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1 Parameter estimation

1.1 Methylation level µi

Based on the model specification in the paper, marginally we have negative binomial distri-
butions for observed read counts in both IP and input samples.

yij|φi ∼ NB(µi(φ−1
i − 1),

θis
y
j

1 + θis
y
j

) xij|φi ∼ NB((1− µi)(φ−1
i − 1),

θis
x
j

1 + θisxj
)

Then E{yij|φi} = µi(φ−1
i − 1)θisyj , E{xij|φi} = (1− µi)(φ−1

i − 1)θisxj . Correspondingly,

E(yij
syj

)
E(xij

sxj
) = µi

1− µi

Therefore the moment estimate of µi is as follows,

µ̂i =
∑
j(yij/syj )∑

j(yij/syj + xij/sxj )
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1.2 Variance of the estimated methylation level µ̂i

Based on above formula of µ̂i, we have

var(µ̂i|φi) ≈
∑
j var(yij/syj )

(E{∑j(yij/syj + xij/sxj )})2

=
∑
j

1
syj
µi(φ−1

i − 1)θi(1 + θis
y
j )

n2(φ−1
i − 1)2θ2

i

= µi
n2θi
{

∑
j

1 + syjθi

syj
} φi

1− φi
var(µ̂i) = E[var(µ̂i|φi)] + var[E(µ̂i|φi)]

≈ µi
n2θi
{

∑
j

1 + syjθi

syj
}E{ φi

1− φi
}+ var(µi)

= µi
n2θi
{

∑
j

1 + syjθi

syj
}E{ φi

1− φi
}

1.3 Dispersion parameter φi

The formula to calculate var(µ̂i) in Section 1.2 involves φi and θi. We adapt the maximum
likelihood method to get the posterior modes of these two parameters. The joint posterior
of φi and θi is proportional to the data likelihood. Then:

log f(φi, θi|Yi., Xi., µi) ∝ log(
∏
j

P (Yij|φi)P (Xij|φi))f(φi)

=
∑
j

{logΓ(µi(φ−1
i − 1) + Yij)− µi(φ−1

i − 1)log(1 + syjθi) + Yijlog(
syjθi

1 + syjθi
)

+ logΓ((1− µi)(φ−1
i − 1) +Xij)− (1− µi)(φ−1

i − 1)log(1 + sxj θi)

+Xijlog(
sxj θi

1 + sxj θi
)}

− nlogΓ(µi(φ−1
i − 1))− nlogΓ((1− µi)(φ−1

i − 1))

− log(φi)−
(log φi −mφ)2

2σ2
φ

Maximizing the above likelihood provides estimates of φi and θi, denoted as φ̃i and θ̃i here-
after.

1.4 Hyperparamters
The likelihood in Section 1.3 contains mφ and σ2

φ, which should be estimated prior to the
estimation of φi and θi. We adapt a three-step procedure to obtain the plug-in estimate of
the mean (mφ) and variance (σ2

φ) of dispersion parameter φi by method of moment, based
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on our specified hierarchical models:

Xij|λxij ∼ Poisson(sxjλxij),
Yij|λyij ∼ Poisson(syjλ

y
ij),

λxij|φi ∼ Γ((1− µi)(φ−1
i − 1), θi), (1)

λyij|φi ∼ Γ(µi(φ−1
i − 1), θi),

φi ∼ logN(mφ, σ
2
φ).

According to the log-normal prior, we first have a plug-in estimate m̂φ = log( ¯̂
φ) − (1/2) ∗

log(s2
φ/

¯̂
φ2 + 1), σ̂2

φ = log(s2
φ/

¯̂
φ2 + 1), where s2

φ = 1
N−1

∑
i(φ̂i −

¯̂
φ)2 with ¯̂

φ = 1
N

∑N
i φ̂i and N

being the total number of regions. Beause λyij
λxij+λ

y
ij
∼ Beta(µi, φi), then φ̂i =

1
n

∑
j
(

λ̂
y
ij

λ̂x
ij

+λ̂y
ij

−µ̃i)2

µ̃i(1−µ̃i)

with µ̃i = 1
n

∑
j

λ̂yij
λ̂xij+λ̂

y
ij

, both of which are plug-in estimates with λs replaced by their moment
estimates based on the Poisson distribution of xij and yij.

