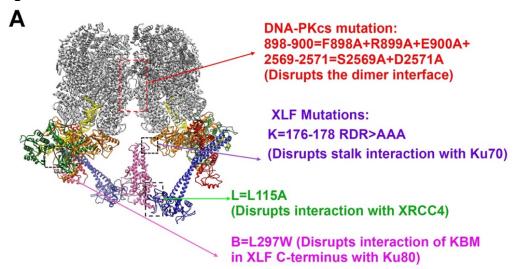
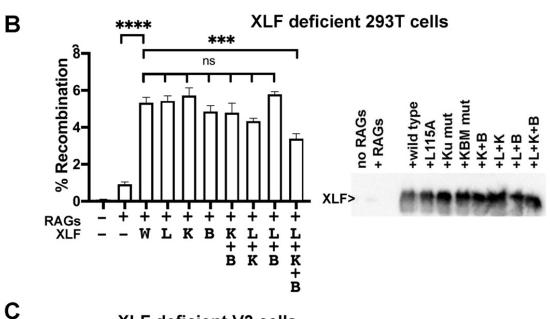
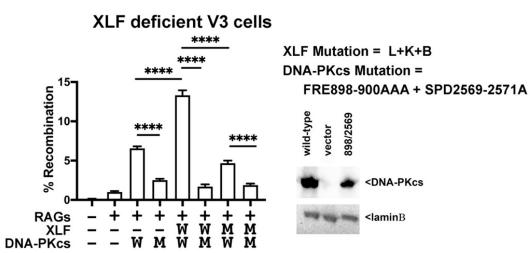

Table S1

DNA-PKcs mutations		
4XK/R>Ala; R1854A +K1857A+	4xala	Disrupts interaction between DNA-PKcs
K1913A+ K1917A		and Ku80 C-terminus.
2569-2571; S2569A + D2570A	2569	Disrupts interaction with DNA-PKcs 898-900
898-900: F898A + R899A + E900A	898	Disrupts interaction with DNA-PKcs 2569-2571
2569-2571+898-900	898/2569	
4XK/R>Ala+898-900	898/4xala	
4XK/R>Ala+2569-2571	2569/4xala	
898-900: F898A + R899A + E900A + K902D +K944D	898+902asp	More severely disrupts the 898-900 interface
4XK/R>Asp; R1854D +K1857D+ K1913D+ K1917D	4xasp	More severely disrupts interaction between DNA-PKcs and Ku80 C-terminus
898-900+902D+4XK/R>Asp	898+902asp+ 4xasp	
Ku80 mutations		
Linker insert 1	Ins1	Inserts 5 residues in linker
Linker insert 2	Ins2	Inserts 15 glycine at the C terminus of linker
3 residue linker deletion	∆3	Deletes 3 residues in linker
6 residue linker deletion	∆6	Deletes 6 residues in linker
10 residue linker deletion	Δ10	Deletes 10 residues in linker
13 residue linker deletion	Δ13	Deletes 13 residues in linker
15 residue linker deletion	∆ 15	Deletes 15 residues in linker
Linker/Ctd deletion	ΔCTD	Deletes entire linker and C-terminal helix
XLF mutations		
Disruption of XRCC4/XLF interaction	L	L115A
Disruption of XLF KBM/Ku80	В	L297W
interaction	14	BBB470 470444
Disruption of XLF/Ku70 interaction	K	RDR176-178AAA
L115A+L297W	L+B	
L115A+RDR176-178AAA	L+K	
RDR176-178AAA+L297W	K+B	
L115A+RDR176-178AAA+L297W	L+K+B	


Supplemental Table 1. Related to Figures 1-7. DNA-PKcs, Ku80, and XLF mutants utilized in this study.


Figure S1.



Supplemental Figure 1. Related to Figure 1. Altering the length of the disordered linker in the C-terminus of Ku80 to favor cis or trans interactions alters end-joining. xrs6 clonal transfectants expressing wild-type human Ku80 (WT), the $\Delta 6$ linker shortening mutant ($\Delta 6$), the ins1 linker lengthening mutant (lns), or ΔCtd linker/C-terminal+helix deletion mutant (ΔCtd), or no Ku80 (vect) were plated at cloning densities into complete medium with increasing doses of calicheamicin or etoposide. Colonies were stained after eight days, and percent survival was calculated. Error bars represent the standard error of the mean.

Figure S2.

Supplemental Figure 2. Related to Figure 2. Via multiple protein-protein interactions, a single XLF dimer interacts with Ku70, Ku80, and XRCC4 to promote a long-range synaptic complex. (A) Ribbon diagram of the XLF-mediated long-range complex as reported by Chaplin *et al.* (Chaplin *et al.*, 2021b) (PDB:7NFC). DNA-PKcs is shown in grey, Ku80 in green, Ku70 in orange, XLF in pink, XRCC4 in purple, and DNA in yellow. (B) The fluorescent substrate 290-Crimson/ZS was utilized to detect coding end joining of RAG-induced DSBs in 293T cells lacking XLF as described previously(Roy *et al.*, 2015) (left). Immunoblot of transiently expressed XLF mutants in XLF-/- 293T cells (right). Percent recombination of episomal fluorescent coding-end joining substrate in cells transiently transfected with wild-type or mutant XLF expression constructs as described in 3A. Error bars indicate SEM from five independent experiments. ****P<0.0001, ***P<0.001; in two-way ANOVA with Holm-Sidak correction. (C) Fluorescent substrate 290-Crimson/ZS was utilized to detect coding end joining in XLF deficient V3 cells that lack both DNA-PKcs and XLF. Percent recombination assessed as in B. Error bars indicate SEM from three independent experiments. P values as in B.