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Appendix Text 1: Detailed description of independent variables 26 

Proportion of population living in poverty; median household Income 27 

US Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program(1) provides annual 28 

estimates of measures of income and poverty at small geographical resolutions (county and school 29 

district), which are either unavailable or only available infrequently. For example, the 1-year 30 

American Community Survey (ACS) provides data on persons living in poverty only for counties with 31 

a population greater than 65000. SAIPE uses a regression model to estimate poverty rates in all 32 

counties with the number of persons in poverty as the dependent variable (in counties where ACS 33 

survey estimates are available) and multiple predictor variables from the Supplemental Nutrition 34 

Assistance Program (SNAP), federal income tax returns and US Decennial census. Estimates of 35 

median household income are similarly obtained from a separate regression model with additional 36 

predictor variables provided by the Bureau of Economic Analysis.  37 

Prevalence of major depressive episodes 38 

The National Surveys on Drug Use and Health (NSDUH) dataset contains state-level small area 39 

estimates on key substance use and mental health outcomes(2). The depression prevalence indicator 40 

is the estimated proportion of population with at least one major depressive episode during the 41 

previous year. As county-level estimates of prevalence are not available from this data source and we 42 

are unaware of other reliable sources, the annual prevalence is assumed to be the same in all counties 43 

of a state. 44 

State prevalence of firearm-owning households  45 

RAND’s Household Firearm Ownership Database(3) provides annual estimates of the proportion of 46 

adults who live in a household with firearms for each state in the US between 1980 and 2016. These 47 

estimates are based on direct measures of ownership from individual-level survey data and indirect 48 

proxy measures of ownership (for example, per capita hunting licenses, background checks, and 49 

subscriptions to Guns & Ammo magazine).  50 

As the surveys were designed to be nationally representative but not for each state, multi-level 51 

regression with post-stratification was used to calculate subnational estimates(4) (A1). These 52 

corrected direct measures are then combined with indirect measures using a structural equation 53 

model which attempts to represent both direct and indirect measures as dependent in part on 54 

household ownership rates and in part on observed and unobserved confounders.  55 
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Additionally, as one of the indirect measures used by RAND (proportion of suicides that involved 56 

firearms) is collinear with the outcome of interest in this study, we re-estimated the firearm 57 

ownership rates with this measure excluded. Household firearm ownership rates were assumed to 58 

be homogenous across all counties in the state, a necessary simplification given annual county-level 59 

estimates of firearm ownership are unavailable.  60 

Average weekly wage 61 

The Bureau of Labor Statistics through the Quarterly Census of Employment and Wages program(5) 62 

provides timely and finely-resolved estimates of wages from several industries covering over 95% of 63 

US jobs. These estimates are based on employer reports to the unemployment insurance contribution 64 

system and two annual surveys. Data are aggregated to industry sectors and geographic levels 65 

(metro, county, state, and national) and are available at annual frequency, with more frequent 66 

releases available at higher aggregations. Here, we use county-wise estimates of annual average 67 

weekly wage across all industries. 68 

Unemployment rate 69 

The Bureau of Labor Statistics through the Labor and Unemployment Statistics (6) program provides 70 

estimates of unemployment by combining data from the Current Population Survey, the Current 71 

Employment Statistics survey, and state unemployment insurance systems. County-level rates 72 

incorporate methodological corrections to include agricultural workers, self-employed, unpaid 73 

family workers and private household workers who are not otherwise represented in 74 

administrative/survey datasets. These estimates are considered reliable and form the basis for 75 

budgetary allocations by federal, state and local governments. 76 

Population Density 77 

Annual population density in each county was estimated using the intercensal and postcensal 78 

population estimates described above and the county land area per the 2010 US census(7). This 79 

calculation is not sensitive to changes in county boundaries during the study period. A log 80 

transformation was applied as the distribution was found to be non-normal. 81 

The estimates for some of the county-level variables in a small percentage of counties (< 2%) were 82 

missing from the original data sources. We used the following 3-step process to impute missing 83 

values: (a) the mean of neighboring (defined in later sections) counties that have estimates; (b) if 84 

there are no neighbors with estimates, the median of all counties in the state for which estimates are 85 
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available; and (c) if estimates are missing for all counties in a state, the median across all counties in 86 

the US for which estimates are available. 87 

Appendix Figure 1 shows pairwise Spearman correlation for each pair of covariates.   88 
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Appendix Text 2: Conditional Autoregressive (CAR) Models 89 

