a whole. For both categories of physical activity, the 

majority of risk is at the moderate level: this entails taking additional rest breaks to avoid heat stress. Over time, 

however, the contribution of high-risk hours - which necessitate active cooling - has increased, particularly for 

strenuous activities. Hours at extreme risk, for which it is recommended that activity is ceased, are relatively 

infrequent but have increased over time for both categories of activity. In sum, while the majority of risky hours 

experienced so far may be addressed by taking more rest breaks, interruptions that require more intense actions 

or even stoppage are on the rise.  
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Figure 1.7 Average annual change in risky hours per person per year (1990-2020), for medium intensity (left 

panel) and strenuous (right panel) physical activities for NUTS 2 regions.  

 

 
Figure 1.8 Risky hours per person per year for the year 2020, for medium intensity (left panel) and strenuous 

(right panel) physical activities for NUT2 regions. 
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Figure 1.9 Risky hours per person per year, by risk level, for medium intensity (top panel) and strenuous 

(bottom panel) activities, for Europe (1990-2020). The trend line shows total risk as the sum of moderate, high 

and extreme risk; the shaded area around the trend line shows the 95% confidence interval. 
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Indicator 1.1.4: Heat-related mortality 
Methods 

First, a quasi-Poisson regression model, allowing for over dispersed death counts, is used to characterise the 

temperature-mortality relationship in each European region. Specifically, the model equation includes a natural 

cubic spline of time with 8 degrees of freedom per year to control for the seasonal and long-term trends, and a 

cross-basis function from a Distributed Lag Non-Linear Model to estimate the exposure-lag-response association 

between weekly temperatures and mortality counts.19 The exposure-response function of the cross-basis is 

modelled with a natural cubic spline with three internal knots at the 10th, 75th and 90th percentiles of local weekly 

temperature distribution, and the lag-response function with integer lag values of 0, 1, 2 and 3 weeks.20 

Second, a multivariate multilevel meta-analysis is performed with region-specific coefficients obtained in the first 

step to derive the best linear unbiased predictions of the temperature-mortality relationship in each region,21 which 

are then used to calculate the annual number of deaths related to heat.22 Heat weeks are defined as those with 

average temperatures above the local minimum mortality temperature. Annual heat related deaths are computed 

for the period 2000-2020, and given that mortality counts are not available in some countries for some of these 

years (see section Data below), the related mortality is estimated by using the mean annual cycle of mortality 

counts in each region.23 

Finally, the heat related incidence is defined as the heat related number per million inhabitants. A linear trend is 

then fitted to the yearly time series of heat related incidence; whose slope represents the indicator expressed as 

annual deaths per million inhabitants per decade. 

 

Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom, excluding Turkey, Bosnia and Herzegovina, Kosovo and North Macedonia as data was not 

available for these countries.  

 

Data 

Mortality data. Weekly mortality counts by 5-year age group are obtained from Eurostat.24 The dataset includes 

over 78 million counts of death from 990 contiguous regions representing 527 million Europeans in 35 countries. 

Weekly mortality counts are available for the period: 

1. 2000-2020 in Austria, Belgium, Bulgaria, Croatia, Estonia, Spain, Finland, Germany, Hungary, Iceland, 

Latvia, Liechtenstein, Luxembourg, Norway, Poland, Portugal, Serbia, Slovakia, Slovenia, Sweden and 

Switzerland; 

2. 2005-2020 in the Czech Republic and Montenegro; 

3. 2007-2020 in Denmark; 

4. 2010-2020 in Lithuania; 

5. 2011-2020 in Italy and Malta; 

6. 2013-2020 in France; 

7. 2015-2020 in Albania, Cyprus, Greece, the Netherlands, Romania and the United Kingdom; and 

8. 2019-2020 in Ireland. 

Mortality counts for Ireland are not available by age group. 
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Temperature data. Weekly temperature data is derived from the ERA5-Land reanalysis, freely available in near 

real time at a 9km2 grid resolution.13 Gridded temperature data is transformed into regional average estimates by 

weighting the values with gridded population counts for the year 2011 from Geostat.15 

Population data. The related incidence is calculated by using the regional population estimates from Eurostat.25 

 

Caveats 

The standard approach in timeseries studies of the health impacts of ambient temperatures is to calculate 

epidemiological models between daily temperatures and counts of death.26 Parallel analyses using daily mortality 

data from a large ensemble of European regions showed that annual heat related mortality incidences are 

systematically underestimated in the weekly data model (manuscript in preparation). These biases are however 

constant throughout the years, and therefore, the linear trends of annual heat related mortality incidences from the 

weekly data model are not biased. This result motivated the current definition of the indicator as the trend of the 

yearly timeseries of heat related mortality incidence, and not based on the annual values themselves.  
 

Future form of the indicator 

In future versions of the report, the indicator can be further refined by using daily mortality data for contiguous 

European regions to calibrate predictive models and bias-correct the annual values of the heat related mortality 

incidence from weekly data models. The work is currently being done within the framework of the project 

EARLY-ADAPT.27 The indicator is also planned to be stratified by sex. 

 

Additional analysis 

All the available mortality data were used to calculate the epidemiological models for the indicators shown in 

figure 1 (main text) and figure 1.10. Additional analyses were done in order to validate that the indicator is not 

sensitive to the heterogeneity of mortality data periods among countries (see section Data above). On the one 

hand, to suppress the effect of the record-breaking 2003 heat wave28 in the Western European countries for which 

we have data, figure 1.11 shows the indicator for the general population in 2000-2020 when only data from 2004-

2020 is used to calculate the epidemiological models. On the other hand, to suppress the effect of eventual 

(mal)adaptation processes (i.e. changes in relative risk),29,30 figure 1.12 shows the same indicator when only data 

from 2015-2020 is used in the epidemiological models. Both sensitivity analyses show that the indicator does not 

depend on the period of data used to calculate the epidemiological associations, although the shorter is the period 

the larger are the uncertainties of the models. 
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Figure 1.10 Trends in heat related mortality incidence (annual deaths/million/decade) for the elderly (65years and 

over), 2000-2020. 
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Figure 1.11 Trends in heat related mortality incidence (annual deaths/million/decade) for the general 

population, 2000-2020 

To suppress the effect of the record-breaking 2003 heat wave in the Western European countries for which we 

have data, this figure shows the indicator when only data from 2004-2020 is used to calculate the epidemiological 

models. 

 
Figure 1.12 Trends in heat related mortality incidence (annual deaths/million/decade) for the general 

population, 2000-2020 

To suppress the effect of eventual (mal)adaptation processes (i.e., changes in relative risk), this figure shows the 

indicator when only data from 2015-2020 is used to calculate the epidemiological models. 
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1.2: Health and extreme events  
Indicator 1.2.1: Wildfire smoke 
Data  

The input data for this indicator is as follows: 

1. GEOSTAT population grids for Europe in polygon format. The spatial resolution of the dataset is 1km, 

and the available years are 2006, 2011, 2018.  

2. Eurostat GISCO NUTS boundaries for Europe at a scale 1:1M. The 2021 edition was used since regional 

mortality data was only available for the NUTS 2021 edition. NUTS 2 level was used for all countries 

except for Croatia, Germany, Ireland, and Slovenia, whose mortality data was only available at the NUTS 

1 level. 

3. Eurostat regional weekly total death counts for the study period 2003-2020. 

4. Daily PM2.5 – all-cause mortality exposure-response linear function (RR: 1.0065; 95% CI: 1.0044–1.0086 

for a 10µg/m3 PM2.5 increase) extracted from a meta-analysis by Orellano et al. 2020.31 

5. Finnish Meteorological Institute fire smoke dispersion forecasts (PM2.5 concentrations) derived from the 

Integrated System for wild-land Fires (IS4FIRES) and the System for Integrated modelling of 

Atmospheric composition (SILAM) models.32 The spatial resolution of the product is 0.1º (~10km) and 

the temporal resolution is 1h. A complete description of the fire system can be found in Sofiev et al. 

200933 and Soares et al. 2015.34 Briefly, the system is based on MODIS fire radiative power products 

MOD14/MYD14, which are available globally with 1-9 km2 spatial resolution depending on the 

particular overpass and the instrument viewing angle. The released radiative energy is converted to 

smoke emissions using empirical emission factors. Emissions are then used by the SILAM atmospheric 

composition model for computing plume dispersion, chemical transformations, and deposition. Outputs 

from this model have been previously used to estimate the health burden of wildfire smoke in Europe.35  

6. Fire weather index (FWI) computed from ERA5 climate reanalysis data for the period 1981-2020 with a 

1º spatial resolution. Briefly, FWI is a unitless fire danger index based on meteorology data that estimates 

potential fire intensity based on fuel availability (i.e., drought and moisture conditions) and fire spread 

(i.e., wind conditions). 

Geographic coverage of Europe 

For this indicator we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom subject to exposure, population, and mortality data availability (see below) 

 

Methods  

Three sub-indicators were constructed for the period: yearly average wildfire-PM2.5 exposure (exposure sub-

indicator 1), yearly number of days where daily population-weighted wildfire-PM2.5 exceeded 1µg/m3 (exposure 

sub-indicator 2), and yearly attributable mortality to wildfire-PM2.5 exposure (health impacts sub-indicator) for 

regions that met the following criteria: 

• Exposure sub-indicators: To be included in the NUTS 2021 classification, to have gridded population 

data for at least a subset of the study period, and to have exposure data. Following these criteria, overseas 
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territories, Atlantic Islands (Canary Islands, Madeira, Azores), and several European countries/regions 

(Bosnia and Herzegovina, Kosovo, Turkey) were excluded from the sub-indicator. 

• Health impacts sub-indicator: The same criteria for the exposure indicator applied, with the additional 

requirement of having weekly mortality time series data for at least a subset of the study period. 

Following this criterium, North Macedonia was further excluded from the sub-indicator. 

The workflow to construct the indicators was as follows: 

1. Hourly wildfire-PM2.5 concentrations were aggregated to daily averages. 

2. GEOSTAT gridded population data (2006, 2011, 2018) in polygon format (1km spatial resolution) were 

transformed into a regular raster matching the exposure grid (0.1º spatial resolution). Aggregation was 

performed via addition of GEOSTAT population counts whose polygon centroids fell within the larger 

exposure cell. No population estimates were available for a set of countries (Albania, Croatia, Cyprus, 

Montenegro, North Macedonia and Serbia) at the 2006 edition, which we imputed with data from 2011. 

3. NUTS codes were assigned to each of the exposure-population grid cells with a spatial join via 

intersection. If a given cell intersected with more than one NUTS unit, the one with the largest overlap 

was taken. Country codes and regional indicators (South/Central/North/West Europe) were derived from 

the NUTS codes. 

4. Daily exposures, spatial units and population indicators grids were transformed into a tabular format for 

further analysis. Since population data was only available for three years, population data from the 

nearest available year was assigned to the missing years without doing any interpolation. 

5. EUROSAT weekly mortality data were disaggregated into daily counts (i.e., the temporal resolution of 

the exposure and the exposure-response function) by assigning an equal number of deaths to each day of 

the week, i.e. by dividing the weekly mortality counts by 7. 

6. Daily population-weighted exposures at NUTS 2 level were calculated by first computing population 

weights adding up to 1 within each NUTS unit, and then computing a weighted average of the exposures. 

Daily NUTS 2 population-weighted PM2.5 exposure datasets were aggregated to years 1) by averaging 

and 2) by counting the number of times daily exposures exceeded 1µg/m3. Yearly average population-

weighted PM2.5 at the country and regional level were computed using the same approach. 

7. To compute yearly attributable mortality, the following steps were taken following a comparative Health 

Impact Assessment framework: 

a) The point estimate Relative Risk (RR) (RR: 1.0065 per 10µg/m3 PM2.5 increase) was scaled to the 

exposure in each daily exposure cell by applying the following transformation where i, j and t indices 

refer to the grid cell, NUTS and day indicators, respectively; and exposure refers to the actual 

exposure for a grid cell-day: 

RR%&' = exp	(ln	(1.0065) ∗ 	
exposure()*

10 )	 

b) Daily Population Attributable Fractions (PAF) were computed at the NUTS 2 level using standard 

HIA methods36 for a null counterfactual exposure of 0µg/m3 and the scaled relative risks from the 

previous step. Population weights 𝑝()* were computed as per step 6:  

PAF&' =	
∑ p%&'RR%&' − 1+
%,-

∑ p%&'RR%&'+
%,-
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c) Daily NUTS 2 PAF data were merged with daily mortality counts at the same temporal and spatial 

scale and were multiplied to obtain the daily attributable mortality to wildfire-PM2.5 exposure at the 

NUTS 2 level. We summed the counts to form yearly aggregates for the NUTS 2 regions with 

complete data for a given year. Counts were further added at the country level to form national 

estimates. 

d) Confidence Intervals (CI) of the yearly attributable deaths were calculated by propagating the 

uncertainty of the exposure-response function via Monte Carlo simulation.37 Briefly, we assumed 

the natural logarithm of the RR to come from a normal distribution with mean equal to the natural 

logarithm of the point estimate and Standard Deviation (SD) computed from the CI (RR CI: 1.0044–

1.0086 per 10µg/m3 PM2.5 increase) as: 

SD =
ln(upper) − ln	(lower)
qnorm(0.975) ∗ 2 	

	

Then, 200 realisations of that distribution were simulated and exponentiated to obtain 200 

realisations of the RR. With them, steps 7a-c were repeated to have 200 estimates of the yearly 

attributable mortality at the NUTS 2 and country level. 95% CI were computed by taking the 

percentiles 0.025 and 0.975 of the attributable mortality distribution per year and spatial unit. 

 

As an additional analysis included in the main visualization of the indicator, linear trends in regional (Western, 

Southern, Northern, Central and Eastern Europe) annual population-weighted wildfire-PM2.5 exposure were 

computed by fitting a linear model per region with the yearly exposure as a dependent variable and the year as an 

independent variable. The slope coefficients (95% CI) of the linear regressions were used as trend estimates. 

Statistical significance of the trends was assessed via p-values of the slope coefficients under a null hypothesis of 

beta=0; in all four regions p-values were >0.1. Furthermore, we computed annual average FWI by European 

region and computed linear trends using the same methodology; in all regions p-values were >0.1. 

 

Two sensitivity analyses were performed:  

1.  Annual average wildfire-PM2.5 exposure by European region without population weighting, i.e., a 
purely spatial mean giving all pixels within region the same weight, was computed to verify whether 
proximity of population and fire events played a role in the observed trends. Similar to main results, this 
analysis showed weak and uncertain downward exposure trends in all regions (Figure 1.16), which 
suggests that the location of wildfires and population within region do not play a major role in the 
observed trends. 
2.  An alternative exposure-response function was used to examine the potential increased toxicity of 
wildfire smoke compared to total PM2.5 mass concentration.38 The chosen estimate came from a global 
multi-city time series study which examined the association between wildfire-PM2.5 and all-cause 
mortality;39 we used the global pooled relative risk (lag0) reported therein: 1.021 (95% CI 1.018–1.024) 
for 10 µg/m3 increase of wildfire-PM2.5. When using this estimate, the number of annual attributable 
deaths more than tripled (table 1.2). 

 

The R code used to construct this indicator and create the visualizations included in this publication is available 

in the following repository: https://github.com/carlesmila/LCD-Europe-wildfires 
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Caveats  

1. The list of caveats for the indicator is as follows: 

2. GEOSTAT population grids included a limited set of years, and therefore assumptions had to be made 

for years where gridded population data was not available. Furthermore, no population estimates were 

available for a set of countries (Albania, Croatia, Cyprus, Montenegro, North Macedonia and Serbia) at 

the 2006 edition, which had to be imputed with data from 2011. 

3. NUTS 2 regions were used in our analyses, except for Croatia, Germany, Ireland and Slovenia, which 

were analysed at the NUTS 1 level due to mortality data availability at that spatial scale. 

4. The temporal resolution of the Eurostat mortality time series (weekly) was different than the temporal 

resolution of the exposure and the exposure-response function (daily). As a result, an equal number of 

deaths across the 7 weekdays had to be assumed to be able to estimate the health effects. Furthermore, 

the temporal availability of the weekly death count data varied widely across countries. 

5. There is still currently no widely accepted exposure-response function specific to wildfire-PM2.5. The 

epidemiologic body of literature linking wildfire smoke and health effects is still limited, particularly for 

European populations; and heterogeneous, with varying exposure assessment methods between studies. 

The exposure-response function used in the indicator assumes a similar toxicity and exposure range of 

wildfire PM2.5 and PM2.5 from other sources, which evidence suggests may not be true.38  

6. Regarding the fire emission system, to-date, MODIS active fire counts and fire radiative energy products 

are arguably the best source of fire information worldwide. However, as every low-orbit satellite, MODIS 

suffers from omission errors. These have two causes: (i) cloud obscuration, including the fire obscuration 

by own smoke plumes, (ii) limited sensitivity of the instrument causing omission of small fires.40 Sofiev, 

in preparation suggest that the omission error varies widely depending on the region and season, being 

close to ~20-30% for European regions during the local fire seasons. For clear-sky retrievals, the 

detection limit depends on the viewing angle and time of the day. At night, sub-satellite fires down to 4 

MW are detectable, whereas during day at the edge of the viewing area, burns up to 40 MW are non-

detectable. 

Future form of the indicator 

In order to overcome the limitations of the exposure-response function, new epidemiologic studies and meta-

analyses will provide more robust estimates of the association, as well as possible effect modifiers. Once they 

become available, exposure-response functions will be modified accordingly. Subject to resources, European-

specific exposure-response functions will be estimated in an epidemiological study, including weekly exposure-

response functions that match the temporal resolution of the mortality data.  

In order to rectify the fire omission problem, several options will be explored. Firstly, more satellites will be used, 

e.g., VIIRS and SLSTR, producing similar products but providing the data at different overpass times. Secondly, 

utilization of geostationary instruments, such as SEVIRI for Southern Europe, will be explored. Thirdly, the 

emerging technology of the fire data assimilation and fusion will allow for breakthrough improvements, 

essentially merging together the fire models and (incomplete) satellite observations.  
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Additional analysis 

 
Figure 1.13 Average number of days per year where daily population-weighted wildfire-PM2.5 exceeded 1µg/m3 

(percentile 0.968 of the daily wildfire-PM2.5 distribution) for the period 2003-2020 by NUTS 2 region, except for 

Croatia, Germany, Ireland, and Slovenia, which were analysed at the NUTS 1 level due to mortality data 

availability. 
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Figure 1.14 Yearly estimated attributable mortality due to wildfire-PM2.5 exposure by country. Missing data (dark 

grey) are subject to mortality data availability for a given region and year. Only point estimates are shown (95% 

CI are omitted for visualisation purposes). 
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Figure 1.15 Annual average fire weather index by European region (bold) and linear trend (dashed) 1980-2020. 
Slope coefficients (95% CI) corresponding to the linear trend (index change per 1-year increase) are shown as 
text. 

 
Figure 1.16 Annual average wildfire-PM2.5 exposure by European region (bold) and linear trend (dashed) 2003-
2020 without population weighting, i.e. pure spatial averaging within region. Slope coefficients (95% CI) 
corresponding to the linear trend (wildfire-PM2.5 exposure change per 1-year increase) are shown as text. 
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Table 1.2 Annual Europe-wide estimated attributable deaths to wildfire-PM2.5 according to the two exposure 
response functions used in the indicator. Note that the number of countries included in the estimate varies between 
years due to availability of weekly mortality data. 

Year Main analysis1 Sensitivity analysis2 Number of included countries 

2003 474.14 (322.18, 635.39) 1520.12 (1306, 1747.76) 22 

2004 246.54 (167.49, 330.45) 790.75 (679.44, 908.9) 22 

2005 446.89 (303.73, 598.74) 1429.6 (1229.01, 1642.31) 22 

2006 475.13 (323.2, 636) 1511.4 (1300.78, 1734.27) 24 

2007 403.62 (274.62, 540.14) 1281.94 (1103.62, 1470.54) 25 

2008 224.47 (152.51, 300.82) 719.35 (618.2, 826.68) 25 

2009 304.29 (206.73, 407.85) 976 (838.59, 1121.88) 25 

2010 267.65 (181.87, 358.65) 857.13 (736.71, 984.88) 25 

2011 417.48 (284.03, 558.72) 1326.01 (1141.62, 1520.95) 25 

2012 456.95 (310.44, 612.47) 1465.71 (1259.37, 1684.76) 27 

2013 336.35 (228.58, 450.67) 1076.49 (925.36, 1236.79) 28 

2014 351.48 (238.77, 471.15) 1128.46 (969.34, 1297.54) 28 

2015 645.79 (438.78, 865.48) 2069.71 (1778.66, 2378.56) 34 

2016 483.99 (328.86, 648.6) 1550.8 (1332.75, 1782.19) 34 

2017 844.46 (573.79, 1131.68) 2705.37 (2325.17, 3108.7) 34 

2018 556.2 (377.92, 745.4) 1782.33 (1531.74, 2048.22) 34 

2019 484.14 (328.94, 648.87) 1552.03 (1333.71, 1783.72) 34 
 

1 The main analysis used a daily total mass PM2.5 – all-cause mortality exposure-response linear function (RR: 
1.0065; 95% CI: 1.0044–1.0086 for a 10µg/m3 PM2.5 increase) extracted from a meta-analysis by Orellano et al. 
2020.41  
2 The sensitivity analysis used a daily wildfire-PM2.5 – all-cause mortality exposure-response linear function (RR: 
1.021; 95% CI: 1.018–1.024 for a 10µg/m3 wildfire-PM2.5 increase) extracted from multi-city global study by 
Chen et al. 2020.39  
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Indicator 1.2.2: Drought 
Methods  

SPEI6 helps to detect, monitor and analyse the drought severity, duration, and extent globally. It is a standardised 

index with no units, where positive values of SPEI6 correspond to conditions of wet periods whereas negative 

values correspond to dry periods. The drought severity classification is commonly done based on the negative 

SPEI values, as defined in table 1.3. 

 

Table 1.3 Drought severity classification based on SPEI6 indicator. 