3



2 Simulation

2.1 Region-level simulation setup
We conduct a number of simulations to evaluate the performance of TRES. The simulations
are constructed based on a mouse brain dataset (more details in Section 3.1), in order to
mimic the real data characteristics. In each simulation, we assume that there are 5000
candidate regions, with 80% of them being positive (with m6A methylation). Let µ−

i and
µ+
i be m6A levels for background and methylated regions respectively. We assume µ−

i ∼
N(mµ− , 0.052) for negative regions, and µ+

i ∼ N(mµ+ , 0.052) for positive regions. We set
mµ− = 0.55 and mµ+ = 0.7. Here, the background signal mµ− appears to be high. This is
because we have a pre-filtering step, so then even the leftover negative sites can have high
counts in the input samples.

We sample the dispersion parameter φi from a log-normal distribution logN(mφ, σ
2
φ), with

mφ = -5 and σφ = 1.48. These numbers match the estimates of dispersion for candidate
regions from a set of mouse brain data.

The scale parameter θi in gamma distribution is simulated based on its relationship with
φi. To be specific, we observe strong correlations between the estimates of φ̂i and θ̂i among
candidate regions in the real data (Figure S1). To mimic that in the simulation, we estimate
φ̂i and θ̂i from the mouse brain data, and then fit a simple linear regression of log(θ̂i) against
log(φ̂i). The OLS estimates are a = 4.414 for the intercept and b = 0.865 for the slope.
Then we randomly sample the scale parameters from θi ∼ logN(a+ b ∗ φi, 0.52).

To examine the effect of sample size on dispersion estimation and inference of TRES,
we vary the number of replicates to be 2 and 5. Given µi, φi and θi, we randomly sample
λxij and λyij from gamma distributions specified in Equation (1). Read counts of the input
(xij) and the IP (yij) for each region are then sampled from the corresponding Poisson
distributions given λxij and λyij, with the size factors sxj and syj randomly sampled from a
uniform distribution U(0.5, 1).

2.2 Bin-level simulation setup
First, we divide the whole transcriptome into 50bp bins and keep bins overlapped with
randomly selected 18000 genes. Then, for each bin b in replicate j, the input counts Xbj are
directly obtained from the same real dataset used to call peaks prior to this simulation. The
IP counts Ybj are sampled from Poisson distributions. We assume Ybj|λybj ∼ Pois(syjλ

y
bj) and

λybj = λxbj ∗
pbj

1−pbj
, where λxbj = Xbj/s

x
j . Here, pbj = λy

bj

λx
bj

+λy
bj

represents the methylation level of
bin b in replicate j, which is simulated using a Hidden Markov Model (HMM). In particular,
let zb denote the methylation status of bin b. zb = 1 if it’s overlapped with any called peak
from the real data, and zb = 0 otherwise. For bins that are overlapped with peak k, we
assume

pkbj ∼ Beta(µkb , φb)
µkb ∼ N(µk, 0.022),
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where µk is the methylation level of pre-called peak k.
For background bins with zb = 0,

pbj ∼ Beta(µb, φb)
µb ∼ N(µ(0)

b , 0.012)

where µ(0)
b is the bin methylation level estimated using real data.

Dispersion φb are simulated using log-normal distribution based on our observations from
real data (Figure S4B).

It is important to note that, our bin-level simulation is based on real data. We have
carefully compared the characteristics of simulated vs. real data, including the marginal
distribution of bin-level read counts (Figure S4C) , the signal to noise ratios (mu in our
model) (Figure S4A), and the dispersion among replicates (phi in our model) (Figure S4B).
Overall, the simulated data are very similar to the real data.

2.3 Normality of Wald-test statistics and p-value distribution in
region-level simulations.

We propose to use the normal distribution to calculate p-values based on the Wald test
statistics. To ensure the validity of normal p-values, we examine the normality of test
statistics from our region-level simulations.