Studies have previously used a wide array of regression and time series models to calculate effect 90 

estimates of suicide risk factors and/or predict future trends (8). Methods that are solely temporal 91 

(sARIMA, for example) do not capture the often critical spatial dependencies in suicides. Local spatial 92 

models, such as geographically weighted regression, estimate regression coefficients for different 93 

locations in space and have been used to understand spatial variations in regression relationship 94 

between an outcome of interest and covariates(9, 10). Global models, such as the CAR, on the other 95 

hand estimate a single set of global regression coefficients. The choice of CAR in this study is largely 96 

driven by our research objective, as stated in the main text.  97 

A CAR model under Poisson distribution assumption is specified as: 98 

𝑦𝑦𝑐𝑐𝑐𝑐  ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(µ𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐) 99 

𝑙𝑙𝑃𝑃(𝜃𝜃𝑐𝑐𝑐𝑐) =  𝛽𝛽0 + 𝒙𝒙𝑐𝑐𝑐𝑐𝑇𝑇 𝜷𝜷 + 𝜓𝜓𝑐𝑐𝑐𝑐 100 

𝛽𝛽~𝑁𝑁�µ𝛽𝛽 ,𝛴𝛴𝛽𝛽  � 101 

where 𝑦𝑦𝑐𝑐𝑐𝑐 denotes observed count of suicide deaths in county c during year t, µ𝑐𝑐𝑐𝑐 is the expected 102 

suicide deaths in county c in year t and 𝜃𝜃𝑐𝑐𝑐𝑐 is the risk relative to µ𝑐𝑐𝑐𝑐 (see Appendix Text 3). 𝒙𝒙𝑐𝑐𝑐𝑐 =103 

 �𝑥𝑥𝑐𝑐𝑐𝑐1 … 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐� is a vector of p covariates for county c during year t, with c = 1, …, C for the C counties 104 

in the US and t = 1,…,N, for N years in the study period; 𝜷𝜷 =  �𝛽𝛽1 …𝛽𝛽𝑐𝑐� is the vector of covariate 105 

regression parameters whose Gaussian prior is defined by mean µ𝛽𝛽 and diagonal variance matrix 𝜮𝜮𝛽𝛽 . 106 

𝜓𝜓𝑐𝑐𝑐𝑐 a latent component encompassing one or more sets of spatiotemporally autocorrelated random 107 

effects. The CAR-ANOVA(11) model decomposes spatiotemporal variation, 𝜓𝜓𝑐𝑐𝑐𝑐 , into an overall spatial 108 

effect across the study period (𝝓𝝓), an overall temporal trend over the study area (𝜹𝜹), and a set of 109 

independent space-time interactions (𝜸𝜸);  𝝓𝝓 =  (𝜙𝜙1 …𝜙𝜙𝐶𝐶) and 𝜹𝜹 =  (𝛿𝛿1 … 𝛿𝛿𝑁𝑁)  are modeled by the 110 