SPEI6 Event description 

-0.50 to -0.79 Abnormally dry 

-0.80 to -1.29 Moderate drought 

-1.30 and -1.59 Severe drought 

-1.60 and -1.99 Extreme drought 

less than -2.0 Exceptional drought 

 

The computation of the SPEI6 index (as described in Vicente-Serrano et al., 201042) was done in two steps: 

accumulation and standardisation. First, the accumulation involves an estimation of monthly climatic water 

balance (di,j), which provides a measure of the water surplus or deficit for a specific month ‘i’ in the year ‘j’. It is 

estimated as follows: 

di,j = Pi,j  – PETi,j 

where, P is the precipitation and PET is the Potential Evapotranspiration. The computed di,j for each month is then 

accumulated over a period of 6 months for the years 1951 to 2020 (A6i,j).  

A6i,j = di,j + di-1,j  + di-2,j + … + di-5,j 

The standardisation step fits the A6i,j to a suitable parametric probability distribution and then transforms the data 

into a standardised series (with mean = 0 and standard deviation = 1), where the standardised value is referred to 

as SPEI6 (in which the number 6 corresponds to the total number of accumulated months). SPEI6-September, 

where the monthly climate water balance values of April to September are accumulated, is used to study the 

extended summer drought conditions and SPEI6-March that accumulates climate water balance values from 

October to March is used to study the extended winter drought condition. In this report, the spatially averaged 

results are presented for European NUTS 2 level regions. When computing the index for NUTS 2 level regions, 

the accumulated climate water balance (di,jSPEI1) values were aggregated prior to standardisation step, as described 

in Solaraju-Murali et al., 2021.43  

The Hargreaves method is chosen for estimating PET in this assessment.44 The parameterization used for 

estimating PET using this approach is based on monthly maximum and minimum temperatures and latitude 

coordinates, the latter variable being used to calculate the maximum amount of sunshine duration. Following this, 

the three-parameter shifted log-logistic probability distribution function was used to build the distribution and the 

parameters were computed using the method of unbiased probability weighted moments. The choice of the 
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parametric probability distribution was verified and the assumption is shown to be valid over large parts of Europe 

(for e.g. Stagge et al 2015,45 Beguería et al., 201446). SPEI6 is calculated using the R-package SPEI (https://cran.r-

project.org/web/packages/SPEI/index.html).  

 

Geographic coverage of Europe 

For this indicator, we included the 27 European Union countries plus the United Kingdom, European Free Trade 

Association (EFTA) countries (Iceland, Liechtenstein, Norway, Switzerland) and EU candidate and potential 

candidate countries (Montenegro, North Macedonia, Albania, Serbia, Turkey).  

 

Data  

The monthly maximum and minimum temperature and precipitation from the ERA5-Land Reanalysis product 

(Muñoz Sabater, 2019; 2021)13 have been used to estimate SPEI6. The data cover the period from 1950-present 

at a spatial resolution of 9km2 globally. ERA5-Land is produced and updated by the European Centre for Medium-

Range Weather Forecasts (ECMWF) within 3 months of real time. 

 

Caveats  

While SPEI is a commonly used indicator in drought assessment studies, it has some known limitations. The best 

approach for estimating PET and the choice of a particular parametric probability distribution for computing the 

indicator still remains an open question at all timescales especially when working on regional-to-global spatial 

domains. Several studies45,46,47 have pointed out that different choices lead to slightly varied estimates of drought 

frequency and severity in some regions over Europe. Furthermore, the aggregation of the SPEI6 indicator at NUTS 

2 level implies a smoothing of the extreme values, which could lead to an underestimation of the frequency and 

severity of the drought conditions over several regions.  

 

Future form of the indicator 

Future iterations will include the combination of this drought index, obtained directly from temperature and 

precipitation, with socio-economic datasets at European level linked with impacts in society (e.g. food production, 

health issues or disasters). 
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Additional analysis 

 
Figure 1.17 (a) Total percentage of land area affected by droughts (SPEI6 < -0.5) over Europe during the extended 

summer months (April to September) for the period 1951-2020. For each year, five categories representing the 

severity of the drought are shown (see table 1.3 for definition of the categories). The domain considered for the 

land area estimation is displayed on the right-side map in grey. (b) Time series of normalized six-month (April to 

September) accumulated precipitation (potential evapotranspiration) over Europe is presented in thick blue (red) 

line for the period 1951-2020. The corresponding blue (red) dotted line corresponds to the 5-year moving window 

average. The years in which values of accumulated precipitation or potential evapotranspiration are negative 

corresponds to anomalous years with values inferior to climatological mean of the respective variable. Then, for 

each year, the variable with the highest negative value could potentially be responsible for the drought presented 

in panel (a). 
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Figure 1.18 Total percentage of land area affected by droughts (SPEI6 < -0.5) during the extended summer (April 

to September) for the period 1951-2020 over (a) Northern, (b) Central, (c) Western and (d) Southern Europe. For 

each year, five categories representing the severity of drought are shown (see table 1.3 for definition of the 

categories). The spatial domain considered for the area estimation is displayed on the right-side map in grey. 
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Figure 1.19 (a) Total number of extreme drought events (SPEI6 < -1.6) for extended winter (October to March) 

over Europe for the period 1951-2020 and (b) the percentage of extreme events that occurred in the years 2011-

2020 in comparison to 1951-2020. 

 

 
Figure 1.20 (a) Total percentage of land area affected by droughts (SPEI6 < -0.5) over Europe during the extended 

winter months (October to March) for the period 1951-2020. For each year, five categories representing the 

severity of the drought are shown (see table 1.3 for definition of the categories). The domain considered for the 

land area estimation is displayed on the right-side map in grey. (b) Time series of normalized six-month (October 

to March) accumulated precipitation (potential evapotranspiration) over Europe is presented in thick blue (red) 

line for the period 1951-2020. The corresponding blue (red) dotted line corresponds to the 5-year moving window 

average. The years in which values of accumulated precipitation or potential evapotranspiration are negative 

corresponds to anomalous years with values inferior to climatological mean of the respective variable. Then, for 

each year, the variable with the highest negative value could potentially be responsible for the drought presented 

in panel (a). 
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Figure 1.21 Total percentage of land area affected by droughts (SPEI6 < -0.5) during the extended winter (October 

to March) for the period 1951-2020 over (a) Northern, (b) Central, (c) Western and (d) Southern Europe. For each 

year, five categories representing the severity of drought are shown (see table 1.3 for definition of the categories). 

The spatial domain considered for the area estimation is displayed on the right-side map in grey. 
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1.3: Climate-sensitive infectious diseases 
Indicator 1.3.1: Climate suitability Vibrio 
Methods  

We provide three indicators for the period 2003-2020: i) time series with the percentage coverage of the shoreline 

at the country level, ii) temporal presence of areas suitable for Vibrio at the country level, and iii) number of 

estimated cases of Vibriosis at the country level. Additionally, and as side products, we estimate the spatial 

distribution of areas at risk at daily, weekly and monthly scales.  These fields will be available through Web 

Services for general access. 

The steps in the workflow are the following: 

1. Collect the sea surface temperature (SST) and sea surface salinity (SSS) fields from the respective 

sources (NASA and EU Copernicus, respectively). We change the data resolution of the SSS dataset to 

match the resolution of SST. 

2. Convert the GEOSTAT population data to netCDF format, and regrid it using spatial densities to 0.01deg 

resolution. 

3. Estimate the Vibrio Suitability Index using SST and SSS as inputs. The thresholds used were 18ºC for 

SST and 28psu for SSS.48 

4. Following Trinanes, Martinez-Urtaza, 2021,49 we estimate the population potentially affected by Vibrio 

infections within a distance of 100km from the Vibrio suitability areas. We use a conservative infection 

rate50 to estimate the number of cases. These cases are summarised by country and year in the third 

component of the indicator. 

5. To obtain Indicator part i, we use the daily Vibrio suitability fields to get the extent of shoreline affected. 

These results are aggregated by country into monthly and annual values. 

6. The suitability fields also give us the opportunity to assess the presence of risk and evaluate its temporal 

distribution (Indicator part ii). These results are also aggregated by country for the period of study. 

Geographic coverage of Europe 

For this indicator we included the 27 European Union countries plus the United Kingdom, European Free Trade 

Association (EFTA) countries (Iceland, Liechtenstein, Norway, Switzerland) and the Western Balkans (Albania, 

Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia and Serbia). 

 

Data  

The input data for this indicator is as follows: 

1. GEOSTAT population gridded data for Europe. The spatial resolution of the dataset is 1km2. The dataset 

is available for years 2006, 2011 and 2018. 

2. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1) at 1km resolution. 

This dataset is available on a daily basis from 2003-present. This dataset integrates temperature retrievals 

from multiple satellite sensors and in-situ data and provides a unique high-resolution and daily-consistent 

view for the coastal region. 
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3. Sea Surface Salinity data from the Ocean Physical Reanalysis and Analysis models provided by EU 

Copernicus Marine Service. The multi-source salinity inputs were pre-processed to fit the SST dataset in 

temporal and spatial resolutions.  

Caveats  

1. The infection rate applied here is based on the published data for the USA.50 A more accurate infection 

rate adjusted to the epidemiological situation in Europe would be convenient to obtain a more precise 

picture of the impact of Vibrio illness across Europe. Additionally, a more realistic estimate of infection 

rate needs also to consider limitations of surveillance data and under-reporting, which has been widely 

reported worldwide. In Trinanes, Martinez-Urtaza, 202149 we corrected the estimated number of cases 

by applying the under-reporting ratio for the USA of 14351. However, an estimate of the underreporting 

in Europe would be also necessary. The current form doesn’t take into account regional/national, socio-

economic, and cultural conditions. 

2. The population datasets show gaps for certain non-landlocked countries in the European continent. 

3. The indicators are provided at NUTS 0 level.  

4. The ocean parameters, more importantly SSS, show certain limitations in the coastal region, as models 

do not usually provide an accurate picture of SSS variability under heavy rainfall and/or river runoff 

and/or ice melting. This might be mitigated by an improved in-situ observing network in the coastal 

areas, and enhanced model data assimilation schemes. 

Future form of the indicator 

Advances in modelling, remote sensing and social/economic and environmental data collection might allow us to 

improve these indicators, by providing better spatial resolution, accuracy and an opportunity to develop enhanced 

exposure functions. Access to epidemiological data is a key element for further validating/improving these 

indicators. We intend to use the indicators for operational applications and improved informed decision-making 

and to produce the indicators at a finer spatial resolution. 
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Additional analysis 

 

Figure 1.22 Time series of the estimated annual percentage of coastline showing suitable conditions for non-
cholerae Vibrio (2003-2020) by European region.  

 

Figure 1.23 Time series of the estimated annual percentage of coastline showing suitable conditions for non-
cholerae Vibrio (2003-2020) by country. The group showing the largest values correspond to high-latitude 
countries bordering the Baltic.  

 

Figure 1.24 Percentage of coastline showing suitable conditions for Vibrio between 2003-2020. 
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Figure 1.25 Increase in the percentage of coastline showing suitable conditions for Vibrio from the baseline 2003-

2005 to 2018-2020 per country. The largest values correspond to the western Europe region, and more specifically 

to Netherlands and Belgium. The blue colour highlights the spatial distribution of Vibrio suitable waters along the 

coast for year 2020. The Baltic and Black sea regions represent hotspots, with year-round surface salinity values 

favourable for Vibrio growth. 

 

 
Figure 1.26 Estimated number of cases of Vibrio infections per country for year 2000. Countries in grey are 

landlocked were excluded from analysis. Other countries not shown in the map are not listed in the population 

datasets used in this study. 
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Indicator 1.3.2: Climate suitability West Nile Virus 
Methods  

The European NUTS 3 regions (2021 definition) spatiotemporal data consisting of climate and bioclimatic 

variables were used as predictors. All climatic variables, i.e., temperature and precipitation were averaged in four 

quarters. To provide covariates for the complex interactions between WNV outbreaks and climate, a set of 19 

bioclimatic variables (bio01-bio19),52 that delineate the annual tendencies were incorporated. The influence of the 

variables was presented by dividing regions into two groups based on transmission activity in a specific year. The 

transmission activity was based on the WNV human infections data. This data was obtained from the European 

Centre for Disease Prevention and Control (ECDC),53 from 2010 to 2019. The regions with WNV human 

infections were attributed as positive class regions (1). The regions without any information on WNV human 

infections were classified as zero in the response variable. 

A supervised machine learning classifier, extreme gradient boosting (XGBoost),54,55 was applied to the final data 

set. For this, the data was split into two subsets: data from the years 2010-2018 as the training set, and 2019 as the 

testing set. For the model training and tuning, a 5-fold cross-validation approach was used. Further to assess the 

WNV risk retrospectively the model was re-trained and fine-tuned on (2010-2019) data set and tested on the 1950-

2009 data set. The model output was the WNV transmission or outbreak risk probability at the NUTS 3 level. The 

model achieved an AUC (area under the receiver operator characteristic curve) score of 95.6% for the internal 

validation showing a high discriminatory power to classify a WNV-positive region. As there were no positive 

class instances available for the external validation data set, all the analyses were done without setting a 

classification-threshold in a departure from the usual practice to assess the performance of a machine learning 

algorithm.  

Next, to interpret and explain the results of the black-box XGBoost algorithm, more advanced algorithms such as 

those of explainable AI (XAI) are imperative. To this end, the SHAP (Shapley Additive Explanations), a game-

theoretic XAI framework,56 developed recently, was used to disentangle the contribution of each feature to the 

model predictions.57,58 SHAP ranks feature importance by comparing what a model predicts with and without the 

feature for all possible combinations of features at every single observation. The features are then ranked 

according to their contribution for each observation and averaged across observations.59  

 

Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom, excluding Kosovo and Liechtenstein as data was not available for these countries.  

 

Data  

For quarterly climate variables (temperatures and precipitation), ERA5-Land reanalysis data at 9km2 resolution 

was used.60 Also, the 19 bioclimatic variables were extracted as predictors from the same data set.52 The records 

WNV human infections data for the response variable were obtained from ECDC.53 This data was available for 

the years 2010-2019 only. This data contained a total of 597 NUTS 3 level observations of recorded human 

infections of which 593 were included in the main analysis as the remaining were recorded as ‘unknown’ for the 

NUTS 3 identification. The training data set was imbalanced in favour of negative classes (i.e., 96% regions with 
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no WNV infection cases) compared to the regions with WNV transmission (4% regions with WNV human 

infection cases).  

Caveats  

The WNV cases data related to human infections only were considered in the study. However, data on equines 

infections and host birds infections on the NUTS 3 level could also have been incorporated upon availability. The 

inclusion of the infections data for the equines and the host birds would further strengthen the model predictions 

though XGBoost performed reasonably well to handle the severe class-imbalance due to its flexibility of numerous 

hyperparameters tunning options.  

 

Future form of the indicator 

In future versions, the aim will be to improve by overcoming/ minimizing the caveats listed above, that is, by 

incorporating equines and equids infections data. This modification in the future indicators will likely increase 

the model’s predictive power and robustness. 

 

Additional analysis 

Figure 1.27 shows the expected probability of WNV risk predicted by the model for each decade during the study 

period. Evidently, the trends in the increase of WNV outbreaks are evident in the regions where the virus is 

established, and the disease is endemic during the last decade of the 21st century. 

The SHAP post-hoc analysis for the training period (2010-2019) was done to infer the influence and the 

contributions of the individual climatic and bioclimatic features on the model predictions. It was found that the 

temperature of the 2nd quarter (Mean_temp_Q02) of the year was the most influential climatic variable to the 

model predictions (figure 1.28). Figure 1.29 shows the aggregated decade-wise time trends of this variable 

(Mean_temp_Q02) for the whole study period. A statistically significant (p < 0.05) correlation (R=0.64) between 

the most influential variable (Mean_temp_Q02) and the model predicted WNV-outbreak risk probability was 

found using the Pearson correlation test (figure 1.30).  
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  Figure 1.27 Model predicted WNV-outbreak risk for Europe from 1950 to 2019. 

 

Figure 1.28 Ranking of the variables w.r.t their contribution to the model predictions estimated using SHAP. 
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Figure 1.29 Decadal Change in the mean temperature (oC) of the 2nd quarter of the year from 1950 to 2019 

 

 
Figure 1.30 Scatter plot showing the correlation between the temperature of the 2nd quarter and the model 

predicted WNV risk, the correlation coefficient (R), and the p-value. 
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1.3.3: Climate suitability for dengue (chikungunya and Zika) (first part indicator) 
Background 

Cases of dengue have doubled every decade since 1990, with 58∙4 million (23∙6 million–121∙9 million) apparent 

cases in 2013, accounting for over 10,000 deaths and 1∙14 million (0∙73 million–1∙98 million) disability-adjusted 

life-years.61 Beside global mobility, climate change has been suggested as one potential contributor to this increase 

in burden.62 Aedes aegypti and A. albopictus, the principal vectors of dengue, also carry other important emerging 

or re-emerging arboviruses, including yellow fever, chikungunya, Mayaro, and Zika viruses, and are likely to be 

similarly responsive to climate change.  

 

Methods 

𝑅!, ie the basic reproduction number, which is the expected number of secondary infections resulting from one 

single primary infected person case in a totally susceptible population, was computed using the formula below63: 

𝑅! = 𝑉𝑏"/𝑟" 
The vectoral capacity (V), which express the average daily reproductive rate of subsequent cases in a susceptible 

population resulting from one infected case, was computed using the formula below63: 

𝑉 = 𝑚𝑎#𝑏$𝑝%/−𝑙𝑛𝑝 
Here, a is the average vector biting rate, 𝑏$	is probability of vector infection and transmission of virus to its 

saliva, n is the extrinsic incubation period while p is the daily survival probability. All these parameters are 

temperature dependent and are further described in Rocklöv et al. 2016, 2019 A, 2019 B.63,64,65  

The ratio between number of mosquitoes to the number of humans, is central to V and the R0 value (m), but often 

it is left out or estimated simplicity. Here we use a model to estimate mosquito populations of Aedes aegypti and 

Aedes albopictus separately. The original mosquito-population models provide results in terms of the number of 

individuals of Ae. aegypti per breeding site (X), or the number of Ae. albopictus per hectare (Y).66,67 In order to 

appropriately estimate m, i.e., mosquito population density per human population density (p), we multiplied X by 

f(p,a,c) = a ∗ g(p,c) where a equals to the number of breeding-sites per human, and Y by f(p,a/b,c) = a ∗ g(p,c)/b 

where b equals the average number of breeding sites per hectare. The function g(p,c) = p2/(c2 +p2) is an increasing 

sigmoidal function that equals the viability of domesticated mosquito-populations in relation to human population 

density. Accordingly, f(p,a,c) is the multiplicative factor m in V, which allowed us to straightforwardly estimate 

correct values for a, a/b and c by fitting R0 to R0 -data that was available for a subset of the spatiotemporal points.68 

Numerically V and abundance estimates was computed at a 9km2 spatial resolution based on ERA5-Land data.13 

We ran V and vector abundance for both A. aegypti and A. albopictus vectors. Hybrid gridded population from 

Chambers69 were used in the computation of R0. For dengue and Chikungunya, A. albopictus vector abundance 

estimates were used in the computation of m while for Zika, A. aegypti abundance estimates were used. Further, 

the annual length of transmission season was computed by summing the number of months in a year when R0 was 

greater than 1. 

The gridded R0 and LST for dengue (A. albopictus), chikungunya (A. albopictus) and Zika (A. aegypti) were 

extracted and averaged by NUTS regions, European regions (e.g. ….) and by country. 
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Geographic coverage of Europe 

For this indicator, European Environment Agency (EEA) member and cooperating countries plus the United 

Kingdom were included. 

 

Data  

1. ERA5-Land monthly averaged data from 1950 to 20213  

2. Copernicus Climate Change Service (C3S) precipitation and temperature data 

3. HYBRID gridded population data69  

 

Caveats  

Key caveats and limitations of the V model and its parameterisation are fully described in Liu-Helmersson et al. 

201470 and 2016,71 and Rocklöv et al. 2019.63 The predicted R0 should not be confused with actual dengue cases, 

although it is an indicator of the potential for outbreaks.64,65  

 

Additional analysis  

 
Figure 1.31 R0 by decade 1951-1960 vs 2011-2020 for dengue by NUTS 2 regions. 
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Figure 1.32 Change in length of transmission season (LST) in months per year by decade 1951-1960 and 2011-
2020 for dengue by NUTS 2 regions 

 
 
Figure 1.33 R0 by decade 1951-1960 vs 2011-2020 for chikungunya by NUTS 2 regions. 
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Figure 1.34 Change in length of transmission season (LST) in months per year by decade 1951-1960 and 2011-
2020 for Chikungunya by NUTS2 regions. 
 

 
Figure 1.35 R0 by decade 1951-1960 vs 2011-2020 for Zika by NUTS2 regions. 
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Figure 1.36 Change in length of transmission season (LST) in months per year by decade 1951-1960 and 2011-
2020 for Zika by NUTS2 regions. 
 

 
Figure 1.37 Seasonal pattern of R0 for the period 1951-2021 for dengue, Chikungunya and Zika  
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Indicator 1.3.4: Dengue (Chikungunya and Zika) (second part indicator) 
Human mobility is a factor in the importation risk for Europe, and arises here from the interplay between travel 

propensity, prevalence in endemic regions across the world, and environmental suitability for vectors and 

pathogens in Europe.  

 

Methods  

The average travel rate from source location 𝑖 to destination location 𝑗 is given by the radiation model 

〈𝑈()〉 = 𝑈(
𝑛( 	𝑛)

S𝑛( + 𝑠()US𝑛( + 𝑛) + 𝑠()U
, (1) 

where 𝑛( is the population size at the source location, 𝑛) that at the destination location, and 𝑠() the population 

size that is encompassed by a circle around location 𝑖	with a radius given by the distance between locations 𝑖 and 

𝑗.72 With 𝑈( = 𝑛(𝑡(𝑢( ,	where 𝑡( is the proportion of the population at location 𝑖 that is travelling, and 𝑢( the 

proportion of the population at location 𝑖 that is infected, 〈𝑈()〉 is the average travel rate of infected individuals 

from 𝑖 to 𝑗, i.e., the number of infected individuals that travels between location 𝑖 and location 𝑗 per unit time. 

Here, we have used one year as unit time. 