The histograms and normal quantile–quantile (QQ) plots of Wald test statistics under
different settings (Figure S2) show that the test statistics follow a normal distribution very
well in the middle of the distribution, while the heavier tail to the right corresponding to the
methylation regions. We further show the roughly uniformly distributed p-values under the
null (Figure S3) and calculate the type I error rate using different p-value thresholds, FDR
using different FDR thresholds under different simulation settings (Table S1 and S2).

2.4 Accuracy of peak calling in bin-level simulations
In addition to compuate the proportion of peaks overlapping with true peaks, we further
assess the precision in peak position for each method. In particular, we calculate the per-
centage of base pairs in a peak that are also covered by true peaks. As shown in Figure
S5, TRES still performs best in all scenarios compared to MeTPeak and exomePeak. When
sample size increases, the gain of TRES becomes significantly better. Again this is due to
its proper modeling of biological variance. In addition, the high precision of TRES under
conditions of large dispersion (from top to bottom rows) suggests the benefits of our shrink-
age procedure for the dispersion of methylation levels. When the dispersion becomes large,
more extreme values will appear, which could cause unstable inferences in peak calling. A
shrinkage procedure of the dispersion helps to stabilize the dispersion estimate and generate
robust inference.
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3 Real data analysis

3.1 Datasets
All data are obtained from the Gene Expression Omnibus (GEO) database. The first dataset
(GEO accession number GSE113781) contains samples from mouse adult cortex under two
conditions: treated with 15 minute acute restraint stress (stress), and left in homecage and
sacrificed 4 hours after (basal). The goal of the study was to investigate the role of N6-
Methyladenosine (m6A) and N6, 2’-O-dimethyladenosine (m6Am) in the context of brain’s
stress response [1]. The IP samples were processed using combined m6A and m6Am anti-
bodies to immunoprecipitate the mRNA. Thus, this dataset measures the joint m6A and
m6Am modifications. There are seven and six biological replicates in basal and stress mouse
cortex sample respectively. This dataset is referred to as Stress mouse data hereafter. The
second dataset (GSE144032) contains six-week old mouse brain samples from four brain re-
gions: cerebellum, cortex, hippocampus and hypothalamus. The goal of this study was to
investigate m6A in different mouse brain regions. Each sample contains two replicates. This
dataset is referred to as Young mouse data hereafter. The third dataset (GSE46705) con-
tains four samples from human HeLa cell line: one control sample and three treated samples.
The treatments correspond to the knock-out of complex METTL3, METLL14 and WTAP
respectively. The goal of this study was to investigate the effect of METTL3, METTL14
and WTAP on the dynamics of m6A on mammalian nuclear RNA [2]. Each sample contains
two replicates. This dataset is referred to as HeLa data.

3.2 Length of top peaks
Length of top 5000 peaks, motif contents among top 5000 peaks and distance of motif
DRACH to the summit of top 5000 peaks called by each method on different datasets are
shown in Figure S6, Figure S7(A) and Figure S7(B) respectively.

3.3 De novo motif search
We conduct de novo motif search for top peaks in all samples called by TRES, MeTPeak
and MACS2. It turns out that motif DRACH is the top one enriched motif in peaks of all
samples called by TRES. As an example, we show the sequence logo of DRACH in basal and
stress samples from Stress mouse data, cerebellum and hippocampus samples from Young
mouse data, control and METTL3-knockout samples from HeLa data (Figure S8).
In addition to our peaks, we find that DRACH motif also occur in peaks called by the other
methods. However, its rank and enrichment score in peaks varies by different methods. For
example, among the 10 lists of peaks called by each method for all three datasets, motif
DRACH is the top one enriched motif in 10, 6, 9 and 7 lists of peaks called by TRES,
MeTPeak, exomePeak and MACS2 respectively. The enrichment score (defined as -log10(p-
value) with the p-value reported by HOMER) of DRACH motif is mostly the highest in peaks
called by TRES (Figure S9) compared to exomePeak, MeTPeak and MACS2. These results
demonstrate that peaks called by TRES are more accurate and better ranked compared to
the other three methods.
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3.4 Consistency between peaks by TRES and other methods
To show the consistency between TRES and the other methods, we examine the overlapping
pattern among top 5000 peaks by each method. All peaks are adjusted to 400 base pair long
centered around their summit to avoid potential bias from peak length. As shown in Figure
S10, the Venn diagrams suggest that peaks called from different methods have moderate
overlaps, while each method has non-trivial number of unique peaks. To further explore the
overlaps, we calculate the proportion of peaks by each method that are also reported by at
least two other methods. For this, we first obtain a union of peaks by all methods. Then
for each method, we generate an indicator vector of the same length with the union. The
value of the indicator vector depends on whether the peaks from the union are reported by
that method. Given indicator vectors for all methods, we calculate the proportion of 1s in
each method that are also 1s in at least another two methods. This proportion indicates the
proportion of peaks by each method that are also reported by at least two other methods.
As shown in Table S3, TRES has the largest proportion in most samples compared to the
other methods. These results indicate that, compared to exomePeak, MeTPeak and MACS2,
peaks by TRES are more consistent with peaks by the other methods.