CAR prior proposed by Leroux and others (12). 111 

𝜓𝜓𝑐𝑐𝑐𝑐 = 𝜙𝜙𝑐𝑐 + 𝛿𝛿𝑐𝑐 + 𝛾𝛾𝑐𝑐𝑐𝑐  112 

𝛾𝛾𝑐𝑐𝑐𝑐 ∽ 𝑁𝑁(0, 𝜏𝜏𝐼𝐼2) 113 

𝜙𝜙𝑐𝑐|𝜙𝜙−𝑐𝑐 ,𝑾𝑾 ∽ 𝑁𝑁�
𝜌𝜌𝑆𝑆 ∑ 𝑤𝑤𝑐𝑐𝑐𝑐𝜙𝜙𝑐𝑐𝐶𝐶

𝑐𝑐=1

𝜌𝜌𝑆𝑆 ∑ 𝑤𝑤𝑐𝑐𝑐𝑐𝐶𝐶
𝑐𝑐=1 + 1 − 𝜌𝜌𝑆𝑆

,
𝜏𝜏𝑆𝑆2

𝜌𝜌𝑆𝑆 ∑ 𝑤𝑤𝑐𝑐𝑐𝑐𝐶𝐶
𝑐𝑐=1 + 1 − 𝜌𝜌𝑆𝑆

� 114 

𝛿𝛿𝑐𝑐|𝛿𝛿−𝑐𝑐 ,𝑫𝑫 ∽ 𝑁𝑁�
𝜌𝜌𝑇𝑇 ∑ 𝑑𝑑𝑐𝑐𝑐𝑐𝛿𝛿𝑐𝑐𝑁𝑁

𝑐𝑐=1

𝜌𝜌𝑇𝑇 ∑ 𝑑𝑑𝑐𝑐𝑐𝑐𝑁𝑁
𝑐𝑐=1 + 1 − 𝜌𝜌𝑇𝑇

,
𝜏𝜏𝑇𝑇2

𝜌𝜌𝑇𝑇 ∑ 𝑑𝑑𝑐𝑐𝑐𝑐𝑁𝑁
𝑐𝑐=1 + 1 − 𝜌𝜌𝑇𝑇

� 115 

𝜏𝜏𝑆𝑆2, 𝜏𝜏𝑇𝑇2 , 𝜏𝜏𝐼𝐼2 ∽ 𝐼𝐼𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼𝑃𝑃𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝐺𝐺, 𝑏𝑏) 116 
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𝜌𝜌𝑆𝑆 ,𝜌𝜌𝑇𝑇 ∽ 𝑈𝑈𝑃𝑃𝑃𝑃𝑈𝑈𝑃𝑃𝐼𝐼𝐺𝐺 (0, 1) 117 

Here, W is the C x C spatial adjacency matrix, with wcd = 1 if counties c and d are adjacent to each other 118 

and 0 otherwise (counties are adjacent if they share at least one boundary point in the shape file; a 119 

county is not adjacent to itself). Analogously, D is the N x N temporal adjacency matrix, with dtj = 1 if 120 

|t - j| = 1 (i.e. consecutive years) and 0 otherwise.  Note that W and D, are independent of the outcome. 121 

The priors for the spatial (𝜏𝜏𝑆𝑆2), temporal (𝜏𝜏𝑇𝑇2) and space-time interaction (𝜏𝜏𝐼𝐼2) random effects 122 

variances are specified by an Inverse-Gamma distribution with a=1 and b=0.01; spatial (𝜌𝜌𝑆𝑆) and 123 

temporal (𝜌𝜌𝑇𝑇) dependence parameters have uniform priors in the unit interval (1 indicates strong 124 

dependence; 0 independence). See appendix text 7 for sensitivity analysis on hyperparameters of the 125 

random effects variances.  126 

The models were fit in a Bayesian setting using Markov chain Monte Carlo simulations. Parameters 127 

whose full conditional distributions have a closed form distribution are Gibbs sampled and the rest 128 

are updated using the Metropolis adjusted Langevin algorithm (13). For each model, three Markov 129 

chains each 110,000 in length with a burn-in of 10,000 were generated and a thinning factor of 1,000 130 

was applied to remove correlation among the samples (14-16). Convergence was verified with the 131 

Geweke diagnostic statistic (17). Implementations of the methods are per CARBayesST package (18, 132 

19) in R (20). 133 

  134 
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Appendix Text 3: Reference model 135 