For every year in the range 1990 to 2019, the variables 𝑛(, 𝑛), 𝑠(), 𝑡), and 𝑢( was given by data or derived from 

data at a yearly temporal resolution (see section Data). Country-level population size was given by aggregating 

gridded data69 to country level or NUTS 3 level. Country-level population sizes were used for any location outside 

of Europe. Within Europe, NUTS 3 level population sizes were used. Accordingly, for any travel into Europe, 𝑛( 

was country-level population size, and 𝑛) NUTS 3 level population size. As 𝑠() is the population size that is 

encompassed by a circle around location 𝑖	with a radius given by the distance between locations 𝑖 and 𝑗, it includes 

both country-level and NUTS-3-level population sizes. The average proportion of individuals 𝑢(, at any point in 

time for a given year in source location 𝑖, that is infected within a phase such that viremia may set in during 

international travels, was derived from dengue incidence data (individuals per 100,000 per year) reported in the 

Global Burden of Disease.7 Specifically, it was assumed that 𝑢( =
.!
/!
= 0!

#12!!!!	
, where the average number of 

infected individuals at any day within a year 𝑣( = 𝑑(
-!	
#12

/!
-!!!!!

, which assumes that incidence was uniformly 

distributed over any year and that a travels within a 10-day window is plausible for viremia to set in during 

international visits. 

The proportion of international travellers 𝑡( for any year, was derived by linear interpolation of international travel 

data,73,74 together with the condition that 𝑡( > 0. 

To obtain a relevant measure of the mobility indicator that takes the environmental suitability for vectors and 

pathogens into account, the average travel rate of infected individuals from 𝑖 to 𝑗 was overlaid with the length of 

transmission season (LTS) at destination location 𝑗, denoted here by 𝐿). The LTS was derived in Lancet 

Countdown Europe indicator: Climate suitability for dengue, chikungunya, Zika, and is measured in the unit of 

months per year. This overlay means, specifically, that the mobility considers (1) only NUTS 3 regions where 𝐿) 

was at least one month, and (2), that the monthly number of inbound infected individuals in any such NUTS 3 

region 𝑗 was multiplied with the corresponding 𝐿) > 1. The resulting mobility measure: 

𝑀() = 〈𝑈()〉𝐿) 12⁄  (2) 
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is thus an estimation of the yearly number of infected inbound individuals from source location 𝑖 to any NUTS 3-

region 𝑗 where the environmental suitability is such that transmission is plausible. This assumes that travels are 

uniformly distributed over time. From equation (2), we can derive the corresponding yearly total number of 

relevant infected inbound individuals to any NUTS 3- egion 𝑗 and write 

𝐼) =^ 𝑀()
(∈5

, (3) 

where Ω denotes the set of dengue endemic countries. Similarly, we can derive the yearly total number of relevant 

infected outbound individuals from location 𝑖 and write 

𝑂( =^ 𝑀()
)∈6

, (4) 

where Ψ is the set of NUTS 3 regions with environmentally suitable conditions for vectors and pathogens. 

Code development and numerical computation were done in Matlab 2021b. 

 

Geographic coverage of Europe 

For this indicator we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom - excluding Kosovo and Liechtenstein as data was not available for these countries. 
 

Data  

See section previous section, i.e., Methods.  

 

Caveats  

The radiation model is one of the most suitable mobility models to use as it is tractable, and it is essentially 

parameter free (only a scaling parameter). It has been shown to provide general and robust results.72,75 The rate 

estimations are still based only on population-sizes, and do not account for travel processes dependent on other 

aspects. Whereas some deviations from realizations naturally should be expected, the radiation model could still 

be expected to capture the important trends.  

This analysis was data driven and based on data from across the world. One should note that any deficiencies in 

the applied data could affect the results computed and presented here. To our knowledge, however, the data 

applied here were of high quality. 

 

Future form of the indicator 

In this novel attempt to provide indications on the contribution of mobility to disease transmission in Europe, only 

unidirectional commuting has been considered. This means that only visits to Europe have been considered, and 

not commuting from Europe to endemic countries. For a more complete picture, bidirectional commuting should 

be considered, and is therefore an important objective for further development and analysis.  

Future forms could also consider secondary or tertiary recursions, i.e., account for exportation within Europe from 

NUTS 3 regions where disease transmission arises due to primary importation pressures.   
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Additional analysis 

For the years 1990 to 2019, figures 1.38 to 1.42 show degrees of importation to European NUTS 3 regions, and 

figures 1.43 to 1.57 show world maps where both degrees of exportation from endemic regions and degrees of 

importation to European NUTS-3 regions are indicated. 

Figure 1.38 Dengue importation in Europe at NUTS-3 level 1990-1995. The European NUTS 3 regions where 

the length of transmission season was at least one month, for the respective years as given by the in-figure 

annotations, are indicated by shaded NUTS 3 shapes. The degree of shading, ranging from low to high as shown 

in the bar legend, indicates a value that is proportional to the number of infected inbound travellers from dengue-

endemic countries across the globe during a time that is equal to the length of transmission season for the 

respective NUTS-3 regions.  
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Figure 1.39 Dengue importation in Europe at NUTS-3 level 1996-2001. The European NUTS 3 regions where 
the length of transmission season was at least one month, for the respective years as given by the in-figure 
annotations, are indicated by shaded NUTS-3 shapes. The degree of shading, ranging from low to high as shown 
in the bar legend, indicates a value that is proportional to the number of infected inbound travellers from dengue-
endemic countries across the globe during a time that is equal to the length of transmission season for the respective 
NUTS-3 regions. 
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Figure 1.40 Dengue importation in Europe at NUTS-3 level 2002-2007.The European NUTS-3 regions where 
the length of transmission season was at least one month, for the respective years as given by the in-figure 
annotations, are indicated by shaded NUTS-3 shapes. The degree of shading, ranging from low to high as shown 
in the bar legend, indicates a value that is proportional to the number of infected inbound travellers from dengue-
endemic countries across the globe during a time that is equal to the length of transmission season for the respective 
NUTS-3 regions. 
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Figure 1.41 Dengue importation in Europe at NUTS 3 level 2008-2013. The European NUTS 3 regions where 
the length of transmission season was at least one month, for the respective years as given by the in-figure 
annotations, are indicated by shaded NUTS 3 shapes. The degree of shading, ranging from low to high as shown 
in the bar legend, indicates a value that is proportional to the number of infected inbound travellers from dengue-
endemic countries across the globe during a time that is equal to the length of transmission season for the respective 
NUTS-3 regions. 
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Figure 1.42 Dengue importation in Europe at NUTS 3 level 2014-2019.  The European NUTS 3 regions where 
the length of transmission season was at least one month, for the respective years as given by the in-figure 
annotations, are indicated by shaded NUTS 3 shapes. The degree of shading, ranging from low to high as shown 
in the bar legend, indicates a value that is proportional to the number of infected inbound travellers from dengue-
endemic countries across the globe during a time that is equal to the length of transmission season for the respective 
NUTS-3 regions. 
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Figure 1.43 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS 3) in Europe, for the respective years (1990, 1991) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS 3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.44 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (1992, 1993) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.45 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (1994, 1995) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.46 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (1996, 1997) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 



66 
 

  

Figure 1.47 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (1998, 1999) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.48 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2000, 2001) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.49 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2002, 2003) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.50 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2004, 2005) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.51 World map showing dengue-endemic export regions (countries) outside of Europe, and 

environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2006, 2007) as indicated 

by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 

value that is proportional to the number of infected inbound travellers to any given import region from export 

regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 

export countries (for countries outside of Europe).  
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Figure 1.52 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2008, 2009) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.53 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2010, 2011) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.54 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2012, 2013) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.55 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2014, 2015) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.56 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2016, 2017) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Figure 1.57 World map showing dengue-endemic export regions (countries) outside of Europe, and 
environmentally suitable import regions (NUTS-3) in Europe, for the respective years (2018, 2019) as indicated 
by in-figure annotations. The degree of shading, ranging from low to high as shown in the bar legend, indicates a 
value that is proportional to the number of infected inbound travellers to any given import region from export 
regions (for NUTS-3 regions), or a value that is proportional to the number of infected outbound travellers from 
export countries (for countries outside of Europe). 
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Indicator 1.3.4: Climate suitability Malaria 
Background 

Malaria is widely recognised as a climate-sensitive infectious disease due to the climate sensitivity observed in 

both the vector, Anopheles mosquitoes, and the Plasmodium parasites.76 Although there are five species within 

the Plasmodium genus, two of them are of major public health concern: Plasmodium vivax and Plasmodium 

falciparum.77  

Until the implementation of the Global Malaria eradication program, Europe was endemic to malaria, with P. 

vivax being the cause of malaria cases in the continent.77 Since 1974, Europe has been malaria free officially, 

although cases have been reported among travellers or as part of sporadic local transmission events in Germany, 

the Netherlands, Spain, France, Italy, Greece and the UK.78 Among the determinants of malaria elimination in the 

continent, socio-economic conditions and increased life expectancy in the population have been recognised as 

main factors allowing Europe to prevent the re-emergence of malaria.79 In contrast, climatic conditions have 

become more permissive to the surge of mosquito-borne diseases, indicating that climate had a minor role in 

removing malaria from Europe.79,68 

P. vivax and P. falciparum differ slightly in their temperature requirements for development inside Anopheles 

mosquitoes. While P. vivax requires temperatures between 14.5ºC and 33ºC, P. falciparum's extrinsic incubation 

ranges from 18ºC to 32ºC. Additionally, relative humidity needs to be greater than 60% to allow mosquitoes to 

survive long enough to carry infectious parasites. Rainfall and availability of water bodies are necessary for adult 

mosquitoes to lay eggs and for larvae to survive.80 Evidence suggests that at least 80 mm of monthly rainfall is 

necessary for suitable transmission.81 Moreover, land type is a determinant of the spatial distribution of Anopheles 

mosquitoes, as restrictive biomes prevent populations from successfully settling down.82 

As climate projections suggest a more permissive climate for disease transmission, monitoring environmental and 

climatic conditions in Europe is vital for detecting increases in climate suitability that could require rapid decision-

making to prevent malaria from returning. For this purpose, an adaption to the European context of the malaria 

climate-suitability indicator, published in the Lancet Countdown reports, is presented here at a finer scale and 

considering local conditions.83,84,85,86 

 

Methods 

Although P. vivax has historically been the cause of autochthonous malaria cases in Europe, there have been 

reports of infections with P. falciparum in Germany and The Netherlands, without travel history.87,88 As a result, 

the malaria suitability indicator in this report estimates the number of months suitable for transmission of each 

parasite, calculated from empirically derived thresholds of precipitation, temperature and relative humidity.  

Monthly climate information between 1951 and 2020 were obtained from the ERA5-Land repository at a 9km2 

resolution.89 Relative humidity (%) was calculated using the August-Roche-Magnus equation, which derives this 

value by combining dew point temperature and temperature, using the formula.90 

𝑅𝐻 = 100 ∗
exp	( 𝑎𝑇0

𝑏 + 𝑇0
)

exp	( 𝑎𝑇
𝑏 + 𝑇)

 

Where a and b are the coefficients 17.625 and 243.04, respectively, and T and Td are temperature and dew point 

temperature in °C. 
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Elevation data were extracted from the JISAO repository, University of Washington 

(http://research.jisao.washington.edu/data_sets/elevation/). Land cover data were downloaded from the 

Copernicus Land Monitoring Service project repository at 100m resolution (https://land.copernicus.eu/pan-

european/corine-land-cover). The land cover raster from 2018 was downloaded and assumed to be constant 

throughout the time series. Land classes were determined according to the criteria used by Benalli and colleagues82 

to define environments suitable for Anopheles breeding , namely rice fields, permanently irrigated croplands and 

sport and leisure facilities (figure 1.58). 

Suitability for a particular month was defined as the coincidence of precipitation accumulation greater than 80 

mm, average temperature between 14.5°C and 33°C for P. vivax and between 18°C and 32°C for P. falciparum, 

relative humidity greater than 60%, and highly suitable land class. These combined values reflected the limits for 

potential transmission of each of the mentioned Plasmodium parasites. The number of months with suitable 

conditions was calculated at the finest possible resolution, nine kilometres, and later averaged to European region 

(figure 1.59), country and NUTS-2 level. The yearly products were later stratified by elevation using a threshold 

of 700 m.a.s.l. for splitting low- from highland (highlands >= 700 m.a.s.l.). 

Results were visualised using time series line plots and maps containing the percentage changes between the 

periods 1951-1985 and 1986-2020. 

 

 
Figure 1.58 Highly suitable environments for 

Anopheles mosquito breeding. Grid cells were 

classified as highly suitable according to Benalli et 

al., 2014. Highly suitable areas were rice fields, 

permanently irrigated croplands and sport and 

leisure facilities. 

 

. 

 
Figure 1.59 European regions 

 

 

Geographic coverage of Europe 

This indicator was computed for all member and cooperating countries included in the European Environment 

Agency (EEA), plus the United Kingdom. 
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Data  

Variable Source Frequency of update Spatial 

resolution 

Temporal range 

Monthly 2-meter dew 

point temperature 

ERA5-Land Monthly with a 3-month 

delay relative to present 

0.1°/ 9 km2 Jan 1951 to Dec 2020 

Monthly 2-meter 

temperature 

ERA5-Land Monthly with a 3-month 

delay relative to present 

0.1°/ 9 km2 Jan 1951 to Dec 2020 

Monthly total 

precipitation 

ERA5-Land Monthly with a 3-month 

delay relative to present 

0.1°/ 9 km2 Jan 1951 to Dec 2020 

Land cover  CORINE Every 6 years 100 m 2018 

Altitude JISAO - 0.5° - 

 

Caveats  

This indicator reflects the state of conditions that would potentially allow malaria transmission to occur, had there 

not been public health efforts to control it. In this regard, this is indicator should be interpreted in the context of 

the current efforts that are allowing Europe to keep malaria from returning to the continent. 

 

Future form of the indicator 

Malaria re-emergence in the continent is highly related to the risk of importation, as Plasmodium parasites are 

still endemic to other parts of the world. This information is important to be included in future versions of this 

indicator in the form of human mobility, density and/ or incoming flights from high-risk areas. 

 

Results and additional analysis  

Overall, there has been an increasing trend in the number of months suitable for malaria transmission in Europe 

since 1951, in lands highly suitable for Anopheles mosquito breeding (figure 1.60 A). The trend was maintained 

after stratifying by European regions (figure 1.60 B).  
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Figure 1.60 Mean number of months suitable for P. vivax transmission between 1951 and 2020, (a) for the entire 

continent and (b) grouped by European regions. The number of suitable months was calculated as the number of 

months per year in with precipitation above 80 mm, average temperature between 14.5°C and 33°C, and relative 

humidity above 60%, in land types highly suitable for Anopheles mosquitoes. Linear regression was used for 

trend estimation. 

 

Central and Western Europe have had the highest mean suitability throughout the considered period. In the period 

1986-2020, Europe's overall suitability increased in 4.5%, compared to the period 1951-1985. The highest increase 

was observed in Northern and Western Europe, with 21.6% and 25.2%, respectively (table 1.4). Particularly, the 

United Kingdom and Ireland showed marked rises between periods, with 106% and 104%, respectively (table 

1.5). Several countries indicated an overall decrease in malaria suitability since 1951. Romania, for example, had 

a marked decrease in suitability for malaria transmission of 25.8% in between the considered periods (figure 1.61). 

 

Table 1.4 Percentage change in mean number of months suitable for malaria transmission, when comparing the 

period 1951-1985 to the period 1986-2020, stratified by European region 

European region Percentage change (%) 

North 21.6% 

Central -5.27% 

South 2.84% 

West 25.2% 

 

Table 1.5 Top five countries with highest percentage change in mean number of months suitable for malaria 

transmission, when comparing the period 1951-1985 to the period 1986-2020 

Country Percentage change (%) 

United Kingdom 106% 

Ireland 104% 

Portugal 55.9% 

Norway 52% 

Sweden 29.7% 
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Figure 1.61 Percentage change in the mean number of months suitable for P. vivax transmission, when comparing 

the decade 1951-1960 to the decade 2011-2020. Outcomes are grouped by (a) country and (b) NUTS 2 regions.  

 

Suitability at altitudes 700 m.a.s.l. and above increased in Central and Western Europe, which concentrate most 

of the highlands in the continent, while it remained constant in Northern and Southern Europe (figure 1.62). On 

the other hand, lowlands, i.e., altitude below 700 m.a.s.l., had an increasing trend in all regions since 1951. 

 

 
Figure 1.62 Mean number of months suitable for P. vivax transmission between 1951 and 2020, grouped by 

European regions and stratified by high-/ lowlands. The number of suitable months was calculated as the number 

of months per year in with precipitation above 80 mm, average temperature between 14.5°C and 33°C, and relative 

humidity above 60%, in land types highly suitable for Anopheles mosquitoes. Linear regression was used for 

trend estimation. 

 

Stratifying the indicator by a NUTS 2 level highlighted a marked heterogeneity in the spatial distribution of the 

suitability. Central, Northern and Eastern Europe had districts that surpassed the 300% increase in the number of 

months suitable for malaria transmission (figure 1.60 B) 
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Although P. vivax has historically been the cause of autochthonous malaria cases in Europe, there have been 

reports of infections with P. falciparum in Germany and The Netherlands, without travel.87,88 As a result, the 

suitability indicator for the latter was also calculated from empirically derived thresholds of precipitation, 

temperature and relative humidity.  

Suitability for P. falciparum has increased slightly since 1951 in Northern, Southern and Western Europe, 

although there was a marked increase in Central Europe (figure 1.63 (a)). Similarly, to P. vivax, there is 

heterogeneity in P. falciparum’s spatial distribution, with The Netherlands, Belgium, Germany, Switzerland and 

Austria concentrating the highest percentage change, when comparing the period 1951-1985 to the period 1986-

2020 (figure 1.63 (b,c)).  

 
Figure 1.63 (a) Mean number of months suitable for P. falciparum transmission between 1951 and 2020, grouped 

by European regions. The number of suitable months was calculated as the number of months per year with 

precipitation above 80 mm, average temperature between 18°C and 32°C, and relative humidity above 60%, in 

land typed highly suitable for Anopheles mosquitoes. Linear regression was used for trend estimation. (b, c) 

Percentage change in the mean number of months suitable for P. falciparum transmission, when comparing the 

period 1951-1985 to the period 1986-2020, stratified by (b) country and (c) NUTS 2 regions. 
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1.4: Allergens 
Indicator 1.4.1: Allergenic trees 
Method  

Rising temperature leads to substantial changes in the flowering season of European trees, releasing large amounts 

of allergenic pollen into the air. Some pollen proteins can exacerbate allergenic rhinoconjunctivitis (pollinosis) 

and allergic asthma by acting as antigens for the immune system.91 The most consistent signal is visible at the 

start of the season, the target variable of the current indicator. The start of the pollen season is relevant also because 

patients are alerted in many regions by warning systems and mass media. 

Pollen season has many definitions, depending on the target use.92 The definition relevant in the current context 

is a so-called “clinically-relevant” pollen season, i.e., the period when concentrations of a specific pollen are 

sufficiently high to cause allergy symptoms. The general definition and the concentration thresholds for several 

aeroallergens were identified by Pfaar et al. 201693 as a result of a Task Force of the European Academy of 

Allergology and Clinical Immunology (EAACI). 

 
Calculation of the clinically-relevant season is performed in several steps using the SILAM atmospheric 

composition model (Sofiev et al. 201594 and 201295 http://silam.fmi.fi, visited 5.3.2022; open-source code 

http://github.com/fmidev/silam-model visited 5.3.2022):  

1. phenological season of trees is computed by SILAM based on the concept of accumulated heat as a 

period when a specific plant releases pollen into the atmosphere; 

2. atmospheric dispersion of the released pollen is computed by SILAM, thus obtaining pollen 

concentration as a function of time across Europe; 

3. clinically-relevant season definition of Pfaar et al. 201693 is calculated based on the SILAM-computed 

concentrations as input; 

4. the calculations are repeated independently for each year through 1980-2020 and each type of tree; 

5. differences of the last/first decadal medians of the clinicallyrelevant season start day are calculated for 

each grid cell or NUTS 2 region. 

Details of each step are given below. 

1. Phenological season 

SILAM currently possesses phenological parameterizations for three European trees: alder, birch, and olive.96 For 

all of them, the phenological season is computed based on the concept of accumulated heat as the main trigger 

and the driver of the flowering season.95,97,98 For heat accumulation, the Daily Temperature Sum model is written 

in the following form95: 

 

(1) 

 

𝐻(𝐷) = 2 3𝑇(𝑑) − 𝑇&'6 ∗ 𝑈 3𝑇(𝑑) − 𝑇&'6
(

)*(7

 

 

where D is day, Ds is the day of start of heat accumulation, T(d) is daily mean temperature for the day d, Tco is 

cut-off temperature, and U is unity cut-off function: 
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(2) 
𝑈(𝑥) = :0, 𝑥 ≤ 0

1, 𝑥 > 0 
 

Equations (1) – (2) imply that the heat accumulation rate is proportional to an excess of daily-mean temperature 

above a cut-off level. Same equations can be written also for hourly averaging, which for alder leads to a better 

agreement with the observed phenological timing than the daily model. 

Phenological flowering season starts at the day Ds when heat sum exceeds a start-season threshold: H(Ds) > Hstart. 

The season ends at the day when the accumulated heat reaches the end-season threshold: H(De) > Hend. For all 

trees, these thresholds depend on location, i.e., they are represented via maps rather than scalar values. This 

approach reflects the variety of the European climate zones as well as the marine-vs-continental climate gradient. 

The thresholds were empirically identified based on long-term SILAM simulations and pollen measurements 

across Europe by the European Aeroallergen Network (Sofiev et al. 2012,95  201599 and 2017100).  

 

2. Dispersion computations 

Release into the air and atmospheric dispersion of pollen was computed by SILAM driven by the ECMWF ERA5 

meteorological reanalysis. Spatial resolution was 0.1° lat-lon for the domain covering the whole of Europe. Output 

included hourly-mean pollen concentrations, cumulative dry and wet deposition. Details of the computation 

procedure can be found in Sofiev et al. 2012,95  201599 and 2017.100  

 

3. Clinically relevant season 

Computations of the clinically-relevant season follows the definition of Pfaar et al. 201693: Start of season is the 

1st day of 5  days – out of 7 consecutive  days – each  of these five days with concentration exceeding Cdaily_clin 

and with a sum of these five days exceeding C5days_clin.. The authors identified the values of the two constants for 

5 species: Birch, Grass, Cypress, Olive, and Ragweed. For this indicator, only Birch and Olive were used (Table 

.6), whereas the constants for Alder were roughly estimated using mean seasonal exposure to this pollen in 

comparison to Birch and Olive. For the trend of the season start, this is a satisfactory approximation. For actual 

season computations, the consensus thresholds for alder must be identified. 