3.5 Effect of sequencing depth
Here, we investigate how the performance of TRES depends on sequencing depth and com-
pare it to exomePeak, MeTPeak and MACS2. To create data with lower depth, we down-
sample BAM files at different rates, ranging from 0.3 to 0.7. As a criterion of comparison,
for each method and each sample, we calculate the percentage of peaks called with raw data
that are recaptured at different downsample rates. As shown in Figure S11, TRES reports
the highest percentage compared to MeTPeak, exomePeak and MACS2. Although there is
an increasing trend in the percentage for all methods as sequencing depth increases, the in-
creasing curve of TRES is more flat, meaning that TRES is more robust to lower sequencing
depth than the other methods.

3.6 Location of the peaks over the transcriptome
Transcriptome-wide distributions of top 5000 peaks called by TRES are shown in Figure
S12.
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Figure S1: Plots of plug-in moment estimates for φi and θi using Young mouse data. The
red line is fitted by linear regression between log(θ̂i) and log(φ̂i), with intercept α = 4.414
and β = 0.865. The number to the right bottom is the Pearson’s correlation between log(φ̂i)
and log(θ̂i).
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Figure S4: Comparison of real and simulated methylation level (A), dispersion of methyla-
tion level (B) and read counts in IP samples (C). (A). Methylation level of peak regions and
background bins from real data (left column) and simulated methylation levels by methy-
lation status (right column). (B). Dispersion of bins from real data (left column) and from
simulated data (right column). (C). Bin-level read counts in real IP samples (top row) and
in simulated IP samples (bottom row).
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Figure S6: Boxplots for the length of top peaks called by different methods in all samples
from Stress mouse data, Control and METTL3-knockout samples from HeLa data and all
samples from Young mouse data.
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Figure S11: Percentage of peaks called with raw data that are recaptured at different se-
quencing depths. Data used are all samples from Young mouse data, all samples from Stress
mouse data, control and METTL3-knockout samples from HeLa data. In the calculation of
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Table S1: Type I error rates of TRES under different p-value thresholds.
Replicates 0.05 0.01 0.005 0.001 5e-04 1e-04 1e-05
Two reps 0.0320 0.0080 0.0050 0.0010 0.0010 0 0
Five reps 0.0650 0.0170 0.0120 0.0050 0.0030 0.0010 0

Table S2: FDRs of TRES under different FDR thresholds.
Replicates 0.05 0.01 0.005 0.001 5e-04 1e-04 1e-05
Two reps 0.0102 0 0 0 0 0 0
Five reps 0.0161 0.007 0.0056 0.0018 0 0 0

Table S3: Proportion of peaks by each method that are also reported by at least two other
methods.

TRES exomePeak MeTPeak MACS2
Basal 0.19 0.18 0.17 0.08
Stress 0.17 0.16 0.16 0.06

Control 0.30 0.26 0.25 0.28
M3 0.18 0.17 0.13 0.13

Cerebellum 0.35 0.34 0.26 0.32
Cortex 0.33 0.33 0.28 0.32

Hippocampus 0.32 0.31 0.28 0.29
Hypothalamus 0.28 0.28 0.24 0.27
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