Let 𝑦𝑦𝑐𝑐𝑐𝑐 denote observed count of suicide deaths in county c during year t, and 𝑝𝑝𝑐𝑐𝑐𝑐the corresponding 136 

population estimate. We assume the population can be split into k mutually exclusive and exhaustive 137 

strata, each with a different risk of suicide death; let 𝑦𝑦𝑐𝑐𝑐𝑐𝑡𝑡 , 𝑝𝑝𝑐𝑐𝑐𝑐𝑡𝑡  be the respective suicide deaths and 138 

population in strata k. The suicide risk for strata k nationally over the study period (t=1…n) is 139 

calculated as: 140 

η𝑡𝑡 =  
1
𝑃𝑃
��

∑ 𝑦𝑦𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐
∑ 𝑝𝑝𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐

�
𝑛𝑛

𝑐𝑐=1

 141 

The expected number of deaths in county c during year t is calculated as: 142 

µ𝑐𝑐𝑐𝑐 = �𝑝𝑝𝑐𝑐𝑐𝑐𝑡𝑡 ∗ η𝑡𝑡
𝑡𝑡

 143 

Drawing on prior studies on heterogeneity of suicide risk by age, race and gender, we use k = 72 144 

strata of 9 age groups ([5, 15), [15, 25), …, 85+), 4 racial groups (White, Black, American 145 

Indian/Alaskan Native, and Asian/Pacific Islander) and two gender groups. The race and gender 146 

categories are identical to those provided by the bridged-race population datasets.   147 
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Appendix Text  4. Variable selection for the CAR model 148 

To identify variables with marginal contribution to model quality, we built an exhaustive set of 149 

Poisson generalized linear models with the expected deaths (as described above in appendix text 3) 150 

as offset and all possible combinations of the 7 risk factors as explanatory variables. Specifically, we 151 

built 127 models (27 – 1), where in each model the observed deaths was the dependent variable and 152 

one combination of the risk factors were explanatory variables. We calculated goodness of-fit metric 153 

(Akaike Information Criterion (AIC)) for each model and compared these to the AIC of the full model, 154 

the model built using all available predictors. The figure below shows the difference in AIC of each 155 

model relative to the AIC of the full model for the best 30 models. Also shown in the figure are two 156 

additional goodness-of-fit metrics, demonstrating that the relative ranking of models was largely 157 

insensitive to the metric used.  158 

Based on the AIC, we identified the best 6-, 5-, 4- and 3- predictor models to assess the tradeoff 159 

between model parsimony and model fit quality. We chose to use the best 5-predictor model (which 160 

excluded unemployment rate and the prevalence of major depressive disorder) as the select model, 161 

as it offered the possibility of dropping two variable with a slight (.07%) degradation in AIC  162 
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Figure T4F1: Goodness-of-fit metrics for different combinations of covariates. The full model using 

all 7 covariates had the best fit, and the difference (%) of all other models relative to the full model 

is shown for the top 30 models (per AIC).  



11 
 

Appendix Text 5: Isolated counties and counties with no recorded deaths 163 

Of the 3142 counties in the US, 5 counties (Honolulu, HI; Kauai, HI; Hawaii, HI; Nantucket, MA; and 164 

San Juan WA) have no known neighbors in the shape file. As the CAR model specification requires 165 

each location to have at least one neighbor, these counties were excluded from the analysis. 166 

Additionally, two counties (Wade Hampton, AK and Shannon, SD) that had no outcome data were 167 

also excluded. 168 

There were also a sizeable number of counties with no recorded deaths during a year.  Over the 12- 169 

year study period, a total of 4979 county-year instances (13.2% of total) had zero suicide death 170 

counts, with the yearly percentages decreasing from 15.2% in 2005 to 10.6% in 2016. While the CAR 171 

models do not require any remediation for these instances, when the observed outcome is 0, the 172 

symmetric proportion error takes the maximum possible penalty of 1, thus considerably inflating the 173 

aggregate mean errors.  As we are unaware of a consensus on how to handle these zero-count cases, 174 

we retained these counties while calculating the errors in the main text. Appendix Figure 7 shows the 175 

errors with these county-year instances excluded. Dropping these county-year pairs does not change 176 

the improvement in errors of all CAR-ANOVA models relative to the reference model.   177 
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Appendix Text 6. CAR model with only county-level covariates 178 