 

Table 1.6 Numerical constants for concentration thresholds, modified from Pfaar et al. 201693 

 Alder* Birch Olive 

Cdaily_clin 3 pollen m-3 10 pollen m-3 20 pollen m-3 

C5days_clin 30 pollen m-3 100 pollen m-3 200 pollen m-3 

Note: The Task Force of Pfaar et al did not identify the constants for Alder. The values were estimated by 

extrapolating the typical pollen concentrations of birch and olive and comparing them to those of Alder. 

 

4. Multi-annual computations and 5. Trend analysis 

The SILAM computations have been made for 1980-2020 using the European Reanalysis ERA5.60 Each year is 

computed independently, with the same amount of pollen released as a seasonal integral. Upon completion, the 

clinically-relevant season start, end, and duration were computed from daily pollen concentrations for each grid 
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cell and for each NUTS region independently. Based on the obtained time series of season characteristics, the 

difference between the medians of the first and last decades was calculated at every grid cell/NUTS region. 

 

𝐷𝐼𝐹𝐹 = 𝑀𝐸𝐷𝐼𝐴𝑁#!++_#!#! −	𝑀𝐸𝐷𝐼𝐴𝑁+-.+_+--! 
The obtained trends show a significant spatial variability, both in the trend absolute value and its statistical 

significance (figure 1.64). The high variability has been shown in to originate from year-to-year meteorological 

variability.101 However, over the areas with a statistically significant trends (shaded areas in the left column of 

figure 1.64), the shift of the season reached 10-20 days during the last 40 years. It exceeds one month for e.g., 

birch season start in the Alpine region. A highly systematic shift was found also for olives: in practically all olive-

rich regions, the shift reached about 10 days over last 40 years. 

 

Geographic coverage of Europe 

For this indicator we considered the European Union member countries, candidate and potential candidate 

countries plus the United Kingdom and EFTA countries. 

 

Data  

The SILAM computations rely on two major data sets: 

1. Meteorological European Reanalysis ERA560 of European Centre of Medium-Range Weather 

Forecasting ECMWF. The period 1980-2020 was used for the indicator. It is based on computations of 

the ECMWF Integrated Forecasting System, IFS, with assimilation of large amount of in-situ and remote-

sensing data. The ERA5 temporal resolution is one hour, and spatial resolution is about 25 km. 

2. The global land-use dataset ECOCLIMAP,102 which provides 1 km global classification of land use. The 

land-use categories of ECOCLIMAP do not distinguish the individual tree species and do not provide 

temporal evolution of the land-use. Therefore, the ECOCLIMAP maps were combined with species-

specific data of European Forest institute EFI103 and Global Land Cover data GLC.104 The final step of 

adaptation was an inverse problem solution with the SILAM model, which procedure was described by 

Prank et al. 2013,105 aiming at the climatologically unbiased concentration predictions. The same map 

was used throughout the simulated period. 

3. Evaluation of the model predictions for 2020 was made using the data of European Aeroallergen Network 

provided to Copernicus Atmosphere Monitoring Service for model evaluation. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
Figure 1.64 Difference of the decadal medians of start of the clinically-relevant season and their statistical 

significance for alder (upper panel), birch (middle panel), olive (lower panel). Left column: trends, unit: [days]; 

right column: significance with p-value < 0.1, i.e., trends over all green-colour areas are significant with p<0.1. 

 

Caveats  

The indicator employs two major simplifications: (i) the same amount of pollen is released into the air every year; 

(ii) the same vegetation distribution map is applied for all years. 

The clinically relevant season depends not only on the phenological season but also on absolute pollen 

concentrations. For trees, strong fluctuations between years are common: strong-pollination years are often 

followed by weak years and vice versa. However, predicting the absolute level of pollen season for each specific 

year is a very difficult task, and no adequate European-wide solution exists for it this-far. The first-ever regional 

model of  Ritberga et al. 2017106 covers only Northern Europe. Therefore, the indicator is based on the season 

timing only, always assuming that there is enough pollen for the clinical relevance. This assumption is reasonable 

in the areas of the main sources of specific pollen, but could lead to increased uncertainty in remote areas. 
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However, the season start is, in most cases, sharp and well synchronised over a substantial territory, i.e., the 

clinical relevance will anyway be achieved at practically the same day, whether the season is low or high. 

The fixed vegetation map is also a simplification that is important for the absolute level of pollen concentrations 

but also less significant for timing of the pollen season, for the same reason.  

 

Future form of the indicator 

The indicator will be developed in four directions. 

The inter-annual season-strength forecasting model will be expanded to the whole of Europe and applied to obtain 

a more realistic season severity prediction for each specific year. 

The fixed land-use map will be switched to a series of annual maps, each adjusted to the specific forest distribution 

pattern obtained from satellites for each specific year. It is anticipated that such maps will not be available for the 

pre-satellite era, but an effort will be made to obtain reference distributions at least every 5-10 years from the in-

situ observations and inventories of EFI. 

Work is on-going to develop an operational procedure for pollen data assimilation.107 Upon finalization of this 

technology, the absolute level of pollen season will be included in the indicator.  

The ERA5 archive is being extended by ECMWF towards 1950. Upon completion of this work, the indicator will 

be extended to cover additional 30 years in the past. With time passing, the indicator will be updated on annual 

basis to include the recent-most years. 

 

Additional analysis 

Apart from the season start time, the season duration and the season end time are of high interest for allergy 

sufferers. As follows from Eq. (2) and the definition of Pfaar et al. 2016,93 the season end can be obtained 

following the same procedure as for the season start. This signal is less articulated in the time series, partly due to 

pollen resuspension, partly due to regional and long-range transport. However, it is still possible to compute its 

trends with reasonable statistical significance: figure 1.65. 

Comparing figure 1.64 and figure 1.65, one can see that both the season start and end are shifting synchronously 

in most of European regions, but the start is shifting slightly faster. As a result, the season duration stays almost 

constant (figure 1.66), with a tendency towards a longer season (albeit not statistically significant).   
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
Figure 1.65 Difference of the decadal medians of end of the clinically-relevant season and their statistical 

significance for alder (upper panel), birch (middle panel), olive (lower panel). Left column: trends, unit: [days]; 

right column: significance with p-value < 0.1, i.e., trends over all green-colour areas are significant with p<0.1. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
Figure 1.66 Linear trends of duration of the clinically-relevant season and their statistical significance for alder 

(upper panel), birch (middle panel), olive (lower panel). Left column: trends, unit: [days]; right column: 

significance with p-value < 0.1, i.e., trends over all green-colour areas are significant with p<0.1. 

 

The SILAM pollen predictions have been extensively evaluated in a series of international projects.95,99,100,108,109 

An example of the last-year evaluation of birch season representation withing the Copernicus Atmosphere 

Monitoring Service CAMS is shown in figure 1.65. That year, the birch season was very late in Central and 

Northern Europe, but the model still reproduced the season start within a few days of uncertainty, both the start 

and the end. 
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Figure 1.67 Quality of the season identification in 2020. Left-hand panel: season start error; right-hand panel: 

season end error. [day]. Observational data are provided by European Aeroallergen Network to CAMS for the 

model evaluation within the scope of CAMS-23 service contract. 

 

Several studies reported local/regional trends in the pollen season timing,110,111,112,113 but no long-term European-

scale trends have been published this-far due to a lack of historical pollen observations. Comparing the current 

trend estimates with the published local assessments, there is a broad consensus in a tendency towards the earlier 

season in most of Europe. Specific trends vary between the stations and species, similar to patterns calculated for 

this indicator. 
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Section 2: Adaptation, planning, and resilience for health 

2.1: Adaptation planning and assessment  
The following section describes the methods, data, caveats, geographic coverage, and future forms of the 

indicators for three working group 2 indicators that are based on the WHO Health and Climate Change Global 

Survey.  

Indicator 2.1.1 National assessments of climate change impacts, vulnerability and adaptation for 

health  

Indicator 2.1.2 National adaptation plans for health  

Indicator 2.2.1 Climate information for health  
Methods  

The global survey report is based on a triennial, voluntary survey sent to all 194 WHO Member States. It is 

completed by ministries of health in consultation with other health stakeholders, ministries and institutions. 

The WHO health and climate change global survey is conducted every three years. The 2021 Global Survey was 

launched in March 2021 and final submissions were requested by August 2021.114 A number of countries 

requested extensions due to the ongoing pandemic response and therefore additional submissions were received 

in September and October 2021.  

The survey questionnaire was translated and available online in all six official UN languages. 

Participation in the survey has grown substantially over the years. In 2015, 40 countries responded to the survey. 

This grew to 101 country respondents in 2018. Despite the COVID-19 pandemic and its demands on ministries 

of health, participation remained high in this third cycle (2021), with 95 country respondents. 

Qualitative analysis of climate change and health V&A assessment documents.   

This indicator draws on the 2021 WHO Health and Climate Country Survey.114 It tracks the development of 

national health and climate change strategies, health impacts and vulnerability assessments, and the multi-

stakeholder mechanism on health and climate change in place (table 2.2). 

 

Geographic coverage of Europe 

For this indicator, we include countries that completed the WHO survey. The 2021 survey was completed by 22 

member states with representation from the WHO European Region out of the 53 member states. See table 2.1. 

 

Table 2.1 The list of participating countries in 2021 global survey from the WHO European Region 

List of participating countries and areas Number of 

participating 

countries 

Proportion of 

WHO region 

represented 

Azerbaijan, Bulgaria, Croatia, Cyprus, Czechia, Estonia, Germany, Israel, 

Italy, Kazakhstan, Kyrgyzstan, Lithuania, Netherlands, North Macedonia, 

Poland, Portugal, Republic of Moldova, San Marino, Serbia, Slovakia, 

Sweden, Turkmenistan 
 

22 42% 

 

Source: 2021 WHO health and climate change global survey report.114 
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Table 2.2 Extracted data for the participating member states of the WHO European Region from the 2021 WHO 

health and climate change global survey report114 on the development and implementation of national health and 

climate change strategies, health impacts and vulnerability assessments, multi-stakeholder mechanism on health 

and climate change, and focal points responsible for health and climate change within the Ministry of Health.  

 

 

Source: 2021 WHO health and climate change global survey report.114 

 

Data  

Validation of the 2021 country reported data was undertaken in multiple steps. First, survey responses were 

reviewed for missing information or inconsistencies with follow-up questions directed to survey respondents. A 

summary of responses was shared with WHO regional focal points and key informants for review, comments and 

validation. Source documents including national health strategies and plans, and climate change and health 

vulnerability and adaptation assessments were collected. A desktop review of these source documents was 

  Countries 
reporting that 
climate 
change and 
health 
vulnerability 
and adaptation 
assessment(s)  
was conducting/ 
year 

Countries 
reporting that 
the assessment 
results strongly 
influenced 
resource 
allocation 

Countries 
reporting that 
the assessment 
results strongly 
informed 
health policy 
development 

Countries 
reporting having 
a national health 
and 
climate change 
plan/strategy 
in place?/ YEAR 

Countries 
reporting level of 
implementation of 
the national health 
and climate change 
plan (none; low, 
moderate, high, 
and very high); na 
(no info 

Reporting 
having a 
multi-
stakeholder 
mechanism 
on health 
and climate 
change that 
is currently 
operational 

Reporting 
having a 
designated 
focal point 
responsible 
for health 
and climate 
change at the 
Ministry of 
Health. 

Azerbaijan no no no no Unknown no No  

Bulgaria yes/2020 no no yes/2019 Unknown Unknown Unknown 

Croatia yes/2019 no no yes/2020 moderate yes yes 

Cyprus no no no yes/2017 none no no 

Czechia yes/2017 no no yes/2015 low yes yes 

Estonia yes/2016 no no yes/2016 low yes no 

Germany yes/2021 yes yes yes/2020 Very high yes yes 

Israel Under 
development 

no no yes/2018 Low yes yes 

Italy Under 
development 

no no Under 
development 

no yes yes 

Kazakhstan Unknown no no Unknown Unknown Unknown yes 

Kyrgyzstan Under 
development 

no no Unknown Unknown yes yes 

Lithuania yes/2014 no no yes/2012 Very high yes yes 

Netherlands yes/2014 no no yes/2016 Unknown yes yes 

North 
Macedonia 

yes/2010 no yes yes/2011 Very high yes yes 

Poland yes/2020 no no yes/2013 Unknown no no 

Portugal Under 
development 

no no Under 
development 

Unknown yes yes 

Republic of 
Moldova 

Unknown no no Under 
development 

no no no 

San Marino Under 
development 

no no yes/2015 moderate yes yes 

Serbia no no no no no no yes 

Slovakia no no no yes/2019 moderate no yes 

Sweden yes/2021 no no yes/2018 moderate yes yes 

Turkmenistan no no no yes/2020 high yes no 
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conducted to compare with survey results with follow-up to survey respondents to seek clarification or additional 

documentation. Findings were also cross referenced with existing external publications. Data were collected 

detailing all the ministries, institutions and national stakeholders that provided contributions to or review of the 

survey responses in order to provide insight into the national consultation process of each survey submission.  

Finally, all respondents reviewed and acknowledged the WHO data policy statement on the use and sharing of 

data collected by WHO in Member States outside the context of public health emergencies. 

Of note, due to the ongoing pandemic, the standard data collection procedures were modified to reduce the 

reporting burden on countries that wished to participate in the Global Survey but that were facing human resource 

constraints due to pandemic response. In eight cases, WHO prepared pre-filled survey questionnaires with data 

provided by ministries of health in the previous 2018 survey cycle or using data the countries had published in the 

2020/2021 WHO UNFCCC health and climate change country profile when available. These countries were 

requested to review, revise, and complete the hard copy questionnaires. These hard copy questionnaires were then 

entered into the online platform by WHO. The same data validation steps as described above were then followed. 

Additionally, a number of countries requested an extension of the reporting period. As such, there may be a slight 

increase in the total number of participating countries in the WHO health and climate change global survey report 

after the time of the publication of the report and an online dynamic data dashboard will reflect any updated data 

and findings as required with specified version time and date. 

 

Caveats  

1. The global survey is conducted every three years, and not all the same countries participate every year.  

2. The survey sample may not be a representative sample of all European countries as the survey is 

administered on a voluntary basis.  

 

Future form of the indicator 

1. For the next iteration of the indicator, self-reported data for adaptation plans, assessments, and climate 

information services can be disaggregated according to social determinants of health. This disaggregation 

will enable public health interventions to actively identify and support the populations most vulnerable 

to the effects of climate change. The WHO/UNFCCC Health and Climate Change Country Profiles, 

developed in collaboration with national health services, are data-driven snapshots of the climate hazards 

and the expected health impacts of climate change countries are facing. The data from the country profiles 

can me marge with the survey data to track current policy responses and summarize key priorities for 

climate and health action by country. 

2. In 2022, WHO will publish at least 12 new country profiles for the WHO European Region, and more 

than half are countries that are not participating in the 2021 survey which was the base for this indicator. 

We hope that we will extend the number of countries for the indicator for 1/3 with information of 

countries that report having done a climate change, health vulnerability, and adaptation assessment or 

report having climate change and health plans based on the data from the countries’ profiles. 
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Figure 2.1 National adaptation planning and assessment in Europe.  
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Indicator 1.1.3 City-level climate change risks assessments   
 

Methods 

This indicator is based on the annual Carbon Disclosure Project (CPD) and International Council for Local 

Environmental Initiatives (ICLEI) Cities questionnaire. Data is collected through a CDP-ICLEI Unified Reporting 

System, in which cities can report their responses on questions regarding city-level climate change mitigation and 

adaptation. The dataset is updated daily to reflect new submissions, and is publicly accessible through: 

https://data.cdp.net/browse  

 

The indicator is based on the following parts of the questionnaire.  

• Has a climate change risk and vulnerability assessment been undertaken for your city?  

• Is your city facing risks to public health or health systems associated with climate change? 

o Identify the climate-related health issues faced by your city.  

o Health-related risk and vulnerability assessment undertaken. 

o Please identify which vulnerable populations are affected by these climate-related impacts. 

Data 

1. 2021 CPD-ICLEI Annual Cities Survey 

Geographic coverage of Europe  

For this indicator we included cities in countries that are part of CPD Europe: Belgium, Bulgaria, Croatia, 

Denmark, Finland, France, Georgia, Germany, Gibraltar, Greece, Iceland, Ireland, Italy, Latvia, Lithuania, 

Monaco, Montenegro, Netherlands, Norway, Poland, Portugal, Romania, Russian Federation, Serbia, Slovenia, 

Spain, Sweden, Switzerland, Turkey, and the United Kingdom.  

 

Caveats  

• Participation of cities in this survey is on voluntary basis and self-reported. Hence data captured may be 

subjective to different forms of bias (i.e., response bias, social desirability bias), and not geographically 

representative of the entire European region.  

Future form of the indicator  

Firstly, for further iterations of the Lancet Countdown in Europe report, we hope to combine data from the Global 

Convent of Mayors for Climate and Energy, and the CPD-ICLEI Annual Cities Survey to capture information on 

a broader set of cities within Europe. Secondly, we are planning to perform additional analyses utilising the CPD 

annual survey to explore a broader set of indicators and monitor associations between city-level health 

vulnerabilities. Thirdly, in the next iteration of the Europe report we aim to track trends over time.   
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2.2: Adaptation delivery and implementation   
Indicator 2.2.2: Exposure to green space  
This indicator is divided into two sections 1) population weighted exposure to green space and 2) city level tree 

coverage.  

Population weighted exposure to green space  
Methods  

NDVI quantifies photosynthetically active vegetation by measuring the difference between near-infrared (which 

vegetation strongly reflects) and red light (which vegetation absorbs). NDVI values range from +1.0 to -1.0. Areas 

of barren rock, sand, or snow usually show very low NDVI values (for example, 0.1 or less). Sparse vegetation 

such as shrubs and grasslands or senescing crops may result in moderate NDVI values (approximately 0.2 to 0.5). 

High NDVI values (approximately 0.6 to 0.9) correspond to dense vegetation such as that found in temperate and 

tropical forests or crops at their peak growth stage. Negative values of NDVI (values approaching -1) correspond 

mainly to water and ice and snow cover.  

NDVI was derived from the Vegetation Indices (MOD13Q1) product of the Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) with 250 m x 250 m resolution.115 MOD13Q1 16-day composite vegetation indices 

provide one NDVI value every 16 days allowing the composition of gap-free temporal-series. The per-pixel 

compositing algorithm is described in the MOD13Q1 product user guide.116 The MOD13Q1 product includes the 

following relevant bands, among others: a) NDVI and b) quality assessment (QA) information. More information 

can be found here: https://lpdaac.usgs.gov/products/mod13q1v006/. Per-pixel Quality Assessment (QA) band 

provides information about how reliable the acquired data is and allows for removal of pixels with less accuracies. 

QA values of 0 and 1 mean a good quality level, whereas values of 2 and 3 represent pixels covered by ice, snow 

or clouds, which are discarded. Water features have typically negative signal values for NDVI, so they add noise 

to the negative edge when conducting spatial analysis. In order to identify and remove the influence of water 

bodies in the analysis, the Land Water Mask derived from MODIS and SRTM (MOD44W) was used to filter out 

the water bodies from the NDVI maps. This mask is a well-described satellite imagery with the same spatial 

resolution (250m) provided by the U.S. Geological Survey (USGS). MOD44W is a raster binary mask with land 

pixels represented as 0 and water as 1.  

After the previous adjustments, median surrounding greenness was calculated using 5-year time points (2000, 

2005, 2010, 2015 and 2020) for the entire Europe at 250m resolution. 

 

Data  

1. Population data for years 2006, 2011 and 2018 at 1km2 resolution were based on data from Eurostat.15  

2. Population data at 5-years age groups was at NUTS 3 level,118 or when not available, at national level 

(country). A proportion/percentage for each 5-years age group was calculated for each NUTS 3 or 

country level and applied to each 1km2 population grid cell, assuming a same age population structure 

within the NUTS 3 / country. 

3. NDVI was derived from the Vegetation Indices (MOD13Q1) product of the Terra Moderate Resolution 

Imaging Spectroradiometer (MODIS) with 250 m x 250 m resolution 115 
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4. Weighted-mean NDVI was computed at 1km2 grid cell level using median NDVI value and the 

corresponding total population count and aggregated and country level.  

 

Geographic coverage of Europe  

Population-weighted exposure was calculated for all EEA countries (except Turkey), cooperating countries 

(Albania, Bosnia and Herzegovina, Kosovo, Montenegro, North Macedonia, Serbia) and United Kingdom.  

For the missing countries in the population grid 2006 (Balkans) we used the 2011 grid datasets and the 

corresponding 2000 and 2005 NDVI data. 

 

Caveats  

NDVI is a fairly crude measure of green space and is context dependent. However, it is the greenspace exposure 

indicator for which there is the best evidence base linking green space to health.119 

 

Future form of the indicator 

Mortality attributable to lack of green space will be added to future versions of the indicator.  

 

Additional analysis 

 

 
Figure 2.2 Change (%) of exposure to green space measured by the normalised difference vegetation index 

(NDVI) between 2020 and 2000 by European Region. Boxplots with median, interquartile range (IQR), 

maximum/minimum and outliers are presented. The mean by region is depicted in purple. % change is presented 

both when assuming a fixed population and when assuming changing populations.   
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City level tree coverage 
Data  

Heat islands are urbanized areas that experience higher temperatures than outlying areas. Structures such as 

buildings, roads, and other infrastructure absorb and re-emit the sun's heat more than natural landscapes such as 

forests and water bodies; urban development is therefore the cause of urban heat islands.  Urban tree cover is the 

area in cities covered by tree crowns, if seen from above. Trees provide multiple benefits to the urban environment 

and the quality of life in cites. Amongst others, trees can help to adapt to the changing climate, by reducing air 

temperatures through shading and evapotranspiration, managing stormwater and reducing wind speeds. They can 

also act as a carbon sink, thus contributing to climate change mitigation efforts. Further, trees benefit mental and 

physical health, e.g., by lowering stress levels, reducing the amount of toxic particles in the ambient air or 

providing pleasant environment for cycling and walking. Lastly, trees – especially old, native ones - provide 

habitats for wildlife and increase biodiversity in urban areas. The importance of urban trees is recognised in the 

EU Biodiversity Strategy 2030, which requires that cities with over 20,000 inhabitants develop urban greening 

plans, including measures to create biodiverse and accessible urban green spaces, including parks, forests and 

tree-lined streets. In addition, the EU Forest Strategy, foreseen to be published in 2021, will include a roadmap 

for planting 3 billion new trees by 2030. The EU Strategy on Adaptation to Climate Change is strongly promoting 

nature-based solutions as “no regret” options for adaptation that simultaneously provide environmental, social and 

economic benefit.  

The urban tree cover presented as part of this indicator includes trees on both public and private land and combines 

data from the following Copernicus Land Monitoring System products (all from 2018): 

1. High-Resolution Layer Tree Cover Density (HRL TCD)120 

2. Urban Atlas Land use/Land Cover data121 

3. Urban Atlas Street Tree Layer122 

Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom. 

Methods  

The area and proportion of urban tree cover in cities is calculated for over 1000 cities in almost 800 urban areas 

in 38 countries and three different spatial reference units, i.e., city, the city’s Commuting Zone and the Functional 

Urban Area (FUA), which is the combination of these two. 

1. City: Densely populated area.  Short definition: a city is a local administrative unit (LAU) where at least 

50 % of the population lives in one or more urban centres. 

2. Commuting zone: a commuting zone contains the surrounding travel-to-work areas of a city where at 

least 15 % of employed residents are working in a city. 

3. Functional urban area (FUA): a city and its commuting zone.  Short definition: a functional urban area 

consists of a city and its commuting zone. Functional urban areas therefore consist of a densely inhabited 
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city and a less densely populated commuting zone whose labour market is highly integrated with the city 

(OECD, 2012). 

Caveats  

Remotely sensed data as opposed to ground-level measurements.   

Future form of the indicator 

This indicator relies on various Copernicus products, which show the data from 2018 (among other Urban Atlas, 

which, whilst based on data from 2018, only became available in 2021). Thus, it is not clear when and update will 

be produced that can be compared to 2018.   
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Indicator 2.2.3: Air conditioning benefits and harms 
This indicator is based on the data and methods of indicator 2.3.2 of the global Lancet Countdown 2021 Report.  

 

Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., ... & Hamilton, I. (2021). 

The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The 

Lancet, 398(10311), 1619-1662.  

 

A full description of the methods, data, caveats and future form of the indicator can be found in the Appendix of 

the global Lancet Countdown 2021 report: https://www.theLancet.com/cms/10.1016/S0140-6736(21)01787-

6/attachment/ac088142-4570-4d4d-aeb8-d760254f9a1a/mmc5.pdf  

 

Geographic coverage of Europe 

1. For this indicator we include Italy, France, Germany, Finland, United Kingdom, Norway, Sweden, 

Denmark and Iceland as individual countries.  

2. “Other Europe” is an International Energy Agency defined region including Albania, Austria, Belarus, 

Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Former 

Yugoslav Republic of Macedonia, Gibraltar, Greece, Holy See, Hungary, Ireland, Israel, Kosovo, Latvia, 

Lithuania, Luxembourg, Malta, Moldova, Monaco, Montenegro, Netherlands, Poland, Portugal, 

Romania, San Marino, Serbia, Slovak Republic, Slovenia, Spain, Switzerland, Turkey, Ukraine. 

Analysis 

Figure 2.3 (a) Proportion of European households with air conditioning between 2000-2019. (b) CO2 emissions 

from air conditioning in Europe over 2000-2019. 

Section 3: Mitigation actions and health co-benefits 
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3.1: Energy system and health   
This indicator outlines the fundamental drivers of the relationship between climate change and health, namely the 

use fossil fuels in the energy system. It comprises three sub-indicators. 

Indicator 3.1.1: Carbon intensity of the energy system  
Methods  

This sub-indicator contains two metrics: 

1. Carbon intensity of the energy system in Europe, (1990-2019), in tCO2/TJ; and CO2 emissions from energy 

combustion by fuel, in GtCO2 (1990-2019).  

2. Technical definition is the tonnes of CO₂ emitted for each unit (TJ) of primary energy supplied. 

The rationale for the sub-indicator choice is that carbon intensity of the energy system will provide information 

on the level of fossil fuel use, which has associated air pollution impacts (explored in indicator 3.2). Higher 

intensity values indicate a more fossil fuel dominated system, and one that is likely to have a higher coal share. 

As countries pursue climate mitigation goals, the carbon intensity is likely to reduce, leading to a reduction in 

harmful air pollution emissions.  

The indicator is calculated based on total CO2 emissions from fossil fuel combustion divided by Total Energy 

Supply (TES). TES reflects the total amount of primary energy used in a specific country, accounting for the flow 

of energy imports and exports.  

Furthermore, figure 6 (main text) includes a projection of the recent rate of reduction in carbon intensity, as well 

as the rate of reduction required to meet net-zero by 2050. The current rate of reduction of carbon intensity is 

incompatible with meeting the goals of the European Climate Law and the Paris agreement.  

Countries with high overall emissions are highlighted in the figure. The remainder of countries are aggregated as 

“Rest of Europe”. All countries in the EEA are given under the “All of Europe” region. 

 
Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom, for the period 1990-2019. 

 

Data  

This sub-indicator is based on the International Energy Agency (IEA) dataset, CO2 Emissions From Fuel 

Combustion: CO2 Indicators, accessed via the UK data service.123 

 

Caveats  

The sub-indicator does not provide information on the share of different fossil fuels, their use in different sectors, 

or the absolute levels of usage. These are all important elements in understanding air pollution emissions and their 

impacts. Additional sub-indicators (3.1.2 & 3.1.3) provide additional complimentary information. 

 

Future form of the indicator 

The data are updated annually by the IEA. There is currently no expectation that sub-national figures will become 

available.  
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Indicator 3.1.2: Coal phase-out 
This sub-indicator is based on two metrics: 

1. Total primary coal supply by country (in exajoules, EJ). 

2. Share of electricity generation from coal (% of total generation from coal). 

These metrics are important to enable tracking of changes in coal consumption at a regional and country level. As 

countries pursue climate mitigation goals, the use of coal is likely to reduce with resulting benefits for air pollution.   

The metric on primary energy coal supply is an aggregation of all coal types used across all sectors (from IEA 

energy balances). The data are available for all EEA member countries for the period 1990-2019.  

The metric on the share of electricity generation from coal is estimated based on electricity generated from coal 

power plants as a percentage of total electricity generated.  

Countries with high overall use of coal are highlighted in the figure. The remainder of countries are aggregated 

as “Rest of Europe”. All countries in the EEA are given under the “All of Europe” region. 

 
Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom 

 

Data  

This sub-indicator is based on the extended energy balances from the International Energy Agency. The specific 

dataset is called World Extended Energy Balances (for 2021), and is sourced via the UK data service.124  

 

Caveats  

As data collection methodologies across European countries are not harmonised, comparability between countries 

is limited. Differences between the collected modal data collected and further caveats are described here: 

https://ec.europa.eu/eurostat/cache/metadata/en/tran_hv_psmod_esms.htm125  

 
Future form of the indicator 

The data are updated annually by the IEA. There is currently no expectation that sub-national figures will be 

available.  
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Indicator 3.1.3: Renewable and zero-carbon emission energy  
Methods  

This sub-indicator comprises two metrics:  

1. Total low carbon electricity generation, as a % share of total electricity generated (including nuclear, and all 

renewables); and  

2. Total renewable generation (wind, solar PV and solar thermal, geothermal), as % share of total electricity 

generated. 

The increase in the use of low carbon and renewable energy for electricity generation will push other fossil fuels, 

such as coal, out of the mix over time, resulting in improved air quality and associated health benefits. 

The renewables indicator has been used to allow for the tracking of rapidly emergent renewable technologies. For 

both metrics, generation, rather than capacity, has been used as the electricity generated from these technologies 

is what actually displaces fossil-based generation.  

Data are based on the IEA extended energy balances.124 The absolute level data are total gross electricity generated 

aggregated from the relevant technology types. The share data are estimated as the low carbon or renewable 

generation as a % of total generation. 

The data are available for most countries of the world, for the period 1971-2019. Only the period from 1990 has 

been used, due to data gaps for selected countries prior to 1990. 

 

Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom 

 

Data  

This sub-indicator is based on the extended energy balances from the IEA. The specific dataset is called World 

Extended Energy Balances, and is sourced via the UK data service.124 

 

Caveats  

This sub-indicator does not provide information on the air pollutant emissions displaced due to the increasing 

share of renewable energy generation. 

 

Future form of the indicator 

The data are updated annually by the IEA. There is currently no expectation that sub-national figures will become 

available. 
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Analysis  

 

 

Figure 3.1 (A) Share of total energy supply provided by zero-carbon sources (renewables with the addition of 

hydroelectricity and nuclear) in Europe over 1990 to 2020. (B) Share of electricity supply provided by renewables 

(wind, solar, geothermal and tidal power) in Europe over 1990 to 2020. Zero-carbon energy sources are those 

which have effectively no carbon emissions associated with their production operations. 
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3.2: Premature mortality attributable to ambient fine particles    
Methods  

This indicator reports estimates of mortality attributable to long-term exposure to PM2.5 originating from different 

fuels and sectors. It relies on calculations with the Greenhouse Gas-Air Pollution Interactions and Synergies 

(GAINS) model,126 which combines bottom-up emission calculations with atmospheric chemistry and dispersion 

coefficients.  

Data on energy consumption and other activities have been imported into GAINS from Eurostat data and mapped 

to detailed sectors in GAINS. They are then merged with GAINS internal information on application of emission 

control technologies in each country and year, reflecting the appropriate fleet/stock composition and legislation 

at that time. Each technology is associated with country-specific emission factors to calculate emissions of PM2.5 

and PM precursor gases SO2, NOx, NH3, and non-methane VOC. 

Ambient PM2.5 concentrations are calculated from the region and sector specific emissions by applying 

atmospheric transfer coefficients, which are a linear approximation of full chemistry-transport models. 

Calculations include both primary PM as well as secondary inorganic and organic aerosols. Atmospheric transfer 

coefficients in GAINS-Europe are based on full year perturbation simulations with the EMEP Chemistry 

Transport Model127 run at a resolution of 0.5°×0.25° and include a downscaling for low-level emission sources of 

primary PM (residential emissions, road traffic and non-road machinery) to a resolution of 0.125°×0.0625° or 

roughly 7×7km based on a full-year simulation with the CHIMERE CTM.128 

GAINS atmospheric calculations are described in detail by Kiesewetter et al. 2015.129 For the Lancet Countdown 

indicator, contributions from individual (aggregated) source sectors such as road traffic, power plants, industry, 

and households, as well as from different fuel types (coal, liquids, gas, biomass, others) used in each sector, are 

kept separate in the calculation. 

Attributable deaths are calculated through a comparative risk assessment framework. GAINS uses a linear 

approximation of the attributable fraction calculation, 

𝐴𝐹89: = 𝛽	[𝑃𝑀]89:	 

where 𝐴𝐹89: is the attributable fraction in country 𝑐 from sector 𝑠 and fuel 𝑓, [𝑃𝑀]89: is the population-weighted 

mean concentration of PM2.5 in country 𝑐 from emissions of sector 𝑠 and fuel 𝑓, and 𝛽 is the risk coefficient of 

the linearized concentration-response function. Here we use the concentration-response function reported by the 

systematic review by Chen and Hoek 2020130 which found a relative risk for natural-cause mortality from long-

term exposure to PM2.5 of 1.08 per 10𝜇gm-3, thus the coefficient 𝛽 = 0.008/𝜇𝑔𝑚;#	. Attributable deaths 𝑎𝑑 are 

calculated as 

𝑎𝑑89: = 𝐴𝐹89:	𝑛𝑑8 

with 𝑛𝑑8 the total natural-cause deaths over 30 years of age in country 𝑐.  
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Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries, 

excluding Liechtenstein, Bosnia and Herzegovina, Serbia, Kosovo and Montenegro as data was not available for 

these countries.  

Data  

1. Energy consumption by fuel and sector, industrial production: Eurostat,131 IEA energy statistics124  for 

countries missing in Eurostat 

2. Other activities:  

a. Agricultural activities: Food and agriculture organization FAOSTAT132  

b. Fertilizer use: IFASTAT133 

c. Municipal waste, other minor sources: GAINS internal calculations 

3. Mortality data: Eurostat. Data gaps for individual countries and years were filled with UN World 

Population Prospects 2017 estimates. 

Caveats  

1. The indicator relies on model calculations which are inherently uncertain and use linear approximations 

for atmospheric processes which are partly non-linear. See Amann et al (2012)126 for a discussion of the 

linearity approximations. 

2. Meteorological conditions vary from year to year and are one important factor for inter-annual variability 

of ambient PM2.5 concentrations. The indicator does not consider this variability and reports only trends 

attributable to emission changes. Atmospheric coefficients in GAINS are based on CTM simulations for 

five different meteorological years (2006-2010) in order to represent a reasonable average of 

meteorological conditions. 

3. Also, the spatial distribution of emissions is fixed to the base year 

4. Concentration-response functions used in the attributable mortality calculation are uncertain. To 

minimize this, the analysis relies on the latest systematic review of epidemiologic data. 

Future form of the indicator 

Activity data are updated annually. In this report, five-year steps from 2005 onwards have been reported, but the 

time series can be extended annually.  Currently the resolution of mortality results is by country (aggregated to 

European regions in the main text) but may be refined to sub-national level. The atmospheric coefficients in 

GAINS are currently undergoing an update which will improve the sectoral resolution. These will be available 

from next year. 
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Analysis 

 
Figure 3.2 Premature mortality (annual attributable deaths per 100,000 population) due to PM2.5 by fuel type, 

economic sector, and European region calculated in five-year steps. Fuel combustion in industry resulted in less 

than 5 deaths per100,000 population at each time point between 2005-2020. 
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Indicator 3.3: Sustainable and healthy transport  
Methods  

This indicator is comprised of two metrics:  

1. Per capita fuel use on road transport data (by fuel type) from the IEA World Extended Energy Balances 

are divided by corresponding population statistics from the UNDP. 

2. Mode share by country over time (2010 to 2019, 2019 shown in figure) by passenger-kilometres, 

provided by Eurostat 

Geographic coverage of Europe 

For this indicator, we included the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom. 

Data  

1. Fuel use data is from the IEA, World Extended Energy Balances124 

2. UN Population estimates, 2019 edition134 

3. Modal split of passenger transport125  

Caveats  

Metric 1 of this indicator captures change in total fuel use and type of fuel use for transport, but it does not capture 

shifts in modes of transport used.  

Metric 2 captures mode share for passenger vehicle trips but does not capture active travel such as walking and 

cycling for short trips, which can yield substantial health benefits through increased physical activity.  

Further methodological information about how modal share is calculated is available here 

https://ec.europa.eu/eurostat/cache/metadata/en/tran_hv_psmod_esms.htm  

 

Future form of the indicator 

The data are updated annually by the IEA and Eurostat. There is currently no expectation that sub-national figures 

will be available, but the possibility of including regional (NUTS 2) survey data for modal-share exists. 
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Analysis 

 
Figure 3.3 (a) Per capita fossil fuel use in road transport 1960-2019 in Europe (GJ/person). Inset: Electricity use 

in road transport 2000 – 2019 (GJ/person). (b) Mode share by European country in 2019. Colours correspond to 

percentage split between car, train and bus in passenger km. The central cross provides the Europe-wide median. 

 

  

(a) 

(b) 



110 
 

3.4: Food, agriculture and health   
Indicator 3.4.1 Life cycle emissions from food demand  
Methods  

Evidence linking dietary changes to changes in environmental and health impacts is well established (e.g. Tilman 

and Clark, 2014135; Springmann et al, 2016136). Estimates from meta-analyses of life-cycle assessments for 

different food groups are typically combined with estimates of food consumption differentiated by food group 

and country. We used this approach to track the life-cycle emissions of food demand at an annual level. 

Estimates of life-cycle emissions per food group and region were be paired with estimates of food demand by 

food group and country. Life-cycle estimates were based on regionalised data from a comprehensive meta-

analyses,137 and estimates of food demand were based on the Food Balance Sheets from the Food and Agriculture 

Organization (FAO) which are updated annually. 

 

Geographic coverage of Europe 

For this indicator, we used the M49 classification of Europe of the United Nations Statistical Division.  

 

Data  

Food demand from FAO’s Food Balance Sheets, reported annually132 

Life-cycle emissions from Poore and Nemecek (2018)137 

 

Caveats  

Life-cycle estimates are highly context-dependent. The analysis was based on a meta-analysis of life-cycle 

assessments to address this. However, large uncertainties for food groups and regions remain due to the limited 

availability of individual assessments. Improvements in farm management over time are not reflected in the 

estimates of life-cycle emissions, because they are not available over time in a consistent way.  

 

Future form of the indicator 

The estimates of life-cycle footprint will be updated as new data becomes available.  
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Indicator 3.4.2 Sustainable diets    
Baseline consumption data 

We estimated baseline food consumption by adopting estimates of food availability from the FAO’s food balance 

sheets, and adjusting those for the amount of food wasted at the point of consumption.138,139 We disaggregated 

this proxy for food consumption by age and sex by adopting the same age and sex-specific trends as observed in 

dietary surveys.140  

 

An alternative would have been to rely on a set of consumption estimates that has been based on a variety of data 

sources, including dietary surveys, household budget and expenditure surveys, and food availability data.141,142 

However, neither the exact combination of these data sources, nor the estimation model used to derive the data 

have been made publicly available. For some individual countries, using dietary surveys would also have been an 

alternative. However, underreporting is a persistent problem in dietary survey,143,144 and regional differences in 

survey methods would have meant that our results would not be comparable between countries. In contrast to 

dietary surveys, waste-adjusted food-availability estimates indicate levels of energy intake per region that reflect 

differences in the prevalence of overweight and obesity across regions.145  

 

Food balance sheets report on the amount of food that is available for human consumption.138 They reflect the 

quantities reaching the consumer, but do not include waste from both edible and inedible parts of the food 

commodity occurring in the household. As such, the amount of food actually consumed may be lower than the 

quantity shown in the food balance sheet depending on the degree of losses of edible food in the household, e.g., 

during storage, in preparation and cooking, as plate-waste, or quantities fed to domestic animals and pets, or 

thrown away.  

 

We followed the waste-accounting methodology developed by the FAO to account for the amount of food wasted 

at the household level that was not accounted for in food availability estimates.139 Table 3.1 provides and overview 

of the parameters used in the calculation.  

 

For each commodity and region, we estimated food consumption by multiplying food availability data with 

conversion factors (cf) that represent the amount of edible food (e.g., after peeling) and with the percentage of 

food wasted during consumption (1-wp(cns)). For roots and tubers, fruits and vegetables, and fish and seafood, 

we also accounted for the differences in wastage between the proportion that is utilised fresh (pctfrsh) and the 

proportion that utilised in processed form (pctprcd). The equation used for each food commodity and region was: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙
𝑝𝑐𝑡:<9=
100 ∙ 𝑐𝑓:<9= 	 ∙ t1 −

𝑤𝑝S𝑐𝑛𝑠:<9=U
100 v 

+	𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙
𝑝𝑐𝑡><80
100 ∙ 𝑐𝑓><80 ∙ t1 −

𝑤𝑝S𝑐𝑛𝑠><80U
100 v		 
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Table 3.1 Percentage of food wasted during consumption (cns), and percentage of processed utilisation (pctprcd). 

The percentage of fresh utilisation is calculated as 1-pctprcd. Conversion factors to edible portions of foods are 

provided below the table.  

 
 

Comparative risk assessment 

We estimated the mortality and disease burden attributable to dietary and weight-related risk factors by calculating 

population impact fractions (PIFs) which represent the proportions of disease cases that would be avoided when 

the risk exposure was changed from a baseline situation to a counterfactual situation. For calculating PIFs, we 

used the general formula:146,147,148 

  

 
𝑃𝐼𝐹 =

∫𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥 − ∫𝑅𝑅(𝑥)𝑃?(𝑥)𝑑𝑥
∫𝑅𝑅(𝑥)𝑃(𝑥)𝑑𝑥

  

 

where 𝑅𝑅(𝑥) is the relative risk of disease for risk factor level 𝑥, 𝑃(𝑥) is the number of people in the population 

with risk factor level 𝑥 in the baseline scenario, and 𝑃?(𝑥) is the number of people in the population with risk 

factor level 𝑥 in the counterfactual scenario. We assumed that changes in relative risks follow a dose-response 

relationship,147 and that PIFs combine multiplicatively, i.e. 𝑃𝐼𝐹 = 1 − ∏ (1 − 𝑃𝐼𝐹()(  where the i’s denote 

independent risk factors.147,149  

 

The number of avoided deaths due to the change in risk exposure of risk i, Δdeathsi, was calculated by multiplying 

the associated PIF by disease-specific death rates, DR, and by the number of people alive within a population, P:   

 

 𝛥𝑑𝑒𝑎𝑡ℎ𝑠((𝑟, 𝑠, 𝑎, 𝑑) = 𝑃𝐼𝐹((𝑟, 𝑠, 𝑎, 𝑑) ∙ 𝐷𝑅(𝑟, 𝑠, 𝑎, 𝑑) ∙ 𝑃(𝑟, 𝑠, 𝑎)  

Europe
USA, 

Canada, 
Oceania

Indus-
trialized 

Asia

Sub-
Saharan 

Africa

North Africa, 
West and 

Central Asia

South and 
Southeast 

Asia

Latin 
America

cereals wp(cns) 25 27 20 1 12 3 10
pctprcd 73 73 15 50 19 10 80
wp(cns) 17 30 10 2 6 3 4
wp(cnsprcd) 12 12 12 1 3 5 2

oilseeds and pulses cns 4 4 4 1 2 1 2
pctprcd 60 60 4 1 50 5 50
wp(cns) 19 28 15 5 12 7 10
wp(cnsprcd) 15 10 8 1 1 1 1

milk and dairy wp(cns) 7 15 5 0.1 2 1 4
eggs wp(cns) 8 15 5 1 12 2 4
meat wp(cns) 11 11 8 2 8 4 6

pctprcd

wp(cns) 11 33 8 2 4 2 4
wp(cnsprcd) 10 10 7 1 2 1 2

Conversion factors : maize, millet, sorghum: 0.69; wheat, rye, other grains: 0.78; rice: 1; roots: 0.74 (0.9 for 
industrial processing); nuts and seeds: 0.79; oils: 1; vegetables: 0.8 (0.75 for industrial processing); fruits: 0.8 
(0.75 for industrial processing); beef: 0.715; lamb: 0.71; pork: 0.68; poultry: 0.71; other meat: 0.7; milk and dairy: 
1; fish and seafood: 0.5; other crops: 0.78

roots and tuber

fruits and vegetables

fish and seafood

Food group Item

Region

40% for low-income countries, and 96% for all others.
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where PIFs are differentiated by region r, sex s, age group a, and disease/cause of death d; the death rates are 

differentiated by region, sex, age group, and disease; the population groups are differentiated by region, sex, and 

age group; and the change in the number of deaths is differentiated by region, sex, age group, and disease. 