Prior to building CAR models we built Poisson log-linear models and compared goodness-of-fit from 179 

all combination of covariates. This was done in part to avoid having to build a large number of 180 

computationally expensive CAR models, for identifying a good set of covariates. With these simpler 181 

models, we found that despite the strong assumption of intra-state homogeneity, both firearm 182 

ownership rate and prevalence of major depressive disorder were highly informative, and their non-183 

inclusion considerably degraded AIC. In fact, the 5-covariate model that did not include these two 184 

variables underperformed (higher AIC) most 4-, and 3-covariate models and the univariate model 185 

with just the firearm ownership rates.   186 

We have additionally built a CAR-ANOVA model using only county-level covariates. Effect estimates 187 

are shown in table below (appendix table T6T1). In the in-sample setting, the goodness-of-fit 188 

measure (WAIC) of this model (select.ct) was nearly identically to that of the full model and worse 189 

than that of the select model. Using the paired Wilcoxon signed rank test (appendix figure T6F1), 190 

errors were found to be not statistically significantly different from those of the select model, but 191 

lower than those of the full model. The model outperformed the null model by both WAIC and errors. 192 

To summarize, the inclusion of these two variables in the CAR models full and select, under the 193 

assumption of intra-state homogeneity, did not unambiguously degrade model fit or errors. As an 194 

aside, the relative value of the covariates as assessed with log-linear models did not appear to 195 

translate to CAR models, possibly suggesting the strong effect of spatiotemporal autocorrelation 196 

compared to the effect of one or more of the considered covariates.   197 
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Variable Mean 
Estimate 

95% CI 

Median HH income -5.189 -6.38, -4.03 
Population density -0.022 -0.03, -0.01 
Poverty, % -0.519 -0.72, -0.31 
Unemployment, % 0.890 0.54, 1.22 
Weekly wage 0.008 -0.05, 0.07 
rho.S 0.980 0.96, 0.99 
rho.T 0.911 0.62, 0.99 
tau2.I 0.003 0.002, 0.004 
tau2.S 0.099 0.092, 0.108 
tau2.T 0.003 0.002, 0.008 
WAIC 161249  

Table T6T1: Effect estimates for suicide mortality risk for one standard deviation change in 

predictor, using five county-level models. 

 

  

Figure T6F1: Wilcoxon signed rank test for each pair of models, as in Figure 2 of the main text, and 

now including CAR model (select.ct) built with only county-level variables. Significance (p < .05) in 

the ‘two.sided’ column indicates that the difference in errors of Model X and Model Y is not symmetric 

around 0. p < .05 in the ‘lesser’ panel column indicates errors in Model X (x-axis) are lower than Model 

Y. Actual p -value are shown as text when errors are not significantly different.  

198 
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Appendix Text 7. Sensitivity analysis of Inverse-Gamma shape and scale hyperparameters 199 

As described in section 2, the priors for the random effects variances (𝜏𝜏𝑆𝑆2, 𝜏𝜏𝑇𝑇2  and 𝜏𝜏𝐼𝐼2) were defined by 200 

an Inverse-Gamma distribution with shape=1 and scale=0.01. To assess the sensitivity of the CAR 201 

model results to these priors, we built additional models with shape = {0.75, 1, 1.25} and scale = 202 

{0.005, 0.01, 0.02}, and same covariates as the select model. 203 

Figure T7F1 plots the stanardized effect estimates for each of these 9 models, demonstrating no large 204 

changes. Figures T7F2 shows that there are differences in error among the 9 models, but overall have 205 

lower error than of the full model, as reported in the main results. Higher scale values appear to yield 206 

lower errors for the same shape and the difference is statistically significant. 207 

 

Figure T7F1: Standardized effect estimates for suicide mortality risk for the select CAR model, with 
9 pairs of hyperparameters. 