 

We used publicly available data sources to parameterize the comparative risk analysis. Mortality and population 

data were adopted from the Global Burden of Disease project.150 Baseline data on the weight distribution in each 

country were adopted from a pooled analysis of population-based measurements undertaken by the NCD Risk 

Factor Collaboration.145  

 

The relative risk estimates that relate the risk factors to the disease endpoints were adopted from meta-analyses 

of prospective cohort studies for dietary and weight-related risks.151,152,153,154,155,156,157 In line with the meta-

analyses, we included non-linear dose-response relationships for fruits, vegetables, and nuts and seeds, and 

assumed linear dose-response relationships for the remaining risk factors. As our analysis was primarily focused 

on mortality from chronic diseases, we focused on adults aged 20 year or older, and we adjusted the relative-risk 

estimates for attenuation with age based on a pooled analysis of cohort studies focussed on metabolic risk 

factors,158 in line with other assessments.148,159  

 

Table 3.2 provides an overview of the relative-risk parameters used. For the counterfactual scenario, we defined 

minimal risk exposure levels (TMRELs) as follows: 300 g/d for fruits, 500 g/d for vegetables, 100 g/d for legumes, 

20 g/d for nuts and seeds, 0 g/d for red meat, and no underweight, overweight, or obesity. The TMRELs are in 

line with those defined by the Nutrition and Chronic Diseases Expert Group (NutriCoDE),159 with the exception 

that we used a higher value for vegetables, and we used zero as minimal risk exposure for red meat, in each case 

based on a more comprehensive meta-analysis.153,154  

 

The selection of risk-disease associations used in the health analysis was supported by available criteria used to 

judge the certainty of evidence, such as the Bradford-Hill criteria used by the Nutrition and Chronic Diseases 

Expert Group (NutriCoDE),159 the World-Cancer-Research-Fund criteria used by the Global Burden of Disease 

project,160 as well as NutriGrade (table 3.3).161 The certainty of evidence supporting the associations of dietary 

risks and disease outcomes as used here were graded as moderate or high with NutriGrade,154,155,156 and/or assessed 

as probable or convincing by the Nutrition and Chronic Diseases Expert Group,159 and by the World Cancer 

Research.162 The certainty of evidence grading in each case relates to the general relationship between a risk factor 

and a health outcome, and not to a specific relative-risk value. 

 

We did not include all available risk-disease associations that were graded as having a moderate certainty of 

evidence and showed statistically significant results in the meta-analyses that included NutriGrade 

assessments.154,155,156 That was because for some associations, such as for milk and fish, more detailed meta-

analyses (with more sensitivity analyses) were available that indicated potential confounding with other major 

dietary risks or health status at baseline.163,164,165 Such sensitivity analyses were not presented in the meta-analyses 

that included NutriGrade assessments, but they are important for health assessments that evaluate changes in 

multiple risk factors.   
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Table 3.2 Relative risk parameters (mean and low and high values of 95% confidence intervals) for dietary risks 

and weight-related risks.  

 
 

 

 

  

Food group Endpoint Unit RR mean RR low RR high Reference
CHD 100 g/d 1.15 1.08 1.23 Bechthold et al (2019)
Stroke 100 g/d 1.12 1.06 1.17 Bechthold et al (2019)
Colorectal cancer 100 g/d 1.12 1.06 1.19 Schwingshackl et al (2018)
Type 2 diabetes 100 g/d 1.17 1.08 1.26 Schwingshackl et al (2017)
CHD 100 g/d 0.95 0.92 0.99 Aune et al (2017)
Stroke 100 g/d 0.77 0.70 0.84 Aune et al (2017)
Cancer 100 g/d 0.94 0.91 0.97 Aune et al (2017)
CHD 100 g/d 0.84 0.80 0.88 Aune et al (2017)
Cancer 100 g/d 0.93 0.91 0.95 Aune et al (2017)

Legumes CHD 57 g/d 0.86 0.78 0.94 Afshin et al (2014)
Nuts CHD 28 g/d 0.71 0.63 0.80 Aune et al (2016)

CHD 15<BMI<18.5 1.17 1.09 1.24 Global BMI Collab (2016)
Stroke 15<BMI<18.5 1.37 1.23 1.53 Global BMI Collab (2016)
Cancer 15<BMI<18.5 1.10 1.05 1.16 Global BMI Collab (2016)
Respiratory disease 15<BMI<18.5 2.73 2.31 3.23 Global BMI Collab (2016)
CHD 25<BMI<30 1.34 1.32 1.35 Global BMI Collab (2016)
Stroke 25<BMI<30 1.11 1.09 1.14 Global BMI Collab (2016)
Cancer 25<BMI<30 1.10 1.09 1.12 Global BMI Collab (2016)
Respiratory disease 25<BMI<30 0.90 0.87 0.94 Global BMI Collab (2016)
Type 2 diabetes 25<BMI<30 1.88 1.56 2.11 Prosp Studies Collab (2009)
CHD 30<BMI<35 2.02 1.91 2.13 Global BMI Collab (2016)
Stroke 30<BMI<35 1.46 1.39 1.54 Global BMI Collab (2016)
Cancer 30<BMI<35 1.31 1.28 1.34 Global BMI Collab (2016)
Respiratory disease 30<BMI<35 1.16 1.08 1.24 Global BMI Collab (2016)
Type 2 diabetes 30<BMI<35 3.53 2.43 4.45 Prosp Studies Collab (2009)
CHD 30<BMI<35 2.81 2.63 3.01 Global BMI Collab (2016)
Stroke 30<BMI<35 2.11 1.93 2.30 Global BMI Collab (2016)
Cancer 30<BMI<35 1.57 1.50 1.63 Global BMI Collab (2016)
Respiratory disease 30<BMI<35 1.79 1.60 1.99 Global BMI Collab (2016)
Type 2 diabetes 30<BMI<35 6.64 3.80 9.39 Prosp Studies Collab (2009)
CHD 30<BMI<35 3.81 3.47 4.17 Global BMI Collab (2016)
Stroke 30<BMI<35 2.33 2.05 2.65 Global BMI Collab (2016)
Cancer 30<BMI<35 1.96 1.83 2.09 Global BMI Collab (2016)
Respiratory disease 30<BMI<35 2.85 2.43 3.34 Global BMI Collab (2016)
Type 2 diabetes 30<BMI<35 12.49 5.92 19.82 Prosp Studies Collab (2009)

Obesity 
(grade 2)

Obesity 
(grade 3)

Red meat

Fruits

Vegetables

Underweight

Overweight

Obesity 
(grade 1)
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Table 3.3 Overview of existing ratings on the certainty of evidence for a statistically significant association 

between a risk factor and a disease endpoint. The ratings include those of the Nutrition and Chronic Diseases 

Expert Group (NutriCoDE),159 the World Cancer Research Fund,162 and NutriGrade.154,155,156 The ratings relate to 

the risk-disease associations in general, and not to the specific relative-risk factor used for those associations in 

this analysis.    

 
 

For the different diet scenarios, we calculated uncertainty intervals associated with changes in mortality based on 

standard methods of error propagation and the confidence intervals of the relative risk parameters. For the error 

propagation, we approximated the error distribution of the relative risks by a normal distribution and used that 

side of deviations from the mean which was largest. This method leads to conservative and potentially larger 

uncertainty intervals as probabilistic methods, such as Monte Carlo sampling, but it has significant computational 

advantages, and is justified for the magnitude of errors dealt with here (<50%) (see e.g. IPCC Uncertainty 

Guidelines).  

 

Geographic coverage of Europe 

For this indicator, we used the M49 classification of Europe of the United Nations Statistical Division.  

  

Food group Endpoint Association Certainty of evidence
Fruits CHD NutriCoDE: probable or convincing; 

NutriGrade: moderate quality of meta-evidence
Stroke NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence
Cancer WCRF: strong evidence (probable) for some cancers

NutriGrade: moderate quality of meta-evidence for colorectal cancer
Vegetables CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence
Cancer WCRF: strong evidence (probable) for non-starchy vegetables and some cancers

NutriGrade: moderate quality of meta-evidence for colorectal cancer
Legumes CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence
Nuts and seeds CHD NutriCoDE: probable or convincing

NutriGrade: moderate quality of meta-evidence
Red meat CHD increase NutriGrade: moderate quality of meta-evidence

Stroke increase NutriGrade: moderate quality of meta-evidence
Cancer WCRF: strong evidence (probable) for colorectal cancer

NutriGrade: moderate quality of meta-evidence for colorectal cancer
NutriCoDE: probable or convincing
NutriGrade: high quality of meta-evidence

NutriCoDE: Nutrition and Chronic Diseases Expert Group

WCRF: World Cancer Research Fund

increase

Type-2 
diabetes increase

NutriGrade: Grading of Recommendations Assessment, Dvelopment, and Evaluation (GRADE) tailored to nutrition research

reduction

reduction

reduction

reduction

reduction

reduction

reduction
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Data  

Table 3.4. Overview of data sources 

Type Coverage Source 

Exposure 

data: 
    

Food 

consumption 

data 

Country-level 

Food availability data adjusted for food waste at the household 

level and for age and sex-specific trends.138,139,140 Estimates of 

energy intake were in line with trends in body weight across 

countries.145  

Weight 

estimates 
Country-level 

Baseline data from pooled analysis of measurement studies 

differentiated by sex and age with global coverage.145  

Health analysis:   

Relative risk 

estimates 
General 

Adopted from meta-analysis of prospective cohort 

studies.151,152,153,154,155,156,157  The certainty of evidence for the 

risk-disease associations were rated as moderate to high by 

NutriGrade.154,155,156  

Mortality 

and 

population 

data 

Country-level 
Adopted from the Global Burden of Disease project by country, 

sex, and age group.150  

 

Caveats  

In the comparative risk assessment, we used relative risk factors that are subject to the caveats common in 

nutritional epidemiology, including small effect sizes and potential measurement error of dietary exposure, such 

as over and underreporting and infrequent assessment.166 For our calculations, we assumed that the risk-disease 

relationships describe causal associations, an assumption supported by the existence of statistically significant 

dose-response relationships in meta-analyses, the existence of plausible biological pathways, and supporting 

evidence from experiments, e.g. on intermediate risk factors.151,153,154,155,156,159,167,168,169,170 However, residual 

confounding with unaccounted risk factors cannot be ruled out in epidemiological studies. Additional aspects 

rarely considered in meta-analyses are the importance of substitution between food groups that are associated with 

risks, and the time lag between dietary exposure and disease.  

To address potential confounding, we omitted risk-disease associations that became non-significant in fully 

adjusted models, in particular those related to milk intake,163,164 and to fish intake.165,171,172,173,174 The quality of 

evidence in meta-analyses that covered the same risk-disease associations as used here was graded with 

NutriGrade as moderate or high for all risk-disease pairs included in the analysis (table 5.1).154,155,156  In addition, 

the Nutrition and Chronic Diseases Expert Group and the World Cancer Research Fund graded the evidence for 

a causal association of ten of the 12 risk-disease associations included in the analysis as probable or 

convincing.159,162 The relative health ranking of leading risk factors found in our analysis was similar to existing 

rankings that relied on different relative-risk parameters and exposure data.160,175  
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As exposure data, we used a proxy of food consumption that was derived from estimates of food availability that 

were adjusted for the amount of food wasted at the point of consumption.138,139 An alternative would have been to 

rely on a set of consumption estimates that has been based on a variety of data sources, including dietary surveys, 

household budget and expenditure surveys, and food availability data.141,142 However, neither the exact 

combination of these data sources, nor the estimation model used to derive the data have been made publicly 

available. For some individual countries, using dietary surveys would also have been an alternative. However, 

underreporting is a persistent problem in dietary survey,143,144 and regional differences in survey methods would 

have meant that our results would not be comparable between countries. In contrast to dietary surveys, waste-

adjusted food-availability estimates indicate levels of energy intake per region that reflect differences in the 

prevalence of overweight and obesity across regions.145  

 

Future form of the indicator 

The estimates of diet-related disease burden will be updated annually based on new data on food intake, mortality, 

and population numbers. 

 

Analysis 

 
Figure 3.4 Burden of diet-related deaths in Europe by region and risk factor for 2010 and 2019. 
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Section 4: Economics and Finance 
4.1: The health linked economic impacts of climate change and its mitigation 
Indicator 4.1.1 Economic losses to climate-related extreme events   
This indicator is based on the data and methods of indicator 4.1.1 of the global Lancet Countdown 2021 Report.  

 

Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., ... & Hamilton, I. (2021). 

The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The 

Lancet, 398(10311), 1619-1662.  

 

A full description of the methods, data, caveats and future form of the indicator can be found in the Appendix of 

the global Lancet Countdown 2021 report: https://www.theLancet.com/cms/10.1016/S0140-6736(21)01787-

6/attachment/ac088142-4570-4d4d-aeb8-d760254f9a1a/mmc5.pdf  

 

Geographic coverage of Europe 

For this indicator, European Environment Agency (EEA) member and cooperating countries plus the United 

Kingdom were included. 

 

 

Exchange rates  

As data reported by Swiss Re is provided in USD, historical average market exchange rates per year for 2010-

2021 (OECD) are used to convert USD in euros.   

 

Analysis  

 
Figure 4.1 Total and insured economic loss in euros (millions) due to climate-related extreme events in Europe 

over 2010-2021.   



119 
 

Indicator 4.1.2 Change in labour supply  
Methods  

To track the impact of climate change on labour supply in Europe, we use a panel data fixed-effects regression. 

We control for mean temperature and its second-degree polynomial and total precipitation and its second-degree 

polynomial as climatic stressors (following Dasgupta et al., 2021176). Our dependent variable is the log of the 

number of working hours at the NUTS 2 level. Our specification also controls for both NUTS 2 year fixed effects 

to account for unobserved heterogeneity such as changes in labour policies. The standard errors are clustered at 

the country-level. Our panel data specification can be written as follows: 

 

ln	(𝑦(*) = 	𝑓9(𝑇(*) + 𝑿𝛽((*) +	𝛼(() + 𝛾(*) + 𝜇((*) 

 

where 𝑦(* is the log of number of hours worked at NUTS 2 region i at year t. 𝑓9(𝑇(*) represents the non-linear 

effect of sub-national temperature on labour supply, 𝑿𝛽(* is a vector of precipitation terms and log of working 

population (between 15-64). 𝛼(() and 𝛾(*) are NUTS 2 and year fixed effects to control for unobserved 

heterogeneity, while 𝜇(* is a random error term. In the second step, we conduct a counterfactual analysis of the 

change in labour supply due to change in temperature from a long-term mean in Europe. We combine our 

econometric estimates with differences in periodic warming from a long-term mean of 1965-1994 to estimate the 

impact of temperature change on the number of hours worked in each NUTS-2 region. These data are presented 

as a percentage change in labour supply compared to 1965-1994. 

 

Geographic coverage of Europe 

For this indicator, we included all European Union member countries.  

 

Data  

1. Labour data: Eurostat Regional Database, 1995-2019. The original labour data comes from EU Labour Force 

Survey (EU-LFS). This is a quarterly household sample survey conducted in all Member States of the EU, 

the United Kingdom, EFTA, and candidate countries. 

2. Climate data: ERA5-Land 0.1°×0.1 spatial and hourly temporal resolution.13  

 

Caveats  

The main caveat in this indicator is that the labour supply data is available only at the annual level, as such within 

year heterogeneity cannot be accounted for.  

 

Future form of the indicator 

Future iterations of this indicator will use micro-survey data from the EU Labour Force Survey (EU-LFS) and 

European Union Statistics on Income and Living Conditions (EU-SILC) to account for temporal heterogeneity 

and various household and societal characteristics. Second, impacts on labour supply and labour productivity will 

be estimated separately. Third, impacts of adaptation will be explicitly accounted for. 
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Indicator 4.1.3 Impact of heat on economic activity 
Methods 

To track the impact of climate change on economic activity in Europe, we use a panel data regression with 

coefficients that vary over time. Our measure of climate change is temperature anomaly, defined as the annual 

temperature difference, in °C, from a mean temperature of a 30-year period between 1981-2010. Our dependent 

variable is the real GDP per capita growth at the NUTS-2 level. Our specification also controls for drought 

measured by twelve-month Standardized Precipitation Index (SPI), and precipitation and its second-degree 

polynomial. To account for unobserved heterogeneity, we include both NUTS 2 year fixed effects. The standard 

errors are clustered at the country-by-year level. Our panel data specification can be written as follows: 

 

𝑦(* =	𝛽-(𝜏*) + 𝑉((*) + 𝛾?(𝜏*)𝑋((*) +	𝛼(() + 𝜇((*) 

 

where 𝑦(* is the real GPD per capita growth at NUTS-2 region i at year t, 𝑽(* is the temperature anomaly, and 𝑿(* 

is a vector of relevant variables affecting economic activity (droughts), while 𝝁(* is a random error term. All 

variables are recorded for different locations with index 𝑖 = 1,… ,𝑁 and over a number of years 𝑡 = 1,… , 𝑇. Our 

specification also includes location (NUTS 2) and time (year) fixed effects to control for unobserved heterogeneity 

and factors influencing GDP growth such as technological or policy changes from year-to-year and natural 

resources endowments. The time-varying coefficients allow us to examine whether the relationship between 

temperature anomaly economic activity has evolved over time. 

 

Geographic coverage of Europe 

1. South European countries: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, 

Germany, Greece, France, Hungary, Italy, Luxembourg, Malta, Netherlands, North Macedonia, Poland, 

Romania, Slovakia, Slovenia, Spain, and Turkey.   

2. North European countries: Estonia, Latvia, Lithuania, Denmark, Finland, Iceland, Norway, and Sweden 

 

Data  

1. GDP growth data: Eurostat Regional Database, 2001-2019.  

2. Climate data: ERA5-Land 9km2 spatial and hourly temporal resolution.13 

 

Caveats  

The main caveat in this indicator is that the GDP growth data is available only at the annual level, as such temporal 

heterogeneity cannot be accounted for.  

 

Future form of the indicator 

Future iterations of this indicator will use micro-survey data from the European Union Statistics on Income and 

Living Conditions (EU-SILC) to account for temporal heterogeneity and various household and societal 

characteristics.  
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Figure 4.1 Reduction in real GDP per capita growth due to actual annual temperature anomaly from the reference 

period of 1981-2010 in Southern Europe. The yellow circles represent the change in GDP per capita for each year 

and the blue bars show the 95% confidence interval. The red line connects the regression coefficients for each 

year due to 1°C temperature anomaly. The estimates are generated from a time-varying coefficient regression 

using GDP per capita growth and ERA5-Land temperature data at the NUTS 2 level. The specification also 

includes NUTS 2 and year fixed effects. The standard errors are clustered at the country-by-year level.  

 
 

Northern Europe results 

 
Figure 4.2 Reduction in real GDP per capita growth due to annual temperature anomaly from the reference period 

of 1981-2010 in Southern Europe. The yellow circles represent the coefficients for each year and the blue spikes 

show the 95% confidence interval. The red line shows the coefficients for each year. The estimates are generated 

from a time-varying coefficient regression using GDP per capita growth and ERA5-Land temperature data at the 

NUTS-2 level. The specification also includes NUTS-2 and year fixed-effects. The standard errors are clustered 

at the country-by-year level. 
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Indicator 4.1.4 Monetised value of unhealthy diets     
Methods 

Valuing the cost of unhealthy diets is relevant for tracking the health co-benefits of dietary changes towards more 

sustainable diets. According to model-based analyses, dietary changes towards more sustainable diets are 

associated with health benefits,177 have a significant climate-change mitigation potential,137 and they are needed 

as a part of a combination of mitigation measure to stay on track to limit global warming to less than 2 degrees 

Celsius.178  

This indicator uses the estimates of health co-benefits of dietary change from the previous working group as a 

starting point, and combines those with standard methods to value the health impacts of dietary changes.136 The 

most common method for valuing health impacts in monetary terms, and the one used here, makes use of the so-

called value of statistical life, a measure based on the aggregate willingness to pay for health risk reduction.  

To estimate the value of health co-benefits, estimates of the diet-related mortality (from WP2) are combined with 

estimates of the value of statistical life. The value of statistical life (VSL) is a measure for the willingness to pay 

for a mortality risk reduction defined as the marginal rate of substitution between money and mortality risk in a 

defined time period.179 The VSL does not represent the value of life itself, but rather the value of small risks to 

life which can be estimated either from market decisions that reveal the implicit values reflected in behaviour 

(revealed preference studies), or by using surveys which elicit respondents’ willingness to pay for small reductions 

in mortality risks directly (stated preference studies). 

The VSL values are based on a comprehensive global meta-analysis of stated preference surveys of mortality risk 

valuation undertaken for the Organisation for Economic Co-operation and Development (OECD).180 Following 

OECD recommendations, we adopt a VSL base value for the EU-27 of USD 3.5 million (1.75-5.25 million) and 

use the benefit-transfer method to calculate VSLs in other regions.179 In the benefit-transfer method, the VSL base 

value is adjusted by income (Y) subject to an elasticity of substitution (β):  

𝑉𝑆𝐿< = 𝑉𝑆𝐿BC9D �
𝑌<
𝑌BC9D

�
E

 

 

Following OECD recommendations, we use GDP per capita adjusted for purchasing power parity (PPP) as a proxy 

for income, and we adopted an elasticity of 0.8 for benefit transfers to high-income countries and an elasticity of 

1.0 for benefit transfers to low and middle-income countries.179 Baseline data on GDP per capita were sourced 

from the World Bank Development Indicator database. In line with World Bank methodology, we defined the 

income classification of countries depending on their GDP per capita (adjusted for purchasing power parity).  

 

Geographic coverage of Europe 

For this indicator, we used the M49 classification of Europe of the United Nations Statistical Division.  