 

Figure T7F2: Symmetric absolute proportion error for the 9 models. Blue vertical represents error 

with the full model 
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Figure T7F3: Wilcoxon signed rank test for significant differences in the errors. 
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Variable Select Full 

Firearm ownership 1.0283 (1.018, 1.039) 1.03 (1.02, 1.041) 
Major Depression, % 1.0099 (1.004, 1.015) 1.0102 (1.005, 1.016) 
Median HH income 0.9575 (0.949, 0.968) 0.9413 (0.928, 0.955) 
Population density 0.9574 (0.942, 0.975) 0.9629 (0.946, 0.98) 
Poverty, % NA 0.9664 (0.954, 0.98) 
Unemployment, % NA 1.028 (1.019, 1.038) 
Weekly wage 0.997 (0.987, 1.007) 1.0017 (0.992, 1.013) 

 

Appendix Table 1. Effect estimates for suicide mortality risk for one standard deviation change in 
predictor. 
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Variable 
Mean 

Estimate 
95% CI 

Firearm ownership 0.246 0.16, 0.34 
Major Depression, % 1.455 0.56, 2.19 
Median HH income -3.681 -4.42, -2.78 
Population density -0.024 -0.03, -0.02 
Weekly wage -0.019 -0.08, 0.04 
rho.S 0.973 0.94, 0.99 
rho.T 0.911 0.61, 0.99 
tau2.I 0.003 0.002, 0.004 
tau2.S 0.099 0.091, 0.108 
tau2.T 0.003 0.001, 0.007 
WAIC 161235  

a. Select model 

 

Variable Mean 
Estimate 

95% CI 

Firearm ownership 0.262 0.18, 0.36 
Major Depression, % 1.500 0.73, 2.31 
Median HH income -5.149 -6.37, -3.96 
Population density -0.022 -0.03, -0.01 
Poverty, % -0.533 -0.74, -0.34 
Unemployment, % 0.954 0.66, 1.27 
Weekly wage 0.011 -0.05, 0.08 
rho.S 0.975 0.94, 0.99 
rho.T 0.914 0.61, 0.99 
tau2.I 0.003 0.002, 0.004 
tau2.S 0.096 0.088, 0.104 
tau2.T 0.003 0.002, 0.008 
WAIC 161250  

b. Full model 
 

Variable Mean 
Estimate 

95% CI 

rho.S 0.982 0.958, 0.995 
rho.T 0.893 0.572, 0.987 
tau2.I 0.003 0.002, 0.004 
tau2.S 0.120 0.111, 0.129 
tau2.T 0.002 0.001, 0.006 
WAIC 161267  

c. null model 

Appendix Table 2. Effect estimates in suicide mortality risk for one unit change in predictor, and 
spatial and temporal dependence parameters. WAIC: Watanabe-Akaike Information Criterion 
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Chain 1: WAIC= 161229;DIC = 161100; p.d. = 2613; LMPL = -80634 

 Median 2.5% 97.5% n.effective Geweke.diag 
(Intercept) 0.1505 0.0683 0.2427 100 -0.2 
Weekly wage -0.0189 -0.0818 0.045 100 -0.6 
Median HH income -3.5928 -4.4867 -2.6009 100 0.9 
Major depression, % 1.4582 0.5275 2.1948 100 0.1 
Firearm ownership 0.2369 0.1578 0.3238 149 0.9 
Population density -0.0252 -0.0323 -0.0154 73.6 -0.9 
tau2.S 0.0991 0.0909 0.1081 100 0.5 
tau2.T 0.0031 0.0012 0.0069 100 -0.7 
tau2.I 0.0029 0.0022 0.0037 23 0.7 
rho.S 0.9737 0.9466 0.9912 100 -0.3 
rho.T 0.8983 0.5141 0.9902 100 0.6 