 

Data  

1. Values of statistical life: OECD179  

2. Diet-related health impacts: estimates based on indicator 3.4.2  
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Caveats  

There are uncertainties related to both the VSL estimates and the estimates of diet-related mortality. The former 

relates to the benefit transfer method that adjusts an aggregate value for differences in income levels, whilst the 

latter relates to epidemiological uncertainty related to the relative risk estimates. 

 

Future form of the indicator 

The estimates of the value of diet-related disease burden will be updated annually based on new data estimates 

of the burden of diet-related diseases (see indicator 3.4.2) and new economic data on national income. 

 

 
Figure 4.3 Map of the percentage (%) of imbalanced diets of the country’s GDP by country in Europe. 
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4.2: The economics of the transition to zero-carbon economies  
Indicator 4.2.1 Net value of fossil fuels subsidies and carbon prices  
This indicator is based on the data and methods of indicator 4.2.4 of the global Lancet Countdown 2021 Report.  

 

Romanello, M., McGushin, A., Di Napoli, C., Drummond, P., Hughes, N., Jamart, L., ... & Hamilton, I. (2021). 

The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. The 

Lancet, 398(10311), 1619-1662.  

 

A full description of the methods, data, caveats and future form of the indicator can be found in the Appendix of 

the global Lancet Countdown 2021 report: https://www.theLancet.com/cms/10.1016/S0140-6736(21)01787-

6/attachment/ac088142-4570-4d4d-aeb8-d760254f9a1a/mmc5.pdf  

 

Geographic coverage of Europe 

For this indicator, we included the 53 member states of the WHO European Region.  

 

Exchange rates  

The International Monetary Fund (IMF) exchange rate of 0.8455 euros to the dollar (2021) is used to covert 

dollar into euros (https://data.imf.org/?sk=4c514d48-b6ba-49ed-8ab9-52b0c1a0179b).  
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Section 5: Public and Political Engagement 
Indicator 5.1: Scientific engagement 
Code and replication materials for Scientific engagement indicator (indicator 5.1) are available here: 

https://github.com/mcallaghan/scientific-engagement-climate-health/tree/main and for the other indicators 

(indicator 5.2 to 5.4) here: https://github.com/sjankin/Lancet_Europe.  

 

Background 

Scientific engagement in health and climate change is central to the Lancet Countdown mission: this is to facilitate, 

support and track progress on health and climate change.  Scientific evidence is the major resource on which such 

progress rests; it also informs engagement in the key domains of global action, including the public, governmental 

and corporate domains. We quantify engagement in the topic of climate change and health by tracking the number 

of publications over time. Using a machine-learning assisted approach,181 we identify relevant literature and 

classify it according to its subject.  

 

Geographic coverage of Europe 

For this indicator, we include the European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom.  

 

Results 

The growth of scientific publications investigating the intersection between health and climate change in Europe 

continued. Average annual growth in publications mentioning locations in Europe between 2000 and 2021 was 

14%. In 2021, about 370 relevant articles were published, an increase of 9% compared to 2020. Authors affiliated 

with research organisations in Europe contributed to more than 800 publications on the climate and health nexus 

in 2021 - comprising 25% of all climate and health publications. The largest number of new publications studied 

locations in Italy, Spain, and Germany (66, 65 and 47 respectively, while the largest proportional increases 

compared to the average number of studies published over the preceding 5 years occurred in North Macedonia, 

Ireland and Denmark (53%, 43% and 43% increases respectively, albeit from low baselines). The majority of new 

papers concerned - in line with previous years - the health implications of climate change impacts (79%) of all 

relevant documents. Mitigation and adaptation accounted for 14% and 7% of new relevant documents 

respectively. However, over the last 10 years there is a pronounced increase in attention given to such research on 

climate solutions.  
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Figure 5.1 Trends in scientific publishing on health and climate change, and locations of the study focus in Europe 

(main text)  

 

Annex 

We replicate the analysis pipeline of a recent study of the literature on climate and health.181 First, we repeat the 

search query - reproduced below - retrieving results from Scopus, Medline, and the Web of Science Core 

Collection. The aforementioned study screened 3,730 documents by hand, labelling whether relevant documents 

were related to  

• The impacts of climate change on health; 

• The effect on health of actions to mitigate climate change; or 

• The effect on health of actions to adapt to climate change 

 

Relevant documents were those which were indexed in English; provided a clear link to actual, projected or 

perceived impacts of climate change, responses to reduce the impacts of climate change (adaptation), or the 

mitigation of greenhouse gas emissions; and included substantial focus on a perceived, experienced, or observed 

eligible health-related outcome or health system; and presented empirically driven research or a review of such 

research. 

A support vector machine (SVM) classifier182 was trained to reproduce the inclusion/exclusion decisions as well 

as the impacts/mitigation/adaptation labels. Classifier performance was evaluated using 10-fold cross-validation. 

The inclusion/exclusion classifier achieved an accuracy of 87.1% with 80% recall and 76% precision.  

Here we apply the same machine learning model to classify new studies which were not available when the 

original paper was produced. Those studies predicted to be irrelevant were discarded. Then we apply the multilabel 

impacts/mitigation/adaptation classifier to those documents which were included. 

Finally, a neural network based “geoparser”183 was applied to titles and abstracts of the texts to extract the 

geographical entities mentioned in the texts. These locations were allocated to countries, and then to continents. 

Country names were also extracted from the institutional affiliations recorded by the bibliographic databases. 
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Table 5.1 Search Query 

Theme Key concepts String (Scopus) Attributable 

Hits (scopus) 

Climate change  

(contains at least 

one of the 

following climate 

terms, from any 

category) 

General climate change terms (climat* OR "global warming" OR "greenhouse effect*")  35,052 

Greenhouse gasses, including 

short-lived greenhouse gasses, 

when linked to emission or 

mitigation. Some astronomy 

results are filtered out. 

(("carbon dioxide" OR co2 OR methane OR ch4 OR "nitrous oxide" OR n2o 

OR "nitric oxide" OR "nitrogen dioxide" OR nox OR *chlorofluorocarbon* 

OR *cfc* OR refrigerant OR hydrofluorocarbon* OR hfc* OR 

*chlorocarbon* OR "carbon tetrachloride" OR ccl4 OR halogen* OR ozone 

OR o3 OR ammonia OR nh3 OR "carbon monoxide" OR co OR "volatile 

organic compounds" OR nmvoc OR "hydroxyl radical" OR "oh" OR "pm2.5" 

OR aerosol OR "black carbon" OR "organic carbon" OR "sulphur dioxide" 

OR "oxidized sulphur" OR "so2" OR "sox" OR "sulphuric acid" OR so4* ) 

W/2 (emit* OR emission OR releas* OR mitigat*) AND NOT(star OR "solar 

system")) 

7,871 

Climate variability 

indicators/climate indices 
 

(temperature* OR precipitat* OR rainfall OR "heat ind*" OR "extreme-heat 

event*" OR "heat-wave" OR "extreme-cold*" OR "cold ind*" OR humidity 

OR drought* OR hydroclim* OR monsoon OR "el ni$o" OR enso OR 

SOI  OR "sea surface temperature*" OR sst) 

199,558  

Complex climate indices, 

including extreme weather 

events, floods, wildfire, and 

coastal changes. Some paleo-

climatic events are excluded. 

(snowmelt* OR flood* OR storm* OR cyclone* OR hurricane* OR typhoon* 

OR "sea-level" OR wildfire* OR "wild-fire*" OR "forest-fire*" OR ( ( 

extreme W/1 event* ) AND NOT paleo* ) OR "coast* erosion" OR "coastal 

change*" OR ( disaster* W/1 ( risk OR manag* OR natural))) 

22,031 

AND 

 

Health 

(contains at least 

one of the 

following health 

terms, from any 

category) 

General health terms (health* OR well?being OR ill OR illness OR disease* OR syndrome* OR 

infect* OR medical*) 

49,773 

General health outcomes  (mortality OR daly OR morbidity OR injur* OR death* OR hospital* OR 

{a&e} OR emergency OR emergencies OR doctor OR gp) 

33,571 

Nutrition, including obesity 

and undernutrition 

(obes* OR over?weight OR under?weight OR hunger OR stunting OR 

wasting OR undernourish* OR undernutrition OR anthropometr* OR 

malnutrition OR malnour* OR anemia OR anaemia OR "micronutrient*" OR 

"micro?nutrient*" OR diabet*) 

2,239 

Cardio-vascular terms. Some 

studies on Chemical Vapour 

Deposition (CVD) are 

excluded.  

(hypertension OR "blood pressure" OR stroke OR *vascular OR (cvd AND 

NOT(vapour or vapor)) OR "heart disease" OR isch?emic OR cardio?vascular 

OR "heart attack*" OR coronary OR chd) 

6,047 

Renal health terms  (ckd OR renal OR cancer OR kidney OR lithogenes*) 4,934 

Effects of temperature 

extremes 

((heat W/2  (stress OR fatigue OR burn* OR stroke OR exhaustion OR 

cramp* ) ) OR skin OR fever* OR renal* OR rash* OR eczema* OR "thermal 

stress" OR hypertherm* OR hypotherm*) 

23,846 
 

Maternal health outcomes (pre?term OR stillbirth OR birth?weight OR lbw OR maternal OR pregnan* 

OR gestation* OR *eclampsia OR sepsis OR oligohydramnios OR placenta* 

OR haemorrhage OR hemorrhage) 

2,041 
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Vector-borne diseases (malaria OR dengue* OR mosquito* OR chikungunya OR leishmaniasis OR 

encephalit* OR vector-borne OR pathogen OR zoonos* OR zika OR "west 

nile" OR onchocerciasis OR filiariasis  OR lyme OR tick?borne) 

2,257 
 

Bacterial, parasitic and viral 

infections, including 

waterborne and foodborne 

diseases  

(waterborne OR “water borne” OR diarrhoea* OR diarrhe*l OR gastro* OR 

enteric OR *bacteria* OR viral OR *virus* OR parasit* OR vibrio* OR 

cholera OR protozoa* OR salmonella OR giardia OR shigella OR 

campylobacter OR food?borne OR aflatoxin OR poison* OR ciguatera 

OR((snake* OR adder*) W/2 bite*)) 

46,064 
 

Respiratory outcomes (respiratory OR allerg* OR lung* OR asthma* OR bronchi* OR pulmonary* 

OR copd OR rhinitis OR wheez*) 

3,432 

Mental health outcomes (mental OR depress* OR *stress* OR anxi* OR ptsd OR psycho* OR 

*trauma* OR suicide* OR solastalgi*) 

12,616 

Health systems [no additional terms needed] 
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Indicator 5.2: Individual engagement on social media 
We used social media data extracted from the Twitter platform to explore the rhetoric about climate change and 

to understand the extent to which public audience in different countries across Europe mentions health and health 

issues in line with the climate change discussions.  

 

 
Figure 5.2 Percentage of tweets that mention “health” word in all the tweets that mention “climate change” in a 

given language. 

 

Fundamentally, we are interested in public opinion about health attribution to climate change at the country level. 

To construct a first iteration of such an indicator, we used countries-members of the European Environment 

Agency. Due to the complications related to precise geolocation of individual tweets and users, we proxy it with 

the language on which the tweets are written. Hence, we used official languages of countries-members of the 

European Environment Agency to extract relevant country-specific tweets. There are evident measurement errors 

related to such approach. First, we excluded those languages that are widely used outside of the European 

continent, such as English, French, Spanish, and Portuguese. Second, some languages are spoken by several 

European countries (e.g., German language in Germany, Austria, and Switzerland, or Dutch language in 

Netherlands and Belgium), and here we guessed the country based on the population size speaking this language. 

Finally, users can migrate around the world and still use their native languages to tweet; or some portion of users 

in the analyzed countries can tweet in English to reach a wider audience. We aim to address and improve these 

measurement errors in the next iteration of the indicator.  
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For querying climate change related tweets, we used the direct translations of ‘climate change’ connotation to 

working languages. We queried all original tweets (including quotes) for the period from January 1, 2021 to 

December 31, 2021. Using raw string search, we selected the tweets that mention ‘health’ in the climate change 

tweets corpora for all the languages (figure 5.3-5.4 show the counts for all analyzed tweets split by months). 

Figure 5.2 indicates the percentage of tweets mentioning ‘health’. The results vary for different countries and in 

absolute numbers often do not exceed even 5 tweets, however the percentage overall varies from under 1% to 

about 3% (Table 5.3 in the appendix shows the exact percentages for each country). The supplementary materials 

provide the results for another health-related key word search - ‘disease’. For countries that returned a large 

amount of climate change and health associated tweets (Netherlands, Finland, Germany, Italy, and Turkey), we 

deployed a Twitter-Demographer model,i that allows to predict demographics of the twitter users who wrote the 

corresponding tweets. In the Twitter Demographer results, we observe that the majority of health-related tweets 

were written by males and by users older then 40 years old (see figure 5.6-5.10).  

 
Figure 5.3 Total number of tweets that mention “climate change” across all the analyzed languages. 

 
i We adapted the following code for Twitter-Demographer framework to our data: 
https://github.com/MilaNLProc/twitter-demographer  (Last access on February 27, 2022). 
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Figure 5.4 Total number of tweets that mention “health” in “climate change” across 22 analyzed languages. 

 

Background 

This indicator tracks the audience perception of the climate change impact on health by analyzing the discussion 

and rhetoric about it in the social media. The public has been recognizing the effects from climate change on 

health for already quite some time. The survey studies conducted in 2008-2010 in multiple countries indicated 

that a large proportion of respondents have seen themselves, their families, and their communities vulnerable to 

the harm from climate change.184 Surveys can be helpful to understand the attitudes of the pubic, however they 

do not reveal the full discussion around climate change, mainly because a lot of respondents do not express their 

opinion in the open-ended questions or cannot connect climate change to any specific type of harm.185 Hence, 

working with the social media data can bring more information. Additionally, social media data captures a larger 

cross-sectional time-series scope that allows us to track the public perception of climate change impact on health 

in dynamic and across different geographic territories.  

Social media has become a wide-spread new source of information that allows the scientists and experts to reach 

a broader audience and allows the audience to be more engaged in the discussions about climate change, express 

their opinions about climate change and its impact on individual health. The existing studies show that only based 

on the Twitter data there can be tracked certain correlations between information about climate change and the 

audience sentiment,186 also some recent analysis of the Twitter data shows that there exists an immediate response 

on the climate change regulations and discussions in public tweets.187 That is another example of social media 

data relevance in understanding the audience perception of climate change consequences. 

However, most of the existing studies that utilize Twitter data are concentrated on analyzing the sentiment around 

the climate change discussion. We contribute to this plethora of growing research by not just concentrating on the 

sentiment per se, but rather developing an indicator that measures to what extent the audience relates climate 

change to the existing or potential health problems. We utilize the Twitter data that discusses climate change in 
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the official languages of the countries-members of the European Environment Agency and analyze the extent to 

which these discussions mention health and health issues along the climate change mentions. 

 

Geographic coverage of Europe 

For this indicator, we include the core member countries of the European Environment Agency.  

 

Methods and Data  

We use the social media data extracted from the Twitter social media platform. To pull Twitter data, we use 

Twitter Developer API available for the Academic purposes.ii We query the exact translations of the ‘climate 

change’ connotation for 22 European languages, excluding languages that are wid ly-used beyond the European 

continent, such as English, French, Portuguese, and Spanish. We proxy the country-specific geolocation of tweets 

singularly based on the language, that is why it is quite hard to identify the location for world spread languages. 

There exist various models that adapt linguistic specifics, tweets meta-data and users’ network to identify a more 

precise location of users and their tweets.188,189,190 However, geolocation identification is a peculiar and 

computationally intensive process on its own. Hence, for this iteration of the indicator we decided to proxy the 

countries’ location on the language itself and excluded languages that are commonly used in various territories 

outside of Europe. We will address and improve this measurement error in the further iterations of an indicator. 

We pulled the tweets according to the direct translation of the connotation ``climate change’’ from English 

language to each of the corresponding languages. Table 5.2 shows the exact connotations that have been used to 

query tweets for each language. The timeframe of the pulled tweets is from January 1, 2021 to December 31, 

2021. Querying included original tweets and quotes but excluded retweets. Retweets bring a lot of repetitions of 

the text corpora in the data. They also do not show the intentions to originally express opinions about climate 

change, but rather reflect the component of agreement. That is why we narrowed down the search only to original 

tweets and the quotes which add originality on the top of a retweet. All the promotional tweets written as part of 

Twitter advertisements were also excluded from querying.  

 

The number of tweets varies severely depending on the proxied country (see table 5.2 for exact numbers of pulled 

tweets). There can be several possible explanations for that. First is related to the salience of climate change issues 

in different states. In the next iterations of this study, we aim to explore these predictions and try to identify what 

country-specific features can explain the salience of climate change topics in the public discussions. Secondly, it 

can be related to the fact that often when expressing opinions on Twitter platform, users prefer writing in English 

language, even when they are located outside of the English-speaking country, just to reach a wider audience. 

Hence, it is possible that a lot of tweets about climate change specifically ended up being in the pool of English-

language tweets. Finally, Twitter querying does not allow to query wild cards (various forms of endings for words 

with the same root). At the same time a lot of languages have various grammatic forms for nouns and adjectives 

and verb conjugations, which might decrease the number of tweets pulled on the exact wordings. We plan to adjust 

and improve the querying procedure considering the aforementioned linguistical aspects for the next iterations of 

the current indicator.  

 
ii Twitter Developer Portal: https://developer.twitter.com (Last access on February 27, 2022) 
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Table 5.2 Information on the pulled tweets for all the working languages. 

Country ``climate change'' connotation translation Number of tweets pulled 

Bulgaria изменението на климата 94 

Croatia klimatske promjene 1643 

Czech Republic klimatická změna 1446 

Denmark klima forandring 89 

Estonia kliimamuutus 68 

Finland ilmastonmuutos 38991 

Germany  klimawandel 331603 

Greece την αλλαγή του κλίματος 134 

Hungary klímaváltozás 903 

Iceland loftslagsbreytingar 223 

Ireland athrú aeráide 279 

Italy cambiamento climatico 28977 

Latvia klimata izmaiņas 229 

Lithuania klimato kaita 57 

Netherlands Klimaatverandering 82291 

Norway klima forandringer 146 

Poland zmiana klimatu 2197 

Romania  schimbarea climei 32 

Slovakia zmena podnebia 1 

Slovenia sprememba podnebja 1 

Sweden klimatförändring 899 

Turkey iklim değişikliği 36670 

 

 

Table 5.3 Percentage of ‘climate change’ tweets that mention corresponding key words 

Country  health disease illness 

Bulgaria NA 1.06 NA 

Croatia  1.08 0.05 NA 

Czech Republic 1.29 0.09 0.46 

Denmark 2.94 NA NA 

Estonia NA NA NA 

Finland 1.2 0.03 NA 

Germany 0.86 0.01 0.04 

Greece 3.23 NA NA 

Hungary 1.76 0.59 NA 

Iceland 0.96 NA NA 

Ireland 1.53 NA NA 

Italy  0.9 0.01 0.06 
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Latvia 0.44 NA NA 

Lithuania NA NA NA 

Netherlands 0.91 0.08 NA 

Norway 1.47 NA NA 

Poland 1.77 0.44 NA 

Romania NA 3.85 NA 

Slovakia NA NA NA 

Slovenia NA NA NA 

Sweden 0.22 0.22 NA 

Turkey 1.65 0.92 NA 

 

Empirical Analysis and Results 

Key Words Search  

The first part of the analysis includes key words search in each tweet and return of percentages of tweets that 

mention such key words. The search was based on the exact string search for every working language. The key 

words included five key words related to health issues: health, disease, illness. All words were searched in a 

singular infinitive form. Table 5.4 indicates the translations for each of the words for corresponding languages:  

 

Table 5.4 Key Search Terms Translation. 

Country Language health disease illness 

Bulgaria  Bulgarian  здраве заболяване заболяване 

Croatia Croatian zdravlje bolest bolest 

Czech Republic Czech zdraví chorob(a) nemoc 

Denmark Danish sundhed sygdom ildebefindende 

Estonia Estonian tervist haigus haigus 

Finland Finnish terveys sairaus ildebefindende 

Germany  German  gesundheit erkrankung krankheit 

Greece Greek υγεία νόσος ασθένεια 

Hungary Hungarian egészség betegség betegség 

Iceland Icelandic heilsu sjúkdómur veikindi 

Ireland Irish sláinte galar tinneas 

Italy Italian salute patologia malattia 

Latvia Latvian veselība slimība slimība 

Lithuania Lithuanian sveikata liga liga 

Netherlands Dutch gezondheid ziekte ziekte 

Norway Norwegian helse sykdom sykdom 

Poland Polish zdrowi(e) chorob(a) chorob(a) 

Romania Romanian sănătate boala maladie 

Slovakia Slovak zdravie choroba choroba 

Slovenia Slovenian zdravje bolezen bolezen 
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Sweden Swedish hälsa sjukdom sjukdom 

Turkey Turkish sağlık hastalık hastalık 

 

We estimated the percentages of tweets that mentions each of these words in the climate change tweets corpora. 

Mentions of the word ‘health’ in corresponding translations shape the core of an indicator. However, we also 

provide summary statistics for other health-related key words.   

Figure 5.5 shows the percentages of mentions for word ‘disease’. The word ‘illness’ was often translated in a 

similar way as ‘disease’ and did not return many results, hence we omitted a diagram for that term. Searching 

through these words can allow us to later estimate the extent to which an audience attributes various diseases to 

effects of climate change. Mentions of the word ‘disease’ (or often its synonym ‘illness’) occur not as consistently 

often across all the analyzed languages as mentions of the word ‘health’.  

 

 
Figure 5.5 Percentage of tweets that mention “disease” word in all the tweets that mention “climate change” in a 

given language. 

 

Twitter Demographer  

We deploy a twitter-demographer model to the climate change tweets that mention ‘health’. Twitter-Demographer 

model is a new framework introduced by Bianchi et al, 2022.iii We use their source code to adapt it to our Twitter 

 
iii Twitter Demographer Library Description: https://twitter-demographer.readthedocs.io/en/latest/ (Last access 
February 27, 2022).  
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data. The model uses tweet IDs, reconstructs the tweet texts and predicts the demographics of users that published 

such tweets. Twitter Demographer uses the embedded in it M3 Inference system for predicting demographics.  