 
Chain 2: WAIC= 161239; DIC = 161107; p.d. = 2619; LMPL = -80641 

 Median 2.5% 97.5% n.effective Geweke.diag 
(Intercept) 0.1447 0.0804 0.2158 100 -1.9 
Weekly wage -0.0166 -0.084 0.0357 100 -0.8 
Median HH income -3.7457 -4.4904 -2.7739 100 1.5 
Major depression, % 1.5112 0.6544 2.263 100 -0.7 
Firearm ownership 0.2527 0.1689 0.3581 100 1.3 
Population density -0.0244 -0.0331 -0.0162 100 2.6 
tau2.S 0.0989 0.0913 0.108 100 2.1 
tau2.T 0.0025 0.0013 0.0074 100 -0.1 
tau2.I 0.003 0.0024 0.0037 49.2 1.1 
rho.S 0.974 0.9379 0.9915 70.2 1.7 
rho.T 0.9192 0.74 0.994 100 1.3 

 
Chain 3: WAIC= 161239;DIC = 161115; p.d. = 2633; LMPL = -80645 

 Median 2.50% 97.50% n.effective Geweke.diag 
(Intercept) 0.1534 0.0652 0.246 584 0.3 
Weekly wage -0.0203 -0.0793 0.0409 100 -0.4 
Median HH income -3.7046 -4.2836 -2.9766 100 0.8 
Major depression, % 1.3949 0.4921 2.1189 100 -1.1 
Firearm ownership 0.248 0.1489 0.3352 100 0.5 
Population density -0.0239 -0.0358 -0.0138 100 -0.3 
tau2.S 0.0986 0.0903 0.1081 100 0.9 
tau2.T 0.0029 0.0014 0.0065 100 0.4 
tau2.I 0.003 0.0023 0.0037 50.3 0.6 
rho.S 0.9712 0.9425 0.9902 100 -2.5 
rho.T 0.9146 0.588 0.9899 100 -0.1 

 
Gelman-Rubin Diagnostic: 1.02 
 
Appendix Table 3: Output from the select model over the fit period from three chains; showing mean 
and 95% credible interval; effective number of independent samples and diagnostics. Geweke 
diagnostic between [-2, 2] indicates model convergence and Gelman-Rubin statistic under 1.1 
indicates that longer chains are not necessary. WAIC: Watanabe-Akaike Information Criterion DIC: 
deviance information criteria; p.d.: effective number of parameters; LMPL: Log Marginal Predictive 
Likelihood.  
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Appendix Figure 1. Pearson and Spearman correlation coefficient for variables used. smr = standardized mortality rate; mde: major 
depressive episode; unemp: unemployment rate; wage.wk: weekly wage; median.hh.income: median household income 
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Appendix Figure 2. a) Median and 95% CI for national suicide risk for the three CAR models (risks from select and full models are similar 

and not distinguishable). B) Interquartile (IQR) range of county-level risk for the same models.  
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Appendix Figure 3. Mean and Median symmetric proportional error for in-sample, temporal out-of-sample and spatial out-of-sample 

estimates for the three CAR models, as a percent of error in baseline. Baseline estimates are expected deaths from population profile, µ𝑐𝑐𝑐𝑐 .  
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Appendix Figure 4. Trace plots for the intercept and five regression parameters in the select model 

over the fit period, for three chains (black, red, green), showing no clear trend in mean or variance, 

suggestive of chain convergence. 

 

Intercept Weekly wage 

Median household income Major depressive disorder 

Firearm ownership rate Population density 
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Appendix Figure 5. Scatter plot of model estimates of suicide deaths from select model in temporal OOS setting. Each data point 
represents a county. Axes are square root transformed.  
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Appendix Figure 6. Global Moran’ I in the residual. Magnitude of Moran’s I statistic is indicated by the bars, with color indicating 
significance. The grey bars shows corresponding Moran’s I from the baseline model (all significant).  
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Appendix Figure 7. Mean and Median symmetric proportional error for in-sample, temporal out-of-sample and spatial out-of-sample 

estimates for all attempted model forms, as a percent of error in baseline estimates, with zero-count county-year instances excluded.  
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