To deploy Twitter Demographer, we only used those countries that returned a large number of tweets with ‘health’ 

mentions – Finland (460 tweets), Germany (2621 tweets), Italy (241 tweets), Netherlands (709 tweets), and 

Turkey (586 tweets). The overall results show that the majority of health-associated tweets come from males, and 

from the users in the age category of 40 years and older. More detailed results for each of the selected languages 

are shown in figure 5.6-5.10. 

 

 

Figure 5.6 Demographic Distribution for tweets that mention ‘health’ in ‘climate change’ tweets in Finland.  

 

 

Figure 5.7 Demographic Distribution for tweets that mention ‘health’ in ‘climate change’ tweets in Germany.  
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Figure 5.8 Demographic Distribution for tweets that mention ‘health’ in ‘climate change’ tweets in Italy.  

 

Figure 5.9 Demographic Distribution for tweets that mention ‘health’ in ‘climate change’ tweets in Netherlands.  

 

Figure 5.10 Demographic Distribution for tweets that mention ‘health’ in ‘climate change’ tweets in Turkey.  

 

Predicted demographics shows that there is a smaller share of younger people or young adult writing about health 

when speaking about climate change; and that is consistent across several countries. However, these results only 
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indicate basic descriptive, and contain certain amount of selection bias. For instance, young adults might more 

likely to choose writing about climate change in English to be able to appeal to a broader Twitter audience.  

Additionally, Twitter API only allows us to pull tweets from currently existing and publicly open twitter accounts. 

It is reasonable to imagine that younger Twitter audience is more aware and more skilled in privacy issues, and 

prefers to express their opinions in the private social media accounts.  

 

Further Work  

The constructed indicator shows that public does actively talk about climate change and sometimes mentions 

health issues and health concerns in such conversations. To improve this indicator and to further explore the 

relations between climate change and health problems in the public rhetoric across various countries, we aim to 

develop several steps.  

1. We plan to deploy a twitter geolocation model that will help us to more precisely identify the location of 

tweets. That way we would also be able to include tweets written in worldwide languages (English, 

French, Spanish, and Portuguese) but are written by users in European countries.  

2. We plan to work more closely with the linguistics specifics of the analyzed languages (adjusting for 

various forms of nouns and adjectives, grammatical cases, and verb conjugations). That will allow us to 

improve querying of tweets and string search across the queried tweets corpora.  

3. One of potential downsides of social media data is noise information produced by users-bots, promoted 

tweets, and duplicated tweets. One of the ways to address this issue is to additionally work with the 

queried tweets corpora. We will aim to exclude user-bots (for instance, using the Botometer projectiv) 

and decrease meaningless tweet repetitions. 

4. We plan to expand the set of health-related key words that we search for in the climate change tweets. 

That will help us to cover a wider dictionary of health terms that can be related to co-benefits angle.  

5. Searching through key words potentially can underestimate the size of the health-related conversations, 

mainly because users can tweet about health issues without directly mentioning certain key words. 

Hence, to better estimate and understand the size of public rhetoric about health-related topics, we will 

deploy topic models. The novel set of topic models – contextualized topic modelsv use a pre-trained 

representations of language to support topic modeling.191,192 We plan to adapt Zero-Shot Cross-Lingual 

Topic Model that helps to work with the multi-lingual component. The model uses one language tweets 

to identify topics and then with transfer learning predicts topics for each tweet in another language. That 

will allow us to predict topic prevalence in multiple languages without the direct translation of the text 

corpora.  

Finally, to understand the sentiment behind health-related tweets and to explore to what extend public attributes 

health issues to the climate change or just simply speaks about climate change and health issues unrelated to each 

other, we will analyze the sentiment and causal meaning of the tweets. More specifically, we will use the 

constructed indicator to explore the sentiment of climate change social media discussions and will apply models 

of causality, examining causal attribution/causal reasoning in the analyzed text. 

 
iv Official Webpage of the Botometer Project: https://botometer.osome.iu.edu (Last access on February 28, 2022). 
v Source code is available here: https://github.com/MilaNLProc/contextualized-topic-models (Last access on 
February 28, 2022) 
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Indicator 5.3: Political engagement (European Parliament) 
Methods 

In order to produce the measure of engagement regarding climate change and health in debates of the European 

Union parliament, we used the publicly available transcripts of the debates. Our approach to produce the indicators 

is based on identifying the presence of key search terms related to health and climate change within each speech 

and identifying instances of intersection where terms relating to each field appeared close together, within a 

window of 25 words. We provide a full list of terms in table 5.5. 

 

Table 5.5 A comprehensive list of terms on health and climate change 

Health terms Climate change terms 

malaria 

diarrhoea 

infection 

disease 

diseases 

sars 

measles 

pneumonia 

epidemic 

epidemics 

pandemic 

pandemics 

epidemiology 

healthcare 

health 

mortality 

morbidity 

nutrition  

illness 

illnesses 

ncd 

ncds 

air pollution 

nutrition 

malnutrition 

malnourishment 

mental disorder 

mental disorders 

stunting 

climate change 

changing climate 

climate emergency 

climate action 

climate crisis 

climate decay 

global warming  

green house 

temperature 

extreme weather 

global environmental 

change 

climate variability 

greenhouse 

greenhouse-gas 

low carbon 

ghge 

ghges 

renewable energy 

carbon emission 

carbon emissions 

carbon dioxide 

carbon-dioxide  

co2 emission 

co2 emissions 

climate pollutant 

climate pollutants 

decarbonization 

decarbonisation 
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carbon neutral 

carbon-neutral 

carbon neutrality 

climate neutrality 

net-zero 

net zero 

 

Geographic coverage of Europe 

For this indicator, we include the EU member states plus the United Kingdom.  

 

Data 

We downloaded the transcripts of the EU parliament debates for 2014-2022.193 The data for 2019-22 was 

downloaded in XML format and data for 2014-19 was downloaded in JSON format, and then converted to CSV. 

There were a total of 413 debates containing 253,839 speeches in this dataset. Additionally, they were enhanced 

with metadata of the various speakers, taken from the database of MEPs available on the same website. Since a 

lot of the speakers for 2014-18 do not have data in the MEP database, however, much of the speeches do not have 

this meta-data. We pre-processed and prepared these documents for the application of natural language processing 

by converting the reports to plain text format as well as translating non-English documents to English texts. We 

used google_trans_new package,194 a python API for automatic translation. The package is free to use for 

academic purposes and uses state-of-the-art neural machine translation developed at google. Further preprocessing 

involved the removal of stopwords and regularising (lowercasing) and was performed in Python with the NLTK 

package. 
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Engagement with Health, Climate Change, and the Intersection of Health and Climate Change in 2021 

 
Figure 5.11 Total number of references to climate change in the European Parliament debates by country. 

 

 
Figure 5.12 Total number of references to health in the European Parliament debates by country. 
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Figure 5.13 Total number of references to the intersection of health and climate change in the European 

Parliament debates by country. 

 

Additional Analysis on Health and Climate Change 

We present some additional findings and figures in this section. 

Figure 5.14 shows the number of references to health, climate change, and the intersection of health and climate 

change for the EU parliamentary debates over time. This data is not normalised by number of sessions for each 

year, and instead provides a general overview of the years. The figure shows that despite the variability in 

discussing health and climate change individually, there is still a very low engagement with the impact of climate 

change on health, and its implications.  
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Figure 5.14 Total number of references to health, climate change, and the intersection of health and climate 

change over time, 2014-2021 

 

Figure 5.15 presents the frequency of terms related to health, climate change, and the intersection of health and 

climate change for each political group within the European Parliament. The figure shows relatively low 

engagement with the impacts of climate change on health, despite a high investment in health from at least two of 

the participating political groups (EPP and S&D). The health implications of climate change remain largely 

untouched. 
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Figure 5.15 Total number of references to health, climate change, and the intersection of health and climate 

change by political group, 2014-2021. 

 

Figure 5.16 shows the total number of references to health, climate change and the intersection of health and 

climate change broken down by each participating country. The bar chart shows that despite the high engagement 

in health terms at the debates, the connection to climate change remains unexplored for most countries, with only 

Germany, France and Sweden making a small connection. 

 
Figure 5.16 Total number of references to health, climate change, and the intersection of health and climate 

change by country, 2014-2021. 
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Further Analysis on Health and Climate Change by Country and Political Party 

The figures in this section provide a comprehensive overview of each of the 28 participating EEA countries and 

the level of engagement of their political parties, showing the total number of references to health and climate 

change (and their intersection).  
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Additional Figures 

The figures in this section break down references to health, climate change, and the intersection of health and 

climate change between 2014 and 2021, by EEA country. 

 
Figure 5.17 Total number of references to the intersection of health and climate change. 
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Figure 5.18 Total number of references to the intersection of health and climate change. 
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Figure 5.19 Total number of references to the intersection of health and climate change. 
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Figure 5.20 Total number of references to the intersection of health and climate change. 
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Figure 5.21 Total number of references to the intersection of health and climate change. 
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Figure 5.22 Total number of references to the intersection of health and climate change. 



165 
 

 
Figure 5.23 Total number of references to the intersection of health and climate change. 
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Figure 5.24 Total number of references to the intersection of health and climate change. 
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Figure 5.26 Total number of references to the intersection of health and climate change. 
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Figure 5.27 Total number of references to the intersection of health and climate change. 



169 
 

 
Figure 5.28 Total number of references to the intersection of health and climate change. 
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Figure 5.29 Total number of references to the intersection of health and climate change. 
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Figure 5.30 Total number of references to the intersection of health and climate change. 
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Figure 5.31 Total number of references to the intersection of health and climate change. 
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Figure 5.32 Total number of references to the intersection of health and climate change. 



174 
 

 
Figure 5.33 Total number of references to the intersection of health and climate change. 
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Figure 5.34 Total number of references to the intersection of health and climate change. 
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Figure 5.35 Total number of references to the intersection of health and climate change. 
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Figure 5.36 Total number of references to the intersection of health and climate change. 
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Figure 5.37 Total number of references to the intersection of health and climate change. 
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Figure 5.38 Total number of references to the intersection of health and climate change. 



180 
 

 
Figure 5.39 Total number of references to the intersection of health and climate change. 
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Figure 5.40 Total number of references to the intersection of health and climate change. 



182 
 

 
Figure 5.41 Total number of references to the intersection of health and climate change. 
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Figure 5.42 Total number of references to the intersection of health and climate change. 
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Figure 5.43 Total number of references to the intersection of health and climate change. 
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Figure 5.44 Total number of references to the intersection of health and climate change. 
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Indicator 5.4: Corporate engagement 
Method 

In this report, we measure the engagement with climate change and health in companies’ UN Global Compact 

Communication on Progress (GCCOP) reports. We use the publicly available COP reports to produce indicators 

based on identifying references to key search terms on health and climate change. We furthermore examine the 

awareness of gendered impacts of climate change and health, and that of covid.  

In order to produce these indicators, we focus on whether any of the climate change related terms appeared 

immediately before or after any public health terms in the COP reports. This was based on a search of the 25 

words before and after a reference to a public health related term. To further produce indicators involving COVID-

19 and gender, we used additional search terms related to gender and COVID-19 to identify which of the 

intersection references also engaged with these issues. 

We provide a full list of terms in table 5.6. 

Table 5.6 A comprehensive list of terms. 

Health terms Climate change terms Covid terms  Gender terms 

malaria 

diarrhoea 

infection 

disease 

diseases 

sars 

measles 

pneumonia 

epidemic 

epidemics 

pandemic 

pandemics 

epidemiology 

healthcare 

health 

mortality 

morbidity 

nutrition  

illness 

illnesses 

ncd 

ncds 

air pollution 

nutrition 

malnutrition 

malnourishment 

climate change 

changing climate 

climate emergency 

climate action 

climate crisis 

climate decay 

global warming  

green house 

temperature 

extreme weather 

global environmental 

change 

climate variability 

greenhouse 

greenhouse-gas 

low carbon 

ghge 

ghges 

renewable energy 

carbon emission 

carbon emissions 

carbon dioxide 

carbon-dioxide  

co2 emission 

co2 emissions 

climate pollutant 

covid 

covid-19 

covid19  

covid 19  

corona  

coronavirus  

sars-cov-2 

gender   

male   

female   

man  

 men   

woman   

women   

sex 
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mental disorder 

mental disorders 

stunting 

climate pollutants 

decarbonization 

decarbonisation 

carbon neutral 

carbon-neutral 

carbon neutrality 

climate neutrality 

net-zero 

net zero 

 

Geographic coverage of Europe 

For this indicator we included European Environment Agency (EEA) member and cooperating countries plus 

the United Kingdom. 

 

Data 

To produce this indicator, we draw on the publicly available UN GCCOP reports. A total of 57,915 reports were 

downloaded from GCCOP. The reports are available for companies based in 129 countries.  

GCCOP reports are submitted in different languages. For the development of our indicator, we focused on three 

different groups of reports: the convertible reports available in English, the available reports from the European 

Environment Agency (EEA) region, and the available reports from the globe. A number of files were corrupt or 

could not be converted into plain text format for analysis. The distribution of available English-language reports 

over time is presented in table 5.7. 

 

Table 5.7 Distribution of Available English-language reports over time. 

Year Number of reports English Number of reports EEA Number of reports Global 

2011 1052 1059 2036 

2012 1422 1658 2991 

2013 1597 1688 3207 

2014 1721 1738 3162 

2015 1812 1921 3454 

2016 1974 1926 3554 

2017 2006 2003 3711 

2018 2035 2075 3741 

2019 2240 2298 4041 

2020 2062 2062 3542 

2021 3104 3206 5720 

Total 21025 21634 39159 



188 
 

 

There are only single GCCOP report submissions before 2011, thus we limit the sample of COP reports to the 

period 2011-2021. We pre-processed and prepared these documents for the application of natural language 

processing by converting the reports to plain text format as well as translating non-English documents to English 

texts. We used the open-source pretrained neural machine translation model Opus-MT195 under the Huggingface196 

pipeline to implement the translation task. This step is very time-consuming and may need days to complete. We 

conducted all analysis in English. Further text processing involves removing punctuation and numbers (except 1 

and 9 which are included in COVID terms); removing stopwords; regularising (lowercasing). All pre-processing 

and analysis was carried out in Python using the NLTK package. 

 

Additional Analysis on Health and Climate Change 

We present some additional findings and figures in this section.  

Figure 5.45 represents the proportion of companies that reference climate change, health and the intersection of 

climate change and health in the GCCOP reports. It shows the proportion of companies that mention terms 

associated with health and climate change, regardless of how many times they are mentioned. Since 2019, we 

observe an overall increase in the mention of health and climate change, though the intersection of health and 

climate change remains low relative to both. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.46 presents the total number of references to climate change, health, and the intersection of climate 

change and health across for the GCCOP reports. Despite the increase in the proportion of companies engaging 

with the climate change-health linkages, the overall number of references remains fairly low and consistent, 

relative to the individual references to health and climate change. The results show a sharp increase starting in 

2020, especially in health, though the intersection remains relatively low. 

 
Figure 5.45 Proportion of companies that reference climate change, health and the intersection of 
climate change and health, 2011-2021  
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Figure 5.47 shows the total references with the intersection of climate change and health to better show any 

trends occurring in engagement. The figure shows that since 2018, and continuing into 2021, there has been a 

sharp rise in the number of references.  
 

 
  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.48 shows the average number of references to climate change, health, and the intersection in GCCOP 

reports. This represents the total number of references normalised by the number of companies. The figure again 

demonstrates the relatively low level of engagement with the health impacts of climate change in GCCOP reports, 

compared to the separate references to health and climate change.  

 

 

 

 

 

Figure 5.46 Total references to climate change, health and the intersection of climate change and 
health, 2011-2021 

 
Figure 5.47 Total references to the intersection of climate change and health, 2011-2021. 
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Additional Analysis on the Gendered Impacts of Health and Climate Change 

Figure 5.49 presents annual references to the gender dimensions of climate change and health in UN Global 

Compact COP reports between 2011 and 2020. The figure shows a steady increase in engagement between 2014 

and 2018, with another sharp rise in 2018, continuing in 2021. 

 

Health and Climate Change by Sector 

Figure 5.50 breaks down engagement by sector, showing references to health, climate change, and the intersection 

of health and climate change for companies grouped into sectors. This figure shows the proportion of companies 

for each sector that reference these terms, regardless of the number of times they are referenced. The highest level 

 
Figure 5.48 Average references to climate change, health and the intersection of climate change and 
health in GCCOP reports, 2011-2021. 

 
Figure 5.49 Proportion of references to the intersection of health and gender that include a reference to 
gender, 2011-2021 
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of engagement with the impact of climate change on health comes from the Pharmaceuticals and Biotechnology 

sector. Despite a high engagement with both health and climate change from the Food & Beverage sector, there 

seems to be little focus on the intersection thereof. 

 

 

In order to provide a stronger focus on companies directly related to the health sector, we filter the reports by 

“Health Care Equipment and Services”. Figure 5.51 takes a look at companies that belong to this sector only, and 

shows the proportion of companies in that sector that mention health, climate change, and the intersection of 

health and climate change.  

 

 

 

Figure 5.50 Proportion of companies by sector that mention health, climate change, and the intersection of 
health and climate change since 2011. 
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Figure 5.52 shows the total references to health, climate change, and the intersection of health and climate change 

for the health sector. The overall number of references remains fairly low, and the intersection negligible, although 

there is a small but consistent rise in the last year.  

 
Figure 5.52 Total references to climate change, health and the intersection of climate change and health, for the 

health sector 2011-2021 

 

Figure 5.53 shows the average number of references to climate change, health, and the intersection in GCCOP. 

reports, again filtered for the health sector. The figure again demonstrates the relatively low level of engagement 

with the health impacts of climate change in GCCOP reports, with only a slight increase in 2020. 

 
Figure 5.51 Proportion of companies within the health sector that mention health, climate change, and the 
intersection of health and climate change, 2011-2021 
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Figure 5.53 Average references to climate change, health and the intersection of climate change and 
health in GCCOP reports for the health sector, 2011-2021. 
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Additional information to Figure 10 in the main text  
In Figure 10 of the main manuscript, an overview figure of a selected set of standardised climate-related health 
impact indicators and climate change response indicators of the 2022 European Lancet Countdown report is 
provided. Table 6 and Table 7 provide details on the standardisation process for the generation of a heatmap. In 
table 6, unit refers to the unit utilised in the original indicator (as reported within this report), and baseline value 
refers to the mean value of the original indicator over the baseline period. In table 7, worst case value refers to the 
worst value reported over the time-period measured of the original indicator, and target value refers to the desired 
value for each indicator. In both tables, yearly score refers to the annual original value (in the original unit) reported 
for each indicator. These methods are based on the methods of the China Lancet Countdown (Cai et al. 2021).197  

Table 6 Description of the standardisation of impact indicators used in figure 10  

 
Table 7 Description of the standardisation of impact indicators used in figure 10 

 

Indicator Unit  Baseline 
period 

Baseline 
value 

Time 
coverage 

Standardization 

Vulnerability to heat exposure Annual heat vulnerability index (1-100)  1990-1994 38.29 1990-2019  𝑦𝑒𝑎𝑟𝑙𝑦	𝑠𝑐𝑜𝑟𝑒 =
𝑦𝑒𝑎𝑟	𝑣𝑎𝑙𝑢𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝑣𝑎𝑙𝑢𝑒 
Exposure of vulnerable 
populations to change in 
heatwaves   

Annual person-days of heatwave 
exposure of people >65 years  

2000-2004 653393801 2000-2020 

Physical activity and heat stress   Annual number of hours in which heat 
exposure poses a risk of heat stress 
during physical exercise (high intensity) 

1990-1994 163.56 1990-2020 

Heat-attributable mortality Annual death per million per decade 2000-2004 44.86 2000-2020 

Wildfire smoke  Annual average population-weighted 
wildfire-PM2.5 exposure 

2003-2007 409.27 2003-2020 

Drought Annual % land area under extreme 
drought   

1951-1960 9.53 1951-2020 

Climate suitability for West Nile 
virus 

Annual WNV outbreak risk probability  1951-1960 0.0116 1951-2020 

Climate suitability for dengue Annual R0 1951-1960 0.0931 1951-2020 

Climate suitability for 
chikungunya 

Annual R0 1951-1960 0.0838 1951-2020 

Climate suitability for Zika Annual R0 1951-1960 0.1460 1951-2020 

Climate suitability for malaria Annual mean number of months suitable 
for malaria transmission  

1951-1960 0.39 1951-2020 

Economic losses due to climate-
related extreme events 

Annual economic losses due to climate-
related extreme event in euros (billions)  

2010 35.6 2010-2021 

Indicator Original data Time 
coverage 

Worst 
case year 

Worst case 
value 

Target 
value 

Target meaning Standardisation 

Reduction in 
premature mortality 
attributable to 
ambient fine 
particles  

Annual total deaths 
attributable to 
ambient fine 
particles (PM2.5) 

2005-
2020 

2005 293452 0 No deaths from 
premature mortality 
attributable to air 
pollution  

yearly	score

=
𝑦𝑒𝑎𝑟𝑙𝑦	𝑣𝑎𝑙𝑢𝑒 − 𝑤𝑜𝑟𝑠𝑡	𝑐𝑎𝑠𝑒	𝑣𝑎𝑙𝑢𝑒
𝑡𝑎𝑟𝑔𝑒𝑡	𝑣𝑎𝑙𝑢𝑒 − 𝑤𝑜𝑟𝑠𝑡	𝑐𝑎𝑠𝑒	𝑣𝑎𝑙𝑢𝑒 

Reduction of carbon 
intensity 

Annual CO2 / total 
energy supply  
(tCO2 per TJ) 

1990-
2020 

1990 58.14 0 Carbon neutrality 

Coal phase-out Annual share (%) of 
coal in total energy 
supply  

1991-
2020 

1991 25.68% 0 Total coal phase-out 

Zero-carbon 
emission energy  

Annual share (%) of 
zero-carbon 
electricity in total 
electricity 
generation 

1991-
2020 

2007 42.68% 100 100% zero-carbon 
electricity 

Reduction in carbon 
emission food 
consumption  

Annual GtCO2-
equivalent of life-
cycle emissions food 
consumption 

2010-
2019 

2010 1.87 0 100% zero-carbon 
food consumption  

Net carbon price Annual average 
carbon price (euros / 
tonne) 

2010-
2019 

2014 -17.76 0 Zero fossil fuel 
subsidies 